Skip to main content
Log in

Extracellular Matrix as a Strategy for Treating Chronic Wounds

  • Current Opinion
  • American journal of Clinical Dermatology
  • Published:
American Journal of Clinical Dermatology Aims and scope Submit manuscript

Abstract

The dermis normally directs all phases of skin wound healing following tissue trauma or disease. However, in chronic wounds, the dermal matrix is insufficient to stimulate healing and assistance by external factors is needed for wound closure. Although the concept of the extracellular matrix directing wound healing is not new, ideas about how best to provide the extracellular matrix components required to ‘jump-start’ the healing process are still evolving. Historically, these strategies have included use of enzyme-inhibiting dressing materials, which bind matrix metalloproteinases and remove them from the chronic wound environment, or direct application of purified growth factors to stimulate fibroblast activity and deposition of neo-matrix. More recently, the application of a structurally intact, biochemically complex extracellular matrix, designed to provide the critical extracellular components of the dermis in a single application, has allowed for the reconstruction of new, healthy tissue and restoration of tissue integrity in the previously chronic wound. This review focuses on this third mechanism as an emerging tactic in effective wound repair. Intact extracellular matrix can quickly, easily, and effectively provide key extracellular components of the dermis necessary to direct the healing response and allow for the proliferation of new, healthy tissue. Its application may promote the healing of wounds that have been refractory to other, more conventional treatment strategies, and may eventually show utility when used earlier in wound healing treatment with the goal of preventing wounds from reaching a truly chronic, nonresponsive state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pham HT, Economides PA, Veves A. The role of endothelial function on the foot: microcirculation and wound healing in patients with diabetes. Clin Podiatr Med Surg 1998; 15: 85–93

    PubMed  CAS  Google Scholar 

  2. Guillot B, Dandurand M, Guilhou JJ. Skin perfusion pressure in leg ulcers assessed by photoplethysmography. Int Angiol 1988; 7: 33–4

    PubMed  CAS  Google Scholar 

  3. Schubert V, Perbeck L, Schubert PA. Skin microcirculatory and thermal changes in elderly subjects with early stage of pressure sores. Clin Physiol 1994; 14: 1–13

    Article  PubMed  CAS  Google Scholar 

  4. Margolis DJ, Allen-Taylor L, Hoffstad O. Healing diabetic neuropathic foot ulcers: are we getting better? Diabet Med 2005; 22: 172–6

    Article  PubMed  CAS  Google Scholar 

  5. Franks PJ, Moffatt CJ. Health related quality of life in patients with venous ulceration: use of the Nottingham health profile. Qual Life Res 2001; 10: 693–700

    Article  PubMed  CAS  Google Scholar 

  6. Thomas DR, Diebold MR, Eggemeyer LM. A controlled, randomized, comparative study of a radiant heat bandage on the healing of stage 3–4 pressure ulcers: a pilot study. J Am Med Dir Assoc 2005; 6: 46–9

    Article  PubMed  Google Scholar 

  7. Veves A, Sheehan P, Pham HT. A randomized, controlled trial of Promogran (a collagen/oxidized regenerated cellulose dressing) vs standard treatment in the management of diabetic foot ulcers. Arch Surg 2002; 137: 822–7

    Article  PubMed  CAS  Google Scholar 

  8. Centers for Disease Control and Prevention. National diabetes surveillance system [online]. Available from:(http://www.cdc.gov/diabetes/statistics/prev/national/figpersons.htm) [ntAccessed 2007 Feb 6]

  9. Ramsey SD, Newton K, Blough D. Incidence, outcomes, and cost of foot ulcers in patients with diabetes. Diabetes Care 1999; 22: 382–7

    Article  PubMed  CAS  Google Scholar 

  10. Gordois A, Scuffham P, Shearer A. The health care costs of diabetic peripheral neuropathy in the US. Diabetes Care 2003; 26: 1790–5

    Article  PubMed  Google Scholar 

  11. Margolis DJ, Bilker W, Santanna J. Venous leg ulcer: incidence and prevalence in the elderly. J Am Acad Dermatol 2002; 46: 381–6

    Article  PubMed  Google Scholar 

  12. Olin JW, Beusterien KM, Childs MB. Medical costs of treating venous stasis ulcers: evidence from a retrospective cohort study. Vasc Med 1999; 4: 1–7

    PubMed  CAS  Google Scholar 

  13. Amlung SR, Miller WL, Bosley LM. The 1999 National Pressure Ulcer Prevalence Survey: a benchmarking approach. Adv Skin Wound Care 2001; 14: 297–301

