Skip to main content
Log in

Immunomodulatory Actions of Xanthenone Anticancer Agents

  • Blopharmaceuticals
  • Published:
BioDrugs Aims and scope Submit manuscript

Summary

Derivatives of xanthenone-4-acetic acid (XAA) were developed as analogues of flavone-8-acetic acid (FAA), a drug with excellent activity against experimental tumours in mice but no clinical activity. XAA derivatives were found to differ from conventional cytotoxic agents by having little direct cytotoxic activity against cultured cells. However, they exhibit pronounced immunomodulatory activity, inducing natural killer activity in mice and stimulating peritoneal macrophages to kill cultured tumour cells. They also induce selective reduction in tumour blood flow, leading to tumour haemorrhagic necrosis. The key to these actions appears to be the induction of cytokines, including tumour necrosis factor (TNF) and interferons. Cytokines are thought to mediate the increase in natural killer activity, the in vitro killing of tumour cells, and, through effects on vascular endothelial cells, the reduction of tumour blood flow and consequent onset of tumour necrosis.

Although the target of XAA derivatives is not known, there is evidence for species differences. In particular, FAA induces messenger RNA for TNF in cultured mouse cells but not in cultured human cells, whereas one of the XAA derivatives, 5,6-dimethylxanthenone-4-acetic acid (DMXAA), induces it in both murine and human cells. DMXAA is also more active and 12 times more dose potent than FAA in the mouse, and on this basis has been selected for clinical trials as a novel low molecular weight immunomodulatory antitumour agent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brouckaert PGG, Fiers W, Lejeune FJ. Coley’s vaccine and TNF therapy [letter]. Nature 1992; 358: 630

    Article  PubMed  CAS  Google Scholar 

  2. Nakanishi M, Takanore O, Tsuruda M et al. Studies on antiinflammatory agents. XXXI. Studies on the synthesis and anti-inflammatory activity of xanthenyl- and benzopyranopyridylacetic acid derivatives. Yakugaku Zasshi 1976; 96: 99–109

    PubMed  CAS  Google Scholar 

  3. Rewcastle GW, Atwell GJ, Palmer BD et al. Potential antitumor agents. 62. Structure activity relationships for tricyclic compounds related to the colon tumor active drug 9-oxo-9H-xanthene-4-acetic acid. J Med Chem 1991; 34: 491–6

    Article  PubMed  CAS  Google Scholar 

  4. Atassi G, Briet P, Berthelon J-J et al. Synthesis and antitumor activity of some 8-substituted 4-oxo-4H-1-benzopyrans. Eur J Med Chem 1985; 5: 393–402

    Google Scholar 

  5. Plowman J, Narayanan VL, Dykes D et al. Flavone acetic acid: a novel agent with preclinical antitumor activity against colon adenocarcinoma 38 in mice. Cancer Treat Rep 1986; 70: 631–8

    PubMed  CAS  Google Scholar 

  6. Finlay GJ, Smith GP, Fray LM et al. Effect of flavone acetic acid (NSC 347512) on Lewis lung carcinoma: evidence for an indirect effect. J Natl Cancer Inst 1988; 80: 241–5

    Article  PubMed  CAS  Google Scholar 

  7. Smith GP, Calveley SB, Smith MJ et al. Flavone acetic acid (NSC 347512) induces haemorrhagic necrosis of mouse colon 26 and 38 tumours. Eur J Cancer Clin Oncol 1987; 23: 1209–12

    Article  PubMed  CAS  Google Scholar 

  8. Baguley BC, Calveley SB, Crowe KK et al. Comparison of the effects of flavone acetic acid, fostriecin, homoharringtonine and tumour necrosis factor alpha on Colon 38 tumors in mice. Eur J Cancer Clin Oncol 1989; 25: 263–9

