Skip to main content

Advertisement

Log in

Pancreas Transplantation for Diabetes Mellitus

A Guide to Recipient Selection and Optimum Immunosuppression

  • Disease Management
  • Published:
BioDrugs Aims and scope Submit manuscript

Abstract

Between 1966 and 1997, over 10 000 pancreas transplants were performed worldwide, 88% of these being simultaneous kidney-pancreas transplantations (SKPTs). The overall 1-year patient survival rate exceeds 90%, and the graft survival (complete insulin independence) rate is 80%. SKPT should be regarded as the treatment of choice in carefully selected patients with type 1 (insulindependent; IDDM) diabetes mellitus and advanced nephropathy, because of its ability to offer superior glycaemic control and an improved quality of life. Studies have shown that the addition of a pancreas transplant does not appear to jeopardise either the patient or the kidney transplant, as many centres report either similar or improved survival rates after SKPT compared with kidney transplantation alone.

Indications for solitary pancreas transplantation are based on the presence of early, well defined diabetic complications or glucose hyperlability with poor quality of life. Improvements in quality of life and possible prevention of further morbidity associated with diabetes makes pancreas transplantation an important therapeutic option for selected diabetic patients. According to registry data from the United Network for Organ Sharing (UNOS) Registry, rejection accounts for 32% of graft failures in the first year after pancreas transplantation.

Most pancreas transplant centres employ quadruple drug immunosuppression with antilymphocyte induction with either a monoclonal or polyclonal agent. Maintenance immunosuppression involves triple therapy, consisting of a calcineurin inhibitor (cyclosporin or tacrolimus), corticosteroids and an antimetabolite (azathioprine or mycophenolate mofetil). Before 1995, nearly all pancreas transplant recipients were managed with the original formulation of cyclosporin (‘Sandimmun)’. In the past 2 years, tacrolimusbased therapy has been used in approximately 20% of cases and a new microemulsion formulation of cyclosporin (‘Neoral’) has replaced the original formulation in contemporary post-transplant immunosuppression. In addition, mycophenolate mofetil is replacing azathioprine as part of the standard immunosuppressive regimen after pancreas transplantation.

At present, a number of centres are conducting various trials with new drug combinations including either cyclosporin microemulsion or tacrolimus in combination with corticosteroids and mycophenolate mofetil with or without antibody induction therapy. The current array of new immunosuppressive agents is providing more effective control of rejection and permitting solitary pancreas transplantation to become an accepted treatment option in diabetic patients without advanced complications. Immunosuppressive strategies will continue to evolve to achieve effective control of rejection while minimising injury to the allograft and risk to the patient. In addition, new regimens must not only address the issue of specific drug toxicities but also long term economic, metabolic and quality-of-life outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Stratta RJ, Larsen JL, Cushing K. Pancreas transplantation for diabetes mellitus. Ann Rev Med 1995; 46: 281–98

    Article  PubMed  CAS  Google Scholar 

  2. Stratta RJ, Taylor RJ, Wahl TO, et al. Recipient selection and evaluation for vascularized pancreas transplantation. Transplantation 1993; 55: 1090–6

    Article  PubMed  CAS  Google Scholar 

  3. Stratta RJ, Taylor RJ, Ozaki CF, et al. A comparative analysis of results in morbidity in type I diabetics undergoing preemptive versus post-dialysis combined pancreas-kidney transplantation. Transplantation 1993; 55: 1097–103

    Article  PubMed  CAS  Google Scholar 

  4. Stratta RJ, Weide LG, Sindhi R, et al. Solitary pancreas transplantation: Experience with 62 consecutive cases. Diabetes Care 1997; 209(3): 362–8

    Article  Google Scholar 

  5. Brennan DC, Stratta RJ, Lowell JA, et al. Cyclosporine challenge in the decision of combined kidney-pancreas versus solitary pancreas transplantation. Transplantation 1994; 57: 1606–11

    PubMed  CAS  Google Scholar 

  6. Gruessner A, Sutherland DER. Pancreas transplantation in the United States (US) and non-US as reported to the United Network for Organ Sharing (UNOS) and the International Pancreas Transplant Registry (IPTR). In: Cecka JM, Terasaki PI, editors. Clinical Transplants 1996. L s Angeles: UCLA Tissue Typing Laboratory, 1997: 47–67

    Google Scholar 

  7. Stratta RJ. Analysis of mortality after pancreas transplantation. Transplant Proc 1998; 30(2): 283

    Article  PubMed  CAS  Google Scholar 

  8. Stratta RJ, Taylor RJ, Weide LG, et al. A prospective randomized trial of OKT3 versus ATGAM induction therapy in pancreas transplant recipients. Transplant Proc 1996; 28(2): 927–8

    Google Scholar 

  9. Knechtle SJ, Pirsch JD, Groshek M, et al. OKT3 versus ALG induction therapy in combined pancreas-kidney transplantation. Transplant Proc 1991; 23: 1581–2

    PubMed  CAS  Google Scholar 

  10. Sutherland DER, Moudry-Munns KC, Gruessner A. Pancreas transplant outcome with or without biological anti-Tcell therapy for induction immunosuppression with use of cyclosporine. Transplant Proc 1994; 26: 2752–5

    PubMed  CAS  Google Scholar 

  11. Wadstrom J, Brekke B, Wramner L, et al. Triple versus quadruple induction immunosuppression in pancreas transplantation. Transplant Proc 1995; 27: 1317–8

    PubMed  CAS  Google Scholar 

  12. Brayman KL, Egidi MF, Naji AL, et al. Is induction therapy necessary for successful simultaneous pancreas and kidney transplantation in the cyclosporineera? Transplant Proc 1994; 26: 2525–7

    PubMed  CAS  Google Scholar 

  13. Ilner WD, Theodorakis J, Abendroth D, et al. Quadruple-drug induction therapy in combined renal and pancreatic transplantation: OKT3 versus ATG. Transplant Proc 1990; 22: 1586–7

    Google Scholar 

  14. Rosenberg L. Pancreas transplantation with ATG versus OKT3. Transplant Proc 1997; 29 Suppl. 7A: 35S–6S

    Google Scholar 

  15. Gruessner RWG, Troppmann C, Barrou B. Assessment of donor and recipient risk factors on pancreas transplant outcome. Transplant Proc 1994; 26(2): 437–8

    PubMed  CAS  Google Scholar 

  16. Viste A, Moudry-Munns K, Sutherland DER. Prognostic risk factors for graft failure following pancreas transplantation: results of multivariate analysis of data from the International Pancreas Transplant Registry. Transpl Int 1990; 3: 98–102

    PubMed  CAS  Google Scholar 

  17. Brayman KL, Sutherland DER. Factors leading to improved outcome following pancreas transplantation — the influence of immunosuppression and HLA matching. Transplant Proc 1992; 24 Suppl. 2: 91–5

    Google Scholar 

  18. Shapiro ME, Abrams JM, Brown RS, et al. Successful pancreasrenal transplantation without anti-T cell antibody induction. Transplant Proc 1995; 27(6): 3087–8

    PubMed  CAS  Google Scholar 

  19. Corry RJ, Egidi MF, Sugitani A, et al. Tacrolimus without antilymphocyte induction therapy prevents pancreas loss from rejection in 100 consecutive patients [abstract]. Acta Diabetol 1997; 34(8): 125

    Google Scholar 

  20. Van Der Pijl JW, Srivastava N, Denouel J, et al. Pharmacokinetics of the conventional and microemulsion formulations of cyclosporine in pancreas-kidney transplant recipients with gastroparesis. Transplantation 1996; 62: 456–62

    Article  PubMed  Google Scholar 

  21. Storck M, Mickley V, Steinbach G, et al. Cyclosporine resorption in diabetic patients after simultaneous pancreas and kidney transplantation. Transplant Proc 1995; 27: 3094–5

    PubMed  CAS  Google Scholar 

  22. Lang J, Garnier JL, Faure JL, et al. Cyclosporine pharmacokinetics in diabetic patients after kidney and pancreas transplantation. Clin Transpl 1989; 3: 1–4

    CAS  Google Scholar 

  23. Serafinowicz A, Gaciong Z, Baczkowska T, et al. Cyclosporine pharmacokinetics in renal allograft recipients with diabetes mellitus treated with Sandimmun and Sandimmun Neoral. Transplant Proc 1996; 28(6): 3140–1

    PubMed  CAS  Google Scholar 

  24. Dawidson I, Ar’rajab A, Lu C, et al. Cyclosporine blood levels predict the likelihood of rejection and toxicity after simultaneous pancreas-kidney transplantation. Transplant Proc 1995; 27(1): 1324–6

    PubMed  CAS  Google Scholar 

  25. Rigotti P, Cadrobbi R, Baldan N, et al. Neoral versus Sandimmun in kidney-pancreas transplantation. Transplant Proc 1997; 29: 2924–6

    Article  PubMed  CAS  Google Scholar 

  26. Chapman JR, O’Connell PJ, Bovington KJ, et al. Reversal of cyclosporine malabsorption in diabetic recipients of simultaneous pancreas and kidney transplants using a microemulsion formulation. Transplantation 1996; 61: 1699–704

    Article  PubMed  CAS  Google Scholar 

  27. Gruessner RWG, Burke GW, Stratta RJ, et al. Multicenter analysis of the first experience with FK506 for induction and rescue therapy after pancreas transplantation. Transplantation 1996; 61: 261–73

    Article  PubMed  CAS  Google Scholar 

  28. Gruessner RWG. Tacrolimus in pancreas transplantation: a multi-center analysis. Clin Transpl 1997; 11: 299–312

    CAS  Google Scholar 

  29. Hariharan S, Munda R, Cavallo T, et al. Rescue therapy with tacrolimus after combined kidney-pancreas and isolated pancreas transplantation in patients with severe cyclosporine nephrotoxicity. Transplantation 1996; 61: 1161–5

    Article  PubMed  CAS  Google Scholar 

  30. Stratta RJ, Taylor RJ, Castaldo P, et al. FK506 induction and rescue therapy in pancreas transplant recipients. Transplant Proc 1996; 28: 1001–2

    Google Scholar 

  31. Bartlett ST, Schweitzer EJ, Johnson LB, et al. Equivalent success of simultaneous pancreas-kidney and solitary pancreas transplantation: a prospective trial of tacroliumus immuno-suppression with percutaneous biopsy. Ann Surg 1996; 224(4): 440–9

    Article  PubMed  CAS  Google Scholar 

  32. Teraoka S, Babazono T, Koike T, et al. Effect of rescue therapy using FK506 on relapsing rejection after combined pancreas and kidney transplantation. Transplant Proc 1995; 27: 1335–9

    PubMed  CAS  Google Scholar 

  33. Shaffer D, Simpson MA, Conway P, et al. Normal pancreas allograft function following simultaneous pancreas kidney transplantation after rescue therapy with tacrolimus (FK506). Transplantation 1995; 59: 1063–6

    Article  PubMed  CAS  Google Scholar 

  34. Becker J, Witzke O, Friedrich J, et al. Rescue therapy with tacrolimus in simultaneous pancreas/kidney transplantation. Transpl Int 1997; 10: 51–4

    Article  PubMed  CAS  Google Scholar 

  35. Demirbas A, Ciancio G, Burke G, et al. FK506 in simultaneous pancreas/kidney transplantation: the University of Miami experience. Transplant Proc 1997; 29: 2903

    Article  PubMed  CAS  Google Scholar 

  36. Alloway RR, Russell WC, Gaber LW, et al. Conversion from cyclosporine to tacrolimus in kidney, kidney-pancreas, and pancreas alone transplant recipients: the Memphis experience. Transplant Proc 1996; 28(2): 995–7

    PubMed  CAS  Google Scholar 

  37. Gruessner RWG, Sutherland DER, Najarian JS, et al. Pancreas transplantation for nonuremic patients with labile insulin dependent diabetes mellitus. Transplantation 1997; 64: 1572–7

    Article  PubMed  CAS  Google Scholar 

  38. Allison AC, Eugui EM. Mycophenolate mofetil, a rationally designed immunosuppressive drug. Clin Transpl 1993; 7: 96–112

    Google Scholar 

  39. Sollinger HW, US Renal Transplant Mycophenolate Mofetil Study Group. Mycophenolate Mofetil for the prevention of acute rejection in primary cadaveric renal allograft recipients. Transplantation 1995; 60: 225–32

    Article  PubMed  CAS  Google Scholar 

  40. European Mycophenolate Mofetil Cooperative Study Group. Placebo-controlled study of mycophenolate mofetil combined with cyclosporine and corticosteroids for prevention of acute rejection. Lancet 1995; 345(5): 1321–5

    Google Scholar 

  41. Stratta RJ, Taylor RJ, Gill IS, et al. Mycophenolate Mofetil (MMF) induction and conversion therapy in pancreas transplant recipients. 15th Annual Scientific Meeting of the American Society of Transplant Physicians; 1996 May 26–29; Dallas

  42. Elkhammas EA, Yilmaz S, Henry ML, et al. Combined kidney/pancreas transplantation: comparison of mycophenolate mofetil versus azathioprine [abstract]. Acta Diabetol 1997; 34(8): 161

    Google Scholar 

  43. Odorico JS, Pirsch JD, Knechtle SJ, et al. A study comparing mycophenolate mofetil to azathioprine in simulataneous pancreas-kidney transplantation [abstract]. Transplantation 1998; 65: 240 (645A)

    Article  Google Scholar 

  44. Gritsch HA, Egidi MF, Sugitani A, et al. Comparison of azathioprine and mycophenolate mofetil in pancreas transplantation [abstract]. Acta Diabetol 1997; 34(8): 162

    Google Scholar 

  45. Marcos A, Ham JM, Shelden SL, et al. Mycophenolate mofetil is associated with decreased incidence in severity of acute cellular rejection following simultaneous kidney/pancreas transplant. 16th Annual Scientific Meeting of the American Society of Transplant Physicians; 1997 May 10–14; Chicago

  46. Stratta RJ, FK/MMF Multi-center Study Group. Simultaneous use of tacrolimus and mycophenolate mofetil in combined pancreas-kidney transplant recipients: a multi-center report. Transplant Proc 1997; 29: 654–5

    Article  PubMed  CAS  Google Scholar 

  47. Gruessner RWG, Sutherland DER, Drangstveit MB, et al. Mycophenolate mofetil in pancreas transplantation. Transplantation 1998; 66: 318–23

    Article  PubMed  CAS  Google Scholar 

  48. Stegall MD, Simon M, Wachs M, et al. Mycophenolate mofetil decreases rejection in simultaneous pancreas-kidney transplantation when combined with tacrolimus or cyclosporine. Transplantation 1997; 64: 1695–1700

    Article  PubMed  CAS  Google Scholar 

  49. Kaufman DB, DuPuis J, Abecassis M, et al. Results with tacrolimus/mycophenolate mofetil primary maintenance immunosuppression in simultaneous pancreas/kidney transplantation [abstract]. Acta Diabetol 1997; 34(8): 120

    Google Scholar 

  50. Busing M, Martin D, Schulz T, et al. Mycophenolate mofetil/tacrolimus/single shot ATG versus azathioprine/cyclosporine in pancreas-kidney transplantation: results of a prospective randomized single-center study. Transplant Proc 1998; 30: 516–7

    Article  PubMed  CAS  Google Scholar 

  51. Bruce DS, Woodle ES, Newell KA, et al. Effects of tacrolimus, mycophenolate mofetil, and microemulsified cyclosporine on rejection incidence in synchronous pancreas/kidney transplantation. Transplant Proc 1998; 30: 507–8

    Article  PubMed  CAS  Google Scholar 

  52. Kahl A, Bechstein WO, Platz K, et al. First results with a quadruple therapy regimen including tacrolimus and mycophenolate mofetil in patients after combined pancreas and kidney transplantation. Transplant Proc 1998; 30: 505–6

    Article  PubMed  CAS  Google Scholar 

  53. Lee CM, Scandling JD, Pavlakis M, et al. FK506 and mycophenolate mofetil: the superior strategy for simultaneous pancreas-kidney patients. 23rd Annual Scientific Meeting of the American Society of Transplant Surgeons; 1997 May 14–16; Chicago

  54. Reddy KS, Stratta RJ. Shokouh-Amiri MH, et al. Simultaneous kidney-pancreas transplantation without anti-lymphocyte induction [abstract]. Transplantation 1998; 65: 251 (691A)

    Article  Google Scholar 

  55. Zucker K, Rosen A, Tsaroucha A, et al. Augmentation of mycophenolate mofetil pharmacokinetics in renal transplant patients receiving Prograf and Cellcept in combination therapy. Transplant Proc 1997; 29: 334–6

    Article  PubMed  CAS  Google Scholar 

  56. Pirsch JD, Bekersky I, Vincenti F, et al. Co-administration of tacrolimus and mycophenolate mofetil may result in higher MPA exposure. 16th Annual Scientific Meeting of the American Society of Transplant Physicians; 1997 May 11–14; Chicago

  57. Stratta RJ, Taylor RJ, Bynon JS, et al. Viral prophylaxis in combined pancreas-kidney transplant recipients. Transplantation 1994; 57: 506–12

    PubMed  CAS  Google Scholar 

  58. Cantarovich D, Palneau J, Couderc JP, et al. Maintenance immunosuppression without corticosteroids following combined pancreas and kidney transplantation. Transplant Proc 1991; 23(4): 2224–5

    PubMed  CAS  Google Scholar 

  59. Hricik DE, Bartucci MR, Mayes JT, et al. The effects of steroid withdrawal on the lipoprotein profiles of cyclosporine-treated kidney and kidney-pancreas transplant recipients. Transplantation 1992; 54: 868–71

    Article  PubMed  CAS  Google Scholar 

  60. Milde FK, Hart LK, Zehr PS. Pancreatic transplantation: impact on the quality of life of diabetic renal transplant recipients. Diabetes Care 1995; 18(1): 93–5

    Article  PubMed  CAS  Google Scholar 

  61. Hathaway DK, Hartwig MS, Crom DB, et al. Identification of quality-of-life outcomes distinguishing diabetic kidney-alone and pancreas-kidney recipients. Transplant Proc 1995; 27(6): 3065–6

    PubMed  CAS  Google Scholar 

  62. Zehrer CI, Gross CR. Quality-of-life of pancreas transplant recipients. Diabetologia 1991: 34 Suppl. 1: S145–9

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert J. Stratta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stratta, R.J., Alloway, R.R. Pancreas Transplantation for Diabetes Mellitus. BioDrugs 10, 347–357 (1998). https://doi.org/10.2165/00063030-199810050-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199810050-00002

Keywords

Navigation