    Article  PubMed  CAS  Google Scholar 

  14. National Pressure Ulcer Advisory Panel. Pressure ulcers in America: prevalence, incidence, and implications for the future: an executive summary of the National Pressure Ulcer Advisory Panel monograph. Adv Skin Wound Care 2001; 14: 208–15

    Google Scholar 

  15. Beckrich K, Aronovitch SA. Hospital-acquired pressure ulcers: a comparison of costs in medical vs. surgical patients. Nurs Econ 1999; 17: 263–71

    PubMed  CAS  Google Scholar 

  16. Hareendran A, Bradbury A, Budd J. Measuring the impact of venous leg ulcers on quality of life. J Wound Care 2005; 14: 53–7

    PubMed  CAS  Google Scholar 

  17. Nabuurs-Franssen MH, Huijberts MS, Nieuwenhuijzen Kruseman AC. Health-related quality of life of diabetic foot ulcer patients and their caregivers. Diabetologia. Epub 2005 Jul 2

    Google Scholar 

  18. Sottile J, Hocking DC. Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell 2002; 13: 3546–59

    Article  PubMed  CAS  Google Scholar 

  19. Akiyama SK. Integrins in cell adhesion and signaling. Hum Cell 1996; 9: 181–6

    PubMed  CAS  Google Scholar 

  20. Raman R, Sasisekharan V, Sasisekharan R. Structural insights into biological roles of protein-glycosaminoglycan interactions. Chem Biol 2005; 12: 267–77

    Article  PubMed  CAS  Google Scholar 

  21. Takehara K. Growth regulation of skin fibroblasts. J Dermatol Sci 2000; 24: 70–7

    Article  Google Scholar 

  22. Tang A, Gilchrest BA. Regulation of keratinocyte growth factor gene expression in human skin fibroblasts. J Dermatol Sci 1996; 11: 41–50

    Article  PubMed  CAS  Google Scholar 

  23. Xue M, Le NT, Jackson CJ. Targeting matrix metalloproteases to improve cutaneous wound healing. Expert Opin Ther Targets 2006; 10 (1): 143–55

    Article  PubMed  CAS  Google Scholar 

  24. Holbrook KA, Smith LT. Morphology of connective tissue: structure of skin and tendon. In: Royce PM, Steinmann B, editors. Connective tissue and its heritable diseases. New York: Wiley-Liss, 1993: 51–71

    Google Scholar 

  25. Garrone R, Lethias C, Le Guellec D. Distribution of minor collagens during skin development. Microsc Res Tech 1997; 38: 407–12

    Article  PubMed  CAS  Google Scholar 

  26. Keene DR, Marinkovich MP, Sakai LY. Immunodissection of the connective tissue matrix in human skin. Microsc Res Tech 1997; 38: 394–406

    Article  PubMed  CAS  Google Scholar 

  27. Ayers CE, Bowlin GL, Simpson DG. Microvascular endothelial cell migration in scaffolds of electrospun collagen. Wound Repair Regen 2005; 13: A4–27

    Article  Google Scholar 

  28. Pizzo AM, Kokini K, Vaughn LC. Extracellular matrix (ECM) microstructural composition regulates local cell-ECM biomechanics and fundamental fibroblast behavior: a multidimensional perspective. J Appl Physiol 2005; 98: 1909–21

    Article  PubMed  CAS  Google Scholar 

  29. Bonaldo P, Russo V, Bucciotti F. Structural and functional features of the alpha 3 chain indicate a bridging role for chicken collagen VI in connective tissues. Biochemistry 1990; 29: 1245–54

    Article  PubMed  CAS  Google Scholar 

  30. Bruns R, Press W, Engvall E. Type VI collagen in extracellular, 100nm periodic filaments and fibrils: identification by immunoelectron microscopy. J Cell Biol 1986; 103: 393–404

    Article  PubMed  CAS  Google Scholar 

  31. Bruns RR. Beaded filaments and long-spacing fibrils: relation to type VI collagen. J Ultrastr Res 1984; 89: 136–46

    Article  CAS  Google Scholar 

  32. Bidanset DJ, Guidry C, Rosenberg LC. Binding of the proteoglycan decorin to collagen type VI. J Biol Chem 1992; 267: 5250–66

    PubMed  CAS  Google Scholar 

  33. Kielty CM, Whittaker SP, Grant ME. Type VI collagen microfibrils: evidence for a structural association with hyaluronan. J Cell Biol 1992; 118: 979–90

    Article  PubMed  CAS  Google Scholar 

  34. Kielty CM, Whittaker SP, Grant ME. Attachment of human vascular smooth muscle cells to intact microfibrillar assemblies of collagen VI and fibrillin. J Cell Sci 1992; 103: 445–51

    PubMed  CAS  Google Scholar 

  35. Kielty CM, Lees M, Shuttleworth CA. Catabolism of intact type VI collagen microfibrils: susceptibility to degradation by serine proteinases. Biochem Biophys Res Commun 1993; 191: 1230–6

    Article  PubMed  CAS  Google Scholar 

  36. Levine JM, Nishiyama A. The NG2 chondroitin sulfate proteoglycan: a multifunctional proteoglycan associated with immature cells. Perspect Dev Neurobiol 1996; 3: 245–59

    PubMed  CAS  Google Scholar 

  37. Eckes B, Zweers MC, Zhang ZG. Mechanical tension and integrin alpha2beta1 regulate fibroblast functions. J Investig Dermatol Symp Proc 2006; 11: 66–72

    Article  PubMed  CAS  Google Scholar 

  38. Zweers MC, Davidson JM, Pozzi A. Integrin alpha2beta1 is required for regulation of murine wound angiogenesis but is dispensable for reepithelialization. J Invest Dermatol 2007; 127: 467–78

    Article  PubMed  CAS  Google Scholar 

  39. Yamaguchi Y, Mann DM, Ruoslahti E. Negative regulation of transforming growth factor-beta by the proteoglycan decorin. Nature 1990; 346: 281–4

    Article  PubMed  CAS  Google Scholar 

  40. Pasco S, Ramont L, Maquart FX. Biological effects of collagen I and IV peptides. J Soc Biol 2003; 197: 31–9

    PubMed  CAS  Google Scholar 

  41. Debelle L, Tamburro AM. Elastin: molecular description and function. Int J Biochem Cell Biol 1999; 31: 261–72

    Article  PubMed  CAS  Google Scholar 

  42. Kumar V, Fausto N, Abbas A. Robbins & Cotran pathologic basis of disease. 7th ed. Philadelphia (PA): Elsevier Saunders, 2005

    Google Scholar 

  43. Sephel GC, Kennedy R, Kudravi S. Expression of capillary basement membrane components during sequential phases of wound angiogenesis. Matrix Biol 1996; 15: 263–79

    Article  PubMed  CAS  Google Scholar 

  44. Schneider H, Muhle C, Pacho F. Biological function of laminin-5 and pathogenic impact of its deficiency. Eur J Cell Biol. Epub 2006 Sep 23

    Google Scholar 

  45. Olutoye OO, Barone EJ, Yager DR. Hyaluronic acid inhibits fetal platelet function: implications in scarless healing. J Pediatr Surg 1997; 32: 1037–40

    Article  PubMed  CAS  Google Scholar 

  46. Quarto N, Amalric F. Heparan sulfate proteoglycans as transducers of FGF-2 signalling. J Cell Sci 1994; 107: 3201–12

    PubMed  CAS  Google Scholar 

  47. Tabibzadeh S. Homeostasis of extracellular matrix by TGF-beta and lefty. Front Biosci 2002; 7: d1231–46

    Article  Google Scholar 

  48. Inkinen K, Wolff H, Lindroos P. Connective tissue growth factor and its correlation to other growth factors in experimental granulation tissue. Connect Tissue Res 2003; 44: 19–29

    PubMed  CAS  Google Scholar 

  49. Yoshida K, Munakata H. Connective tissue growth factor binds to fibronectin through the type I repeat modules and enhances the affinity of fibronectin to fibrin. Biochim Biophys Acta. Epub 2006 Nov 30

    Google Scholar 

  50. Presta M, Dell’era P, Mitola S. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16: 159–78

    Article  PubMed  CAS  Google Scholar 

  51. Kantor J, Margolis DJ. Expected healing rates for chronic wounds. Wounds 2000; 12: 155–8

    Google Scholar 

  52. Trengove NJ, Stacey MC, MacAuley S. Analysis of the acute and chronic wound environments: the role of proteases and their inhibitors. Wound Repair Regen 1999; 7: 442–52

    Article  PubMed  CAS  Google Scholar 

  53. Clark RA. Fibrin and wound healing. Ann N Y Acad Sci 2001; 936: 355–67

    Article  PubMed  CAS  Google Scholar 

  54. Quatresooz P, Henry F, Paquet P. Deciphering the impaired cytokine cascades in chronic leg ulcers [review]. Int J Mol Med 2003; 11: 411–8

    PubMed  CAS  Google Scholar 

  55. Van de Berg JS, Robson MC. Arresting cell cycles and the effect on wound healing. Surg Clin North Am 2003; 83: 509–20

    Article  Google Scholar 

  56. Cook H, Davies KJ, Harding KG. Defective extracellular matrix reorganization by chronic wound fibroblasts is associated with alterations in TIMP-1, TIMP-2, and MMP-2 activity. J Invest Dermatol 2000; 115: 225–33

    Article  PubMed  CAS  Google Scholar 

  57. Kim BC, Kim HT, Park SH. Fibroblasts from chronic wounds show altered TGF-beta-signaling and decreased TGF-beta type II receptor expression. J Cell Physiol 2003; 195: 331–6

    Article  PubMed  CAS  Google Scholar 

  58. Wysocki AB, Grinnell F. Fibronectin profiles in normal and chronic wound fluid. Lab Invest 1990; 63: 825–31

    PubMed  CAS  Google Scholar 

  59. Wysocki AB, Staiano-Coico L, Grinnell F. Wound fluid from chronic leg ulcers contains elevated levels of metalloproteinases MMP-2 and MMP-9. J Invest Dermatol 1993; 101: 64–8

    Article  PubMed  CAS  Google Scholar 

  60. Ongenae KC, Phillips TJ, Park HY. Level of fibronectin mRNA is markedly increased in human chronic wounds. Dermatol Surg 2000; 26: 447–51

    Article  PubMed  CAS  Google Scholar 

  61. Ellerbroek SM, Wu YI, Stack MS. Type I collagen stabilization of matrix metalloproteinase-2. Arch Biochem Biophys 2001; 390: 51–6

    Article  PubMed  CAS  Google Scholar 

  62. Cullen B, Smith R, McCulloch E. Mechanism of action of PROMOGRAN, a protease modulating matrix, for the treatment of diabetic foot ulcers. Wound Repair Regen 2002; 10: 16–25

    Article  PubMed  Google Scholar 

  63. Wieman TJ, Smiell JM, Su Y. Efficacy and safety of a topical gel formulation of recombinant human platelet-derived growth factor-BB (becaplermin) in patients with chronic neuropathic diabetic ulcers: a phase III randomized placebo-controlled double-blind study. Diabetes Care 1998; 21: 822–7

    Article  PubMed  CAS  Google Scholar 

  64. Margolis DJ, Kantor J, Berlin JA. Healing of diabetic neuropathic foot ulcers receiving standard treatment: a meta-analysis. Diabetes Care 1999; 22: 692–5

    Article  PubMed  CAS  Google Scholar 

  65. Solomon DE. An in vitro examination of an extracellular matrix scaffold for use in wound healing. Int J Exp Pathol 2002; 83: 209–16

    Article  PubMed  CAS  Google Scholar 

  66. Leipziger LS, Glushko V, DiBernardo B. Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J Am Acad Dermatol 1985; 12: 409–19

    Article  PubMed  CAS  Google Scholar 

  67. Gao ZR, Hao ZQ, Li Y. Porcine dermal collagen as a wound dressing for skin donor sites and deep partial skin thickness burns. Burns 1992; 18: 492–6

    Article  PubMed  CAS  Google Scholar 

  68. Lobmann R, Zemlin C, Motzkau M. Expression of matrix metalloproteinases and growth factors in diabetic foot wounds treated with a protease absorbent dressing. J Diabetes Complications 2006; 20: 329–35

    Article  PubMed  Google Scholar 

  69. Hodde JP, Badylak SF, Brightman AO. Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng 1996; 2: 209–17

    Article  PubMed  CAS  Google Scholar 

  70. Niezgoda JA, de Van Gils CC, Frykberg RG. Randomized clinical trial comparing OASIS Wound Matrix to Regranex Gel for diabetic ulcers. Adv Skin Wound Care 2005; 18: 258–66

    Article  PubMed  Google Scholar 

  71. Mostow EN, Haraway GD, Dalsing M. Effectiveness of an extracellular matrix graft (OASIS Wound Matrix) in the treatment of chronic leg ulcers: a randomized clinical trial. J Vasc Surg 2005; 41: 628–856

    Article  Google Scholar 

Download references

Acknowledgments

The authors are employed by Cook Biotech Incorporated, a manufacturer of ECM-related biomaterials for medical applications. Mr Hodde holds patents on ECM-related products, and both authors have patents pending on uses of ECM technology for medical devices. Mr Hodde has received patent royalties on ECM technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jason P. Hodde.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hodde, J.P., Johnson, C.E. Extracellular Matrix as a Strategy for Treating Chronic Wounds. Am J Clin Dermatol 8, 61–66 (2007). https://doi.org/10.2165/00128071-200708020-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00128071-200708020-00001

Keywords

Navigation