    Article  PubMed  CAS  Google Scholar 

  9. Atwell GJ, Rewcastle GW, Baguley BC et al. Potential antitumor agents. 60. Relationships between structure and in vivo colon 38 activity for 5-substituted xanthenone-4-acetic acids. J Med Chem 1990; 33: 1375–9

    Article  PubMed  CAS  Google Scholar 

  10. Rewcastle GW, Atwell GJ, Baguley BC et al. Potential antitumor agents. 58. Synthesis and structure-activity relationships of substituted xanthenone-4-acetic acids active against the Colon 38 tumor in vivo. J Med Chem 1989; 32: 793–9

    Article  PubMed  CAS  Google Scholar 

  11. Rewcastle GW, Atwell GJ, Zhuang L et al. Potential antitumor agents. 61. Structure-activity relationships for in vivo colon-38 activity among disubstituted 9-oxo-9H-xanthene-4-acetic acids. J Med Chem 1991; 34: 217–22

    Article  PubMed  CAS  Google Scholar 

  12. Rewcastle GW, Atwell GJ, Baguley BC et al. Potential antitumor agents. 63. Structure-activity relationships for side-chain analogues of the Colon-38 active agent 9-oxo-9H-xanthene-4-acetic acid. J Med Chem 1991; 34: 2864–70

    Article  PubMed  CAS  Google Scholar 

  13. Kerr DJ, Kaye SB. Flavone acetic acid — preclinical and clinical activity. Eur J Cancer Clin Oncol 1989; 25: 1271–2

    Article  PubMed  CAS  Google Scholar 

  14. de Forni M, Chabot GG, Armand JP et al. Phase I and pharmacology study of flavone acetic acid administered two or three times weekly without alkalinization. Cancer Chemother Pharmacol 1995; 35: 219–24

    Article  PubMed  Google Scholar 

  15. Holmund JT, Kopp WC, Wiltrout RH et al. A phase I clinical trial of flavone-8-acetic acid in combination with interleukin 2. J Natl Cancer Inst 1995; 87: 134–6

    Article  PubMed  CAS  Google Scholar 

  16. Ching LM, Joseph WR, Crosier KE et al. Induction of tumor necrosis factor-alpha messenger RNA in human and murine cells by the flavone acetic acid analogue 5,6-dimethyl-xanthenone-4-acetic acid (NSC 640488). Cancer Res 1994; 54: 870–2

    PubMed  CAS  Google Scholar 

  17. Zwi LJ, Baguley BC, Gavin JB et al. The morphological effects of the anti-tumour agents flavone acetic acid and 5,6-dimethylxanthenone acetic acid on the colon 38 mouse tumour. Pathology 1994; 26: 161–9

    Article  PubMed  CAS  Google Scholar 

  18. Futami H, Eader LA, Back TT et al. Cytokine induction and therapeutic synergy with interleukin-2 against murine renal and colon cancers by xanthenone-4-acetic acid derivatives. J Immunother 1992; 12: 247–55

    Article  PubMed  CAS  Google Scholar 

  19. Philpott M, Baguley BC, Ching L-M. Induction of tumour necrosis factor-alpha by single and repeated doses of the antitumour agent 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1995; 36: 143–8

    Article  PubMed  CAS  Google Scholar 

  20. Ching L-M, Xu Z-F, Gummer BH et al. Effect of thalidomide on tumour necrosis factor production and anti-tumour activity induced by 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 1995; 72: 339–43

    Article  PubMed  CAS  Google Scholar 

  21. Ching L-M, Baguley BC. Induction of natural killer cell activity by the antitumour compound flavone acetic acid (NSC 347512). Eur J Cancer Clin Oncol 1987; 23: 1047–50

    Article  PubMed  CAS  Google Scholar 

  22. Wiltrout RH, Boyd MR, Back TC et al. Flavone-8-acetic acid augments systemic natural killer cell activity and synergizes with IL-2 for treatment of murine renal cancer. J Immunol 1988; 140: 3261–5

    PubMed  CAS  Google Scholar 

  23. Ching L-M, Joseph WR, Zhuang L et al. Induction of natural killer activity by xanthenone analogues of flavone acetic acid: relation with antitumour activity. Eur J Cancer 1991; 27: 79–83

    Article  PubMed  CAS  Google Scholar 

  24. Hornung RL, Young HA, Urba WJ et al. Immunomodulation of natural killer cell activity by flavone acetic acid, occurrence via induction of interferon alpha/beta. J Natl Cancer Inst 1988; 80: 1226–31

    Article  PubMed  CAS  Google Scholar 

  25. Dalton DK, Pittsmeek S, Keshav S et al. Multiple defects of immune cell function in mice with disrupted interferongamma genes. Science 1993; 259: 1739–42

    Article  PubMed  CAS  Google Scholar 

  26. Ching L-M, McKeage M, Joseph WR et al. Haematological effects in mice of the antitumour agents xanthenone-4-acetic acid, 5,6-dimethylxanthenone-4-acetic acid and flavone acetic acid. Cancer Chemother Pharmacol 1991; 28: 414–9

    Article  PubMed  CAS  Google Scholar 

  27. Kizaki H, Nakada S, Ohnishi Y et al. Tumour necrosis factoralpha enhances cAMP-induced programmed cell death in mouse thymocytes. Cytokine 1993; 5: 342–7

    Article  PubMed  CAS  Google Scholar 

  28. Ching L-M, Baguley BC. Reduction of cytotoxic effector cell activity in Colon 38 tumours following treatment with flavone acetic acid. Eur J Cancer Clin Oncol 1989; 25: 1061–5

    Article  PubMed  CAS  Google Scholar 

  29. Pratesi G, Rodolfo M, Rovetta G et al. Role of T cells and tumour necrosis factor in antitumour activity and toxicity of flavone acetic acid. Eur J Cancer 1990; 26: 1079–83

    Article  PubMed  CAS  Google Scholar 

  30. Bibby MC, Phillips RM, Double JA et al. Anti-tumour activity of flavone acetic acid (NSC-347512) in mice — influence of immune status. Br J Cancer 1991; 63: 57–62

    Article  PubMed  CAS  Google Scholar 

  31. Bibby MC, Double JA, Phillips RM et al. Flavone acetic acid- is vascular shutdown the crucial mechanism of action?. Int J Radiat Biol 1991; 60: 395–9

    Article  PubMed  CAS  Google Scholar 

  32. Ching LM, Joseph WR, Baguley BC. Antitumour responses to flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid in immune deficient mice. Br J Cancer 1992; 66: 128–30

    Article  PubMed  CAS  Google Scholar 

  33. Laws AL, Matthew AM, Double JA et al. Preclinical in vitro and in vivo activity of 5,6-dimethylxanthenone-4-acetic acid. Br J Cancer 1995; 71: 1204–9

    Article  PubMed  CAS  Google Scholar 

  34. Evelhoch JL, Bissery M-C, Chabot GG et al. Flavone acetic acid (NSC 347512)-induced modulation of murine tumor physiology monitored by in vivo nuclear magnetic resonance spectroscopy. Cancer Res 1988; 48: 4749–55

    PubMed  CAS  Google Scholar 

  35. Bibby MC, Double JA, Loadman PM et al. Reduction of tumor blood flow by flavone acetic acid: a possible component of therapy. J Natl Cancer Inst 1989; 81: 216–20

    Article  PubMed  CAS  Google Scholar 

  36. Zwi LJ, Baguley BC, Gavin JB et al. Blood flow failure as a major determinant in the antitumor action of flavone acetic acid (NSC 347512). J Natl Cancer Inst 1989; 81: 1005–13

    Article  PubMed  CAS  Google Scholar 

  37. Zwi LJ, Baguley BC, Gavin JB et al. Correlation between immune and vascular activities of xanthenone acetic acid antitumor agents. Oncol Res 1994; 6: 79–85

    PubMed  CAS  Google Scholar 

  38. Mackay F, Loetscher H, Stueber D et al. Tumor necrosis factor-alpha (TNF-alpha)-induced cell adhesion to human endothelial cells is under dominant control of one TNF receptor type, TNF-r55. J Exp Med 1993; 177: 1277–86

    Article  PubMed  CAS  Google Scholar 

  39. Thomsen LL, Ching LM, Baguley BC. Evidence for the production of nitric oxide by activated macrophages treated with the antitumor agents flavone-8-acetic acid and xanthenone-4-acetic acid. Cancer Res 1990; 50: 6966–70

    PubMed  CAS  Google Scholar 

  40. Baguley BC, Zhuang L, Kestell P. Increased plasma serotonin following treatment with flavone acetic acid, dimethylxanthenone acetic acid, vinblastine and colchicine: relation to vascular effect [abstract]. Proc Am Assoc Cancer Res 1995; 36: 349

    Google Scholar 

  41. Knowles RG, Moncada S. Nitric oxide synthases in mammals. Biochem J 1994; 298: 249–58

    PubMed  CAS  Google Scholar 

  42. Baguley BC, Cole G, Thomsen LL et al. Serotonin involvement in the antitumour and host effects of flavone-8-acetic acid and 5,6-dimethylxanthenone-4-acetic acid. Cancer Chemother Pharmacol 1993; 33: 77–81

    Article  PubMed  CAS  Google Scholar 

  43. Ching L-M, Baguley BC. Enhancement of in vitro toxicity of mouse peritoneal exudate cells by flavone acetic acid (NSC 347512). Eur J Cancer Clin Oncol 1988; 24: 1521–5

    Article  PubMed  CAS  Google Scholar 

  44. Ching L-M, Finlay GJ, Joseph WR et al. In vitro methods for screening agents with an indirect mechanism of antitumour activity: xanthenone analogues of flavone acetic acid. Eur J Cancer 1991; 27: 1684–9

    Article  PubMed  CAS  Google Scholar 

  45. Ching L-M, Joseph WP, Baguley BC. Stimulation of macrophage tumoricidal activity by 5,6-dimethylxanthenone-4-acetic acid, a potent analogue of the antitumor agent flavone-8-acetic acid. Biochem Pharmacol 1992; 44: 192–5

    Article  PubMed  CAS  Google Scholar 

  46. Perera PY, Barber SA, Ching LM et al. Activation of LPS-inducible genes by the antitumor agent 5,6-dimethyl-xanthenone-4-acetic acid in primary murine macrophages — dissection of signaling pathways leading to gene induction and tyrosine phosphorylation. J Immunol 1994; 153: 4684–93

    PubMed  CAS  Google Scholar 

  47. Mace KF, Hornung RL, Wiltrout RH et al. Correlation between in vivo induction of cytokine gene expression by flavone acetic acid and strict dose dependency and therapeutic efficacy against murine renal cancer. Cancer Res 1990; 50: 1742–7

    PubMed  CAS  Google Scholar 

  48. Ching LM, Joseph WR, Zhuang L et al. Interaction between endotoxin and the antitumour agent 5,6-dimethylxanthenone-4-acetic acid in the induction of tumour necrosis factor and haemorrhagic necrosis of colon 38 tumours. Cancer Chemother Pharmacol 1994; 35: 153–60

    Article  PubMed  CAS  Google Scholar 

  49. Thomsen LL, Baguley BC, Ching LM et al. Modulation of Superoxide production from murine macrophages by the antitumour agent flavone acetic acid and xanthenone acetic acid analogues. Biochem Pharmacol 1992; 43: 386–9

    Article  PubMed  CAS  Google Scholar 

  50. Rewcastle GW, Kestell P, Baguley BC et al. Light-induced breakdown of flavone acetic acid and xanthenone analogues in solution. J Natl Cancer Inst 1990; 82: 528–9

    Article  PubMed  CAS  Google Scholar 

  51. Kestell P, McKeage MJ, Baguley BC. Determination of xanthenone-4-acetic acid in mouse plasma by high-performance liquid chromatography. J Chromatogr 1991; 564: 315–21

    Article  PubMed  CAS  Google Scholar 

  52. Kestell P, Rewcastle GW, Baguley BC. Disposition of the novel antitumour agent xanthenone-4-acetic acid in the mouse: identification of metabolites and routes of elimination. Xenobiotica 1994; 24: 635–47

    Article  PubMed  CAS  Google Scholar 

  53. Webster LK, Ellis AG, Kestell P et al. Metabolism and elimination of 5,6-dimethylxanthenone-4-acetic acid in the isolated perfused rat liver. Drug Metab Dispos 1995; 23: 363–8

    PubMed  CAS  Google Scholar 

  54. McKeage MJ, Kestell P, Denny WA et al. Plasma pharmacokinetics of the antitumour agents 5,6-dimethylxanthenone-4-acetic acid, xanthenone-4-acetic acid and flavone-8-acetic acid in mice. Cancer Chemother Pharmacol 1991; 28: 409–13

    Article  PubMed  CAS  Google Scholar 

  55. Thomsen LL, Ching LM, Zhuang L et al. Tumor-dependent increased plasma nitrate concentrations as an indication of the antitumor effect of flavone-8-acetic acid and analogues in mice. Cancer Res 1991; 51: 77–81

    PubMed  CAS  Google Scholar 

  56. Zwi LJ, Baguley BC, Gavin JB et al. Necrosis in non-tumour tissues caused by flavone acetic acid and 5,6-dimethyl xanthenone acetic acid. Br J Cancer 1990; 62: 932–4

    Article  PubMed  CAS  Google Scholar 

  57. Ferrara JL. Cytokine inhibitors and graft-versus-host disease. Ann NY Acad Sci 1995; 770: 227–36

    Article  PubMed  CAS  Google Scholar 

  58. Mattila P, Majuri ML, Mattila PS et al. TNF alpha-induced expression of endothelial adhesion molecules, ICAM-1 and VCAM-1, is linked to protein kinase-C activation. Scand J Immunol 1992; 36: 159–65

    Article  PubMed  CAS  Google Scholar 

  59. Argenbright LW, Barton RW. Interactions of leukocyte integrins with intercellular adhesion molecule 1 in the production of inflammatory vascular injury in vivo: the Shwartzman reaction revisited. J Clin Invest 1992; 89: 259–72

    Article  PubMed  CAS  Google Scholar 

  60. Zwi LJ, Baguley BC, Gavin JB et al. The use of vascularised spheroids to investigate the action of flavone acetic acid on tumour blood vessels. Br J Cancer 1990; 62: 231–7

    Article  PubMed  CAS  Google Scholar 

  61. Murray JC, Clauss M, Denekamp J et al. Selective induction of endothelial cell tissue factor in the presence of a tumourderived mediator — a potential mechanism of flavone acetic acid action in tumour vasculature. Int J Cancer 1991; 49: 254–9

    Article  PubMed  CAS  Google Scholar 

  62. Watts ME, Murray JC, Smith KA et al. Flavone acetic acid as a modifier of endothelial cell function. Int J Radiat Oncol Biol Phys 1992; 22: 431–5

    Article  PubMed  CAS  Google Scholar 

  63. Sen R, Baltimore D. Inducibility of kappa immunoglobulin enhancer-binding protein NF-kappa B by a posttranslational mechanism. Cell 1986; 47: 921–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruce C. Baguley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baguley, B.C., Ching, LM. Immunomodulatory Actions of Xanthenone Anticancer Agents. BioDrugs 8, 119–127 (1997). https://doi.org/10.2165/00063030-199708020-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00063030-199708020-00005

Keywords

Navigation