Skip to main content
Log in

Thiazolidinediones and Insulin

Rationale for Use and Role of Combination Therapy in Type 2 Diabetes Mellitus

  • Therapy In Practice
  • Published:
Treatments in Endocrinology

Abstract

The range of therapeutic modalities to treat type 2 diabetes mellitus has broadened in recent years. Biguanides and thiazolidinediones are the two currently available classes of anti-hyperglycemic agents with insulin-sensitizing properties. Thiazolidinediones, in particular, have received much attention, not only for the well documented hepatotoxicity of troglitazone that led to its removal from the market in 2000, but also for the emerging data that support the beneficial effects of the thiazolidinedione class of drugs on β-cell rejuvenation and cardiovascular risk reduction.

In the US, thiazolidinediones are indicated either as monotherapy or in combination with a sulfonylurea, metformin, or insulin in cases where diet, exercise, and a single drug fail. In contrast, the UK National Institute for Clinical Excellence included in its re-appraisal of ‘glitazones’ in August 2003 the continued exclusion from licensed use in the UK of combination therapy with thiazolidinediones and insulin.

When added to insulin therapy, thiazolidinediones appear to effectively lower glucose levels and reduce insulin dosage in clinical trials involving individuals with poorly controlled type 2 diabetes. However, weight gain, hypoglycemia, and fluid retention pose problems in certain patients. The fluid retention may exacerbate or even precipitate congestive heart failure, which usually necessitates discontinuation of the drug. Risk stratification and careful management of patients at risk for heart failure, including those taking insulin concomitantly, allow healthcare providers to safely administer combination therapy with thiazolidinediones in patients with type 2 diabetes. Hepatic toxicity with currently available thiazolidinediones has been found to be minimal overall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Table I

Similar content being viewed by others

References

  1. International Diabetes Federation. Database, 2004 [online]. Available from URL: http://www.idf.org [Accessed 2004 Jun 16]

  2. Viberti GC. Rosiglitazone: potential beneficial impact on cardiovascular disease. Int J Clin Pract 2003; 57: 128–34

    PubMed  CAS  Google Scholar 

  3. The Diabetes Control and Complications Trial Research Group. The absence of a glycemic threshold for the development of long-term complications: the perspective of the Diabetes Control and Complications Trial. Diabetes 1996; 45: 1289–98

    Article  Google Scholar 

  4. UK Prospective Diabetes Study (UKPDS) Group. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 1998; 352: 837–53

    Article  Google Scholar 

  5. Malmberg K. Prospective randomised study of intensive insulin treatment on long term survival after acute myocardial infarction in patients with diabetes mellitus. BMJ 1997; 314: 1512–5

    Article  PubMed  CAS  Google Scholar 

  6. Knowler WC, Pettitt DJ, Saad MF, et al. Diabetes mellitus in the Pima Indians: incidence, risk factors, and pathogenesis. Diabetes Metab Rev 1990; 6: 1–27

    Article  PubMed  CAS  Google Scholar 

  7. Weyer C, Bogardus C, Mott DM, et al. The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest 1999; 104: 787–94

    Article  PubMed  CAS  Google Scholar 

  8. UK Prospective Diabetes Study Group. UK Prospective Diabetes Study 16: overview of 6 years’ therapy of type II diabetes: a progressive disease. Diabetes 1995; 44: 1249–58

    Article  Google Scholar 

  9. Turner RC, Cull CA, Frighi V, et al. Glycemic control with diet, sulfonylurea, metformin, or insulin in patients with type 2 diabetes mellitus: progressive requirement for multiple therapies (UKPDS 49). JAMA 1999; 281: 2005–12

    Article  PubMed  CAS  Google Scholar 

  10. Poitout V, Robertson RP. Minireview: secondary β-cell failure in type 2 diabetes: a convergence of glucotoxicity and lipotoxicity. Endocrinology 2002; 143: 339–42

    Article  PubMed  CAS  Google Scholar 

  11. Malmberg K, Ryden L, Efendic S, et al. Randomised trial of insulin-glucose infusion followed by subcutaneous insulin treatment in diabetic patients with acute myocardial infarction (DIGAMI study): effects on mortality at 1 year. J Am Coll Cardiol 1995; 26: 57–65

    Article  PubMed  CAS  Google Scholar 

  12. Diaz R, Paolasso EA, Piegas LS, et al. Metabolic modulation of acute myocardial infarction: the ECLA Glucose-Insulin-Potassium Pilot trial. Circulation 1998; 98: 2227–34

    Article  PubMed  CAS  Google Scholar 

  13. van der Horst ICC, Zijlstra F, van’t Hof AWJ, et al. Glucose-insulin-potassium infusion in patients treated with primary angioplasty for acute myocardial infarction: the Glucose-Insulin-Potassium Study: a randomized trial. J Am Coll Cardiol 2003; 42: 784–91

    Article  PubMed  CAS  Google Scholar 

  14. Opie LH. Metabolism of free fatty acids, glucose, and catecholamines in acute myocardial infarction: relation to myocardial ischemia and infarct size. Am J Cardiol 1975; 36: 938–53

    Article  PubMed  CAS  Google Scholar 

  15. Oliver MF, Opie LH. Effects of glucose and fatty acids on myocardial ischaemia and arrhythmias. Lancet 1994; 343: 155–8

    Article  PubMed  CAS  Google Scholar 

  16. Malmberg K, Ryden L, Wedel H, et al. Intense metabolic control by means of insulin in patients with diabetes mellitus and acute myocardial infarction (DIGAMI 2): effects on mortality and morbidity. Eur Heart J 2005; 26: 650–61

    Article  PubMed  CAS  Google Scholar 

  17. Scarlett JA, Gray RS, Griffin J, et al. Insulin treatment reverses the insulin resistance of type II diabetes mellitus. Diabetes Care 1982; 5: 353–63

    PubMed  CAS  Google Scholar 

  18. Andrews WJ, Vasquez B, Nagulesparan M, et al. Insulin therapy in obese, non-insulin-dependent diabetes induces improvements in insulin action and secretion that are maintained for two weeks after insulin withdrawal. Diabetes 1984; 33: 634–42

    Article  PubMed  CAS  Google Scholar 

  19. Garvey WT, Olefsky JM, Griffin J, et al. The effect of insulin treatment on insulin secretion and insulin action in type II diabetes mellitus. Diabetes 1985; 34: 222–34

    Article  PubMed  CAS  Google Scholar 

  20. Henry RR, Gumbiner B, Ditzler T, et al. Intensive conventional insulin therapy for type II diabetes: metabolic effects during a 6-mo outpatient trial. Diabetes Care 1993; 16(1): 21–31

    Article  PubMed  CAS  Google Scholar 

  21. Ilkova H, Glaser B, Tunckale A, et al. Induction of long-term glycemic control in newly diagnosed type 2 diabetic patients by transient intensive insulin treatment. Diabetes Care 1997; 20(9): 1353–6

    Article  PubMed  CAS  Google Scholar 

  22. Glaser B, Cerasi E. Early intensive insulin treatment for induction of long-term glycaemic control in type 2 diabetes. Diabetes Obes Metab 1999; 1: 67–74

    Article  PubMed  CAS  Google Scholar 

  23. Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med 1999; 340: 115–26

    Article  PubMed  CAS  Google Scholar 

  24. Pradhan AD, Manson JE, Rifai N, et al. C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA 2001; 286: 327–34

    Article  PubMed  CAS  Google Scholar 

  25. Aljada A, Saadeh R, Assian E, et al. Insulin inhibits the expression of intercellular adhesion molecule-1 by human aortic endothelial cells through stimulation of nitric oxide. J Clin Endocrinol Metab 2000; 85: 2572–5

    Article  PubMed  CAS  Google Scholar 

  26. Aljada A, Ghanim H, Saadeh R, et al. Insulin inhibits NFκB and MCP-1 expression in human aortic endothelial cells. J Clin Endocrinol Metab 2001; 86: 450–3

    Article  PubMed  CAS  Google Scholar 

  27. Dandona P, Aljada A, Mohanty P, et al. Insulin inhibits intranuclear nuclear factor κB and stimulates IκB in mononuclear cells in obese subjects: evidence for an anti-inflammatory effect? J Clin Endocrinol Metab 2001; 86: 3257–65

    Article  PubMed  CAS  Google Scholar 

  28. Ghanim H, Mohanty P, Aljada A, et al. Insulin reduces the pro-inflammatory transcription factor, activation protein-1 (AP-1), in mononuclear cells (MNC) and plasma matrix metalloproteinase-9 (MMP-9) concentration [abstract]. Diabetes 2001; 50Suppl. 2: A408

    Google Scholar 

  29. Aljada A, Ghanim H, Mohanty P, et al. Insulin inhibits the pro-inflammatory transcription factor early growth response gene-1 (Egr-1) expression in mononuclear cells (MNC) and reduces plasma tissue factor (TF) and plasminogen activator inhibitor-1 (PAI-1) concentrations. J Clin Endocrinol Metab 2002; 87: 1419–22

    Article  PubMed  CAS  Google Scholar 

  30. Matsumoto K, Sera Y, Abe Y, et al. Inflammation and insulin resistance are independently related to all-cause of death and cardiovascular events in Japanese patients with type 2 diabetes mellitus. Atherosclerosis 2003; 169: 317–21

    Article  PubMed  CAS  Google Scholar 

  31. Lebovitz HE, Kreider M, Freed MI. Evaluation of liver function in type 2 diabetic patients during clinical trials: evidence that rosiglitazone does not cause hepatic dysfunction. Diabetes Care 2002; 25: 815–21

    Article  PubMed  CAS  Google Scholar 

  32. Forman LM, Simmons DA, Diamond RH. Hepatic failure in a patient taking rosiglitazone. Ann Intern Med 2000; 132: 118–21

    PubMed  CAS  Google Scholar 

  33. Al-Salman J, Arjomand H, Kemp DG, et al. Hepatocellular injury in a patient receiving rosiglitazone: a case report. Ann Intern Med 2000; 132: 121–4

    PubMed  CAS  Google Scholar 

  34. Maeda K. Hepatocellular injury in a patient taking pioglitazone [letter]. Ann Intern Med 2001; 135: 306

    PubMed  CAS  Google Scholar 

  35. May LD, Lefkowitch JH, Kram MT, et al. Mixed hepatocellular-cholestatic liver injury after pioglitazone therapy. Ann Intern Med 2002; 136: 449–52

    PubMed  Google Scholar 

  36. Takeda Pharmaceuticals America Inc. Actos (pioglitazone hydrochloride) [package insert]. Lincolnshire (IL): Takeda Pharmaceuticals America Inc., 2003 Apr

    Google Scholar 

  37. Lehmann JM, Moore LB, Smith-Oliver TA, et al. An antidiabetic thiazolidinedione is a high affinity ligand for peroxisome proliferator-activated receptor γ (PPAR-γ). J Biol Chem 1995; 270: 12953–6

    Article  PubMed  CAS  Google Scholar 

  38. Mudaliar S, Henry RR. New oral therapies for type 2 diabetes mellitus: the glitazones or insulin sensitizers. Annu Rev Med 2001; 52: 239–57

    Article  PubMed  CAS  Google Scholar 

  39. Frias JP, Yu JG, Kruszynska YT, et al. Metabolic effects of troglitazone therapy in type 2 diabetic, obese, and lean normal subjects. Diabetes Care 2000; 23: 64–9

    Article  PubMed  CAS  Google Scholar 

  40. Petersen KF, Krssak M, Inzucchi S, et al. Mechanism of troglitazone action in type 2 diabetes. Diabetes 2000; 49: 827–31

    Article  PubMed  CAS  Google Scholar 

  41. Maggs DG, Buchanan TA, Burant CF, et al. Metabolic effects of troglitazone monotherapy in type 2 diabetes mellitus. Ann Intern Med 1998; 128: 176–85

    PubMed  CAS  Google Scholar 

  42. Yu JG, Kruszynska YT, Mulford MI, et al. A comparison of troglitazone and metformin on insulin requirements in euglycemic intensively insulin-treated type 2 diabetic patients. Diabetes 1999; 48: 2414–21

    Article  PubMed  CAS  Google Scholar 

  43. Porter LE, Freed MI, Jones NP, et al. Rosiglitazone improves β-cell function as measured by proinsulin/insulin ratio in patients with type 2 diabetes [abstract]. Diabetes 2000; 49Suppl. 1: A122

    Google Scholar 

  44. Ovalle F, Bell DSH. Clinical evidence of thiazolidinedione-induced improvement of pancreatic β-cell function in patients with type 2 diabetes mellitus. Diabetes Obes Metab 2002; 4: 56–9

    Article  PubMed  CAS  Google Scholar 

  45. Buchanan TA, Xiang AH, Peters RK, et al. Preservation of pancreatic β-cell function and prevention of type 2 diabetes by pharmacological treatment of insulin resistance in high-risk Hispanic women. Diabetes 2002; 51: 2796–803

    Article  PubMed  CAS  Google Scholar 

  46. Cavaghan MK, Ehrmann DA, Byrne MM, et al. Treatment with the oral antidiabetic agent troglitazone improves β cell responses to glucose in subjects with impaired glucose tolerance. J Clin Invest 1997; 100: 530–7

    Article  PubMed  CAS  Google Scholar 

  47. Juhl CB, Hollingdal M, Porksen N, et al. Influence of rosiglitazone treatment on β-cell function in type 2 diabetes: evidence of an increased ability of glucose to entrain high-frequency insulin pulsatility. J Clin Endocrinol Metab 2003; 88: 3794–800

    Article  PubMed  CAS  Google Scholar 

  48. Lupi R, Del Guerra S, Marselli L, et al. Rosiglitazone prevents the impairment of human islet function induced by fatty acids: evidence for a role of PPAR-γa in the modulation of insulin secretion. Am J Physiol Endocrinol Metab 2004; 286(4): E560–7

    Article  PubMed  CAS  Google Scholar 

  49. Finegood DT, McArthur MD, Kojwang D, et al. β-cell mass dynamics in Zucker diabetic fatty rats: rosiglitazone prevents the rise in net cell death. Diabetes 2001; 50: 1021–9

    Article  PubMed  CAS  Google Scholar 

  50. Butler AE, Janson J, Bonner-Weir S, et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 2003; 52: 102–10

    Article  PubMed  CAS  Google Scholar 

  51. Mayerson AB, Hundal RS, Dufour S, et al. The effects of rosiglitazone on insulin sensitivity, lipolysis, and hepatic and skeletal muscle triglyceride content in patients with type 2 diabetes. Diabetes 2002; 51: 797–802

    Article  PubMed  CAS  Google Scholar 

  52. Ishida H, Takizawa M, Ozawa S, et al. Pioglitazone improves insulin secretory capacity and prevents the loss of beta-cell mass in obese diabetic db/db mice: possible protection of beta cells from oxidative stress. Metabolism 2004; 53(4): 488–94

    Article  PubMed  CAS  Google Scholar 

  53. Miyazaki Y, Matsuda M, DeFronzo RA. Dose-response effect of pioglitazone on insulin sensitivity and insulin secretion in type 2 diabetes. Diabetes Care 2002; 25: 517–23

    Article  PubMed  CAS  Google Scholar 

  54. Buchanan TA. Pancreatic beta-cell loss and preservation in type 2 diabetes. Clin Ther 2003; 25Suppl. B: B32–46

    Article  PubMed  CAS  Google Scholar 

  55. Janson J, Ashley RH, Harrison D, et al. The mechanism of islet amyloid polypeptide toxicity is membrane disruption by intermediate-sized toxic amyloid particles. Diabetes 1999; 48: 491–8

    Article  PubMed  CAS  Google Scholar 

  56. Kahn SE, D’Alessio DA, Schwartz MW, et al. Evidence of cosecretion of islet amyloid polypeptide and insulin by beta-cells. Diabetes 1990; 39: 634–8

    Article  PubMed  CAS  Google Scholar 

  57. Butler PC, Chou J, Carter WB, et al. Effects of meal ingestion on plasma amylin concentration in NIDDM and nondiabetic humans. Diabetes 1990; 39: 752–6

    Article  PubMed  CAS  Google Scholar 

  58. Lorenzo A, Razzaboni B, Weir GC, et al. Pancreatic islet cell toxicity of amylin associated with type 2 diabetes mellitus. Nature 1994; 368: 756–60

    Article  PubMed  CAS  Google Scholar 

  59. Schubert D, Behl C, Lesley R, et al. Amyloid peptides are toxic via a common oxidative mechanism. Proc Natl Acad sci U S A 1995; 92: 1989–93

    Article  PubMed  CAS  Google Scholar 

  60. Janson J, Soeller WC, Roche PC, et al. Spontaneous diabetes mellitus in transgenic mice expressing human islet amyloid polypeptide. Proc Natl Acad sci U S A 1996; 93: 7283–8

    Article  PubMed  CAS  Google Scholar 

  61. Verchere CB, D’Alessio DA, Palmiter RD, et al. Islet amyloid formation associated with hyperglycemia in transgenic mice with pancreatic beta cell expression of human islet amyloid polypeptide. Proc Natl Acad sci U S A 1996; 93: 3492–6

    Article  PubMed  CAS  Google Scholar 

  62. Rosenblatt S, Miskin B, Glaser NB, et al. Pioglitazone 026 Study Group: the impact of pioglitazone on glycemie control and atherogenic dyslipidemia in patients with type 2 diabetes mellitus. Coron Artery Dis 2001; 12: 413–23

    Article  PubMed  CAS  Google Scholar 

  63. Aronoff S, Rosenblatt S, Braithwaite S, et al. Pioglitazone hydrochloride monotherapy improves glycemie control in the treatment of patients with type 2 diabetes: a 6-month randomized placebo-controlled dose-response study. The Pioglitazone 001 Study Group. Diabetes Care 2000; 23(11): 1605–11

    Article  PubMed  CAS  Google Scholar 

  64. Einhorn D, Rendell M, Rosenzweig J, et al. Pioglitazone hydrochloride in combination with metformin in the treatment of type 2 diabetes mellitus: a randomized, placebo-controlled study. Clin Ther 2000; 22: 1395–409

    Article  PubMed  CAS  Google Scholar 

  65. King AB, Armstrong DU. Lipid response to pioglitazone in diabetic patients: clinical observations from a retrospective chart review. Diabetes Technol Ther 2002; 4: 145–51

    Article  PubMed  CAS  Google Scholar 

  66. Kipnes MS, Krosnick A, Rendell MS, et al. Pioglitazone hydrochloride in combination with sulfonylurea therapy improves glycemic control in patients with type 2 diabetes mellitus: a randomized, placebo-controlled study. Am J Med 2001; 111: 10–7

    Article  PubMed  CAS  Google Scholar 

  67. Rosenstock J, Einhorn D, Hershon K, et al. Efficacy and safety of pioglitazone in type 2 diabetes: a randomized, placebo-controlled study in patients receiving stable insulin therapy. Int J Clin Pract 2002; 56(4): 251–7

    PubMed  CAS  Google Scholar 

  68. Scherbaum WA, Goke B. Metabolic efficacy and safety of once-daily pioglitazone monotherapy in patients with type 2 diabetes: a double-blind, placebo-controlled study. Horm Metab Res 2002; 34: 589–95

    Article  PubMed  CAS  Google Scholar 

  69. Fonseca V, Rosenstock J, Patwardhan R, et al. Effect of metformin and rosiglitazone combination therapy in patients with type 2 diabetes mellitus: a randomized controlled trial. JAMA 2000; 283: 1695–702

    Article  PubMed  CAS  Google Scholar 

  70. Gomez-Perez FJ, Fanghanel-Salmon G, Antonio Barbosa J, et al. Efficacy and safety of rosiglitazone plus metformin in Mexicans with type 2 diabetes. Diabetes Metab Res Rev 2002; 18: 127–34

    Article  PubMed  CAS  Google Scholar 

  71. Jones NP, Mather R, Owen S, et al. Long-term efficacy of rosiglitazone as monotherapy or in combination with metformin [abstract]. Diabetologia 2000; 43Suppl. 1: A192

    Google Scholar 

  72. Lebovitz HE, Dole JF, Patwardhan R, et al. Rosiglitazone monotherapy is effective in patients with type 2 diabetes. J Clin Endocrinol Metab 2001; 86(1): 280–8

    Article  PubMed  CAS  Google Scholar 

  73. Raskin P, Rendell M, Riddle MC, et al. A randomized trial of rosiglitazone therapy in patients with inadequately controlled insulin-treated type 2 diabetes. Diabetes Care 2001; 24(7): 1226–32

    Article  PubMed  CAS  Google Scholar 

  74. Vongthavaravat V, Wajchenberg BL, Waitman JN, et al. An international study of the effects of rosiglitazone plus sulphonylurea in patients with type 2 diabetes. Curr Med Res Opin 2002; 18: 456–61

    Article  PubMed  CAS  Google Scholar 

  75. Cheng-Lai A, Levine A. Rosiglitazone: an agent from the thiazolidinedione class for the treatment of type 2 diabetes. Heart Dis 2000; 2: 326–33

    PubMed  CAS  Google Scholar 

  76. Freed MI, Ratner R, Marcovina SM, et al. Effects of rosiglitazone alone and in combination with atorvastatin on the metabolic abnormalities in type 2 diabetes mellitus. Am J Cardiol 2002; 90: 947–52

    Article  PubMed  CAS  Google Scholar 

  77. Brunzell J, Cohen BR, Kreider M, et al. Rosiglitazone favorably affects LDL-C and HDL-C heterogeneity in type 2 diabetes [abstract]. Diabetes 2001; 50Suppl. 2: A141

    Google Scholar 

  78. Chilcott J, Tappenden P, Jones ML, et al. A systematic review of the clinical effectiveness of pioglitazone in the treatment of type 2 diabetes mellitus. Clin Ther 2001; 23: 1792–823

    Article  PubMed  CAS  Google Scholar 

  79. Khan MA, St Peter JV, Xue JL. A prospective, randomized comparison of the metabolic effects of pioglitazone or rosiglitazone in patients with type 2 diabetes who were previously treated with troglitazone. Diabetes Care 2002; 25: 708–11

    Article  PubMed  CAS  Google Scholar 

  80. Boyle PJ, King AB, Olansky L, et al. Effects of pioglitazone and rosiglitazone on blood lipid levels and glycemic control in patients with type 2 diabetes mellitus: a retrospective review of randomly selected medical records. Clin Ther 2002; 24: 378–96

    Article  PubMed  CAS  Google Scholar 

  81. Ovalle F, Bell DSH. Lipoprotein effects of different thiazolidinediones in clinical practice. Endocr Pract 2002; 8(6): 406–10

    PubMed  Google Scholar 

  82. Derosa G, Cicero AF, Gaddi A, et al. Metabolic effects of pioglitazone and rosiglitazone in patients with diabetes and metabolic syndrome treated with glimepiride: a twelve-month, multicenter, double-blind, randomized, controlled, parallel-group trial. Clin Ther 2004; 26(5): 744–54

    Article  PubMed  CAS  Google Scholar 

  83. Scherbaum W, Burkhard G, for the German Pioglitazone Study Group. Pioglitazone reduces blood pressure in patients with type 2 diabetes mellitus [abstract]. Diabetes} 2001}; 50Suppl. 2}

    Google Scholar 

  84. Raji A, Seely EW, Bekins SA, et al. Rosiglitazone improves insulin sensitivity and lowers blood pressure in hypertensive patients. Diabetes Care 2003; 26: 172–8

    Article  PubMed  CAS  Google Scholar 

  85. McTernan PG, Eggo MC, Smith SA, et al. Rosiglitazone inhibits the insulin-mediated increase in PAI-1 secretion in human subcutaneous adipocytes [abstract]. Diabetes 2001; 50Suppl. 2: A275

    Google Scholar 

  86. Kato K, Satoh H, Endo Y, et al. Thiazolidinediones down-regulate plasminogen activator inhibitor type 1 expression in human vascular endothelial cells: a possible role for PPAR gamma in endothelial function. Biochem Biophys Res Commun 1999; 258(2): 431–5

    Article  PubMed  CAS  Google Scholar 

  87. Pistrosch F, Passauer J, Fischer S, et al. In type 2 diabetes, rosiglitazone therapy for insulin resistance ameliorates endothelial dysfunction independent of glucose control. Diabetes Care 2004; 27: 484–90

    Article  PubMed  CAS  Google Scholar 

  88. Satoh N, Ogawa Y, Usui T, et al. Antiatherogenic effect of pioglitazone in type 2 diabetic patients irrespective of the responsiveness to its antidiabetic effect. Diabetes Care 2003; 26: 2493–9

    Article  PubMed  CAS  Google Scholar 

  89. Xu H, Barnes GT, Yang Q, et al. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003; 112(12): 1821–30

    PubMed  CAS  Google Scholar 

  90. Cuzzocrea S, Pisano B, Dugo L, et al. Rosiglitazone, a ligand of the peroxisome proliferator-activated receptor-gamma, reduces acute inflammation. Eur J Pharmacol 2004; 483(1): 79–93

    Article  PubMed  CAS  Google Scholar 

  91. Hsueh WA, Jackson S, Law RE, et al. Control of vascular cell proliferation and migration by PPAR-γ: a new approach to the macrovascular complications of diabetes. Diabetes Care 2001; 24: 392–7

    Article  PubMed  CAS  Google Scholar 

  92. Takagi T, Akasaka T, Yamamuro A, et al. Troglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with non-insulin dependent diabetes mellitus: a serial intravascular ultrasound study. J Am Coll Cardiol 2000; 36: 1529–35

    Article  PubMed  CAS  Google Scholar 

  93. Takagi T, Yamamuro A, Tamita K, et al. Pioglitazone reduces neointimal tissue proliferation after coronary stent implantation in patients with type 2 diabetes mellitus: an intravascular ultrasound scanning study. Am Heart J 2003; 146(2): E5

    Article  PubMed  CAS  Google Scholar 

  94. Bakris G, Viberti G, Weston WM, et al. Rosiglitazone reduces urinary albumin excretion in type II diabetes. J Hum Hypertens 2003; 17: 7–12

    Article  PubMed  CAS  Google Scholar 

  95. Philips LS, Grunberger G, Miller E, et al. Once-and twice-daily dosing with rosiglitazone improves glycemic control in patients with type 2 diabetes. Diabetes Care 2001; 24(2): 308–15

    Article  Google Scholar 

  96. Wolffenbuttel BHR, Sels JJE, Rondas-Colbers GJWM, et al. Comparison of different insulin regimens in elderly patients with NIDDM. Diabetes Care 1996; 19(12): 1326–32

    Article  PubMed  CAS  Google Scholar 

  97. Data on file (BRL 49653 integrated summary of efficacy, combination with insulin), GlaxoSmithKline, 1999 Sep

  98. Buch HN, Baskar V, Barton DM, et al. Combination of insulin and thiazolidinedione therapy in massively obese patients with type 2 diabetes. Diabet Med 2002; 19: 572–4

    Article  PubMed  CAS  Google Scholar 

  99. Poulsen MK, Henriksen JE, Hother-Nielsen O, et al. The combined effect of triple therapy with rosiglitazone, metformin, and insulin aspart in type 2 diabetic patients. Diabetes Care 2003; 26(12): 3273–9

    Article  PubMed  CAS  Google Scholar 

  100. Raz I, Mouritzen U, Vaz J, et al. Addition of biphasic insulin aspart 30 to rosiglitazone in type 2 diabetes mellitus that is poorly controlled with gliben-clamide monotherapy. Clin Ther 2003; 25(12): 3109–23

    Article  PubMed  CAS  Google Scholar 

  101. Davidson J, Perez A, Popovici C, et al. Addition of pioglitazone to stable insulin therapy in poorly controlled patients with type 2 diabetes: results of a double-blind, multicenter, randomized study [abstract]. Diabetes 2003; 52Suppl. 1: A445

    Google Scholar 

  102. Schwartz S, Raskin P, Fonseca V, et al. Effect of troglitazone in insulin-treated patients with type II diabetes mellitus. N Engl J Med 1998; 338(13): 861–6

    Article  PubMed  CAS  Google Scholar 

  103. Buse JB, Gumbiner B, Mathias NP, et al. Troglitazone use in insulin-treated type 2 diabetic patients. Diabetes Care 1998; 21(9): 1455–61

    Article  PubMed  CAS  Google Scholar 

  104. Aviles-Santa L, Sinding J, Raskin P. Effects of metformin in patients with poorly controlled, insulin-treated type 2 diabetes mellitus: a randomized, double-blind, placebo-controlled trial. Ann Intern Med 1999; 131(3): 182–8

    PubMed  CAS  Google Scholar 

  105. Strowig SM, Aviles-Santa ML, Raskin P. Comparison of insulin monotherapy and combination therapy with insulin and metformin or insulin and troglitazone in type 2 diabetes. Diabetes Care 2002; 25(10): 1691–8

    Article  PubMed  CAS  Google Scholar 

  106. Data on file, GlaxoSmithKline, 2002 Aug 26

  107. Raz I, Stranks S, Filipczak R, et al. In inadequately controlled patients with type 2 diabetes, biphasic insulin aspart 30 combined with pioglitazone provides better glycemic control than biphasic insulin aspart 30 monotherapy or pioglitazone/ sulfonylurea combination [abstract]. Diabetes 2003; 52Suppl. 1: A453

    Google Scholar 

  108. Herrine SK, Choudhary C. Severe hepatotoxicity associated with troglitazone [letter]. Ann Intern Med 1999; 130: 163–4

    PubMed  CAS  Google Scholar 

  109. Gitlin N, Julie NL, Spurr CL, et al. Two cases of severe clinical and histologie hepatotoxicity associated with troglitazone. Ann Intern Med 1998; 129: 36–8

    PubMed  CAS  Google Scholar 

  110. Neuschwander-Tetri BA, Isley WL, Oki JC, et al. Troglitazone-induced hepatic failure leading to liver transplantation: a case report. Ann Intern Med 1998; 129: 38–41

    PubMed  CAS  Google Scholar 

  111. Shibuya A, Watanabe M, FujitaT Y, et al. An autopsy case of troglitazone-induced fulminant hepatitis. Diabetes Care 1998; 21: 2140–3

    Article  PubMed  CAS  Google Scholar 

  112. Vella A, de Groen PC, Dinneen SF. Fatal hepatotoxicity associated with troglitazone [letter]. Ann Intern Med 1998; 129: 1080

    PubMed  CAS  Google Scholar 

  113. Watkins PB, Whitcomb RW. Hepatic dysfunction associated with troglitazone. N Engl J Med 1998; 338: 916–7

    Article  PubMed  CAS  Google Scholar 

  114. Kohlroser J, Mathai J, Reichheld J, et al. Hepatotoxicity due to troglitazone: report of two cases and review of adverse events reported to the United States Food and Drug Administration. Am J Gastroenterol 2000 Jan; 95(1): 272–6

    Article  PubMed  CAS  Google Scholar 

  115. Freid J, Everitt D, Boscia J. Rosiglitazone and hepatic failure [letter]. Ann Intern Med 2000 Jan; 132(2): 164

    PubMed  CAS  Google Scholar 

  116. Mori Y, Murukawa Y, Okada K, et al. Effect of troglitazone on body fat distribution in type 2 diabetic patients. Diabetes Care 1999; 22: 908–12

    Article  PubMed  CAS  Google Scholar 

  117. Kelly IE, Han TS, Walsh K, et al. Effects of a thiazolidinedione compound on body fat and fat distribution of patients with type 2 diabetes. Diabetes Care 1999; 22: 288–93

    Article  PubMed  CAS  Google Scholar 

  118. Nesto RW, Bell D, Bonow RO, et al. Thiazolidinedione use, fluid retention, and congestive heart failure: a consensus statement from the American Heart Association and American Diabetes Association. Circulation 2003; 108: 2941–8

    Article  PubMed  Google Scholar 

  119. Lebovitz HE. Differentiating members of the thiazolidinedione class: a focus on safety. Diabetes Metab Res Rev 2002; 18: S23–9

    Article  PubMed  CAS  Google Scholar 

  120. Kannel WB, McGee DL. Diabetes and cardiovascular disease: the Framingham Study. JAMA 1979; 241: 2035–8

    Article  PubMed  CAS  Google Scholar 

  121. Bell DSH. Heart failure: the frequent, forgotten, and often fatal complication of diabetes. Diabetes Care 2003; 26(8): 2433–41

    Article  PubMed  Google Scholar 

  122. Zanchi A, Chiolero A, Maillard M, et al. Effects of the peroxisomal proliferator-activated receptor-γ agonist pioglitazone on renal and hormonal responses to salt in healthy men. J Clin Endocrinol Metab 2004; 89(3): 1140–5

    Article  PubMed  CAS  Google Scholar 

  123. Mudaliar S, Chang AR, Henry RR. Thiazolidinediones, peripheral edema, and type 2 diabetes: incidence, pathophysiology, and clinical implications. Endocr Pract 2003; 9(5): 406–16

    PubMed  Google Scholar 

  124. Jaber LA, Nowak SN, Slaughter RR. Insulin-metformin combination therapy in obese patients with type 2 diabetes. J Clin Pharmacol 2002; 42: 89–94

    Article  PubMed  CAS  Google Scholar 

  125. Strowig SM, Aviles-Santa ML, Raskin P. Improved glycemic control without weight gain using triple therapy in type 2 diabetes. Diabetes Care 2004; 27(7): 1577–83

    Article  PubMed  CAS  Google Scholar 

  126. Bailey CJ, Turner RC. Metformin. N Engl J Med 1996; 334: 574–9

    Article  PubMed  CAS  Google Scholar 

  127. GlaxoSmithKline Pharmaceuticals. Avandia (rosiglitazone maleate) [package insert]. Philadelphia (PA): GlaxoSmithKline Pharmaceuticals, 2003 Mar

    Google Scholar 

  128. UK Prospective Diabetes Study (UKPDS) Group. Effect of intensive blood-glucose control with metformin on complications in overweight patients with type 2 diabetes (UKPDS 34). Lancet 1998; 352: 854–65

    Article  Google Scholar 

  129. Stratton IM, Adler AI, Neil HA, et al. Association of glycemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ 2000; 321: 405–12

    Article  PubMed  CAS  Google Scholar 

  130. Kirpichnikov D, McFarlane SI, Sowers JR. Metformin: an update. Ann Intern Med 2002; 137(1): 25–33

    PubMed  CAS  Google Scholar 

  131. Grant PJ, Strickland MH, Booth NA, et al. Metformin causes a reduction in basal and post-venous occlusion plasminogen activator inhibitor-1 in type 2 diabetic patients. Diabet Med 1991; 8: 361–5

    Article  PubMed  CAS  Google Scholar 

  132. Nagi DK, Yudkin JS. Effects of metformin on insulin resistance, risk factors for cardiovascular disease, and plasminogen activator inhibitor in NIDDM subjects: a study of two ethnic groups. Diabetes Care 1993; 16: 621–9

    Article  PubMed  CAS  Google Scholar 

  133. Landin K, Tengborn L, Smith U. Treating insulin resistance in hypertension with metformin reduces both blood pressure and metabolic risk factors. J Intern Med 1991; 229: 181–7

    Article  PubMed  CAS  Google Scholar 

  134. Charles MA, Morange P, Eschwege E, et al. Effect of weight change and metformin on fibrinolysis and the von Willebrand factor in obese nondiabetic subjects: the BIGPRO1 Study. Biguanides and the Prevention of the Risk of Obesity. Diabetes Care 1998; 21: 1967–72

    Article  PubMed  CAS  Google Scholar 

  135. Kermani A, Garg A. Thiazolidinedione-associated congestive heart failure and pulmonary edema. Mayo Clin Proc 2003; 78: 1088–91

    Article  PubMed  CAS  Google Scholar 

  136. Page RL, Gozansky WS, Ruscin JM. Possible heart failure exacerbation associated with rosiglitazone: case report and literature review. Pharmacotherapy 2003; 23(7): 945–54

    Article  PubMed  Google Scholar 

  137. Delea TE, Edelsberg JS, Hagiwara M, et al. Use of thiazolidinediones and risk of heart failure in people with type 2 diabetes: a retrospective cohort study. Diabetes Care 2003; 26(11): 2983–9

    Article  PubMed  CAS  Google Scholar 

  138. Wang F, Aleksunes LM, Reagan LA, et al. Management of rosiglitazone-induced edema: two case reports and a review of the literature. Diabetes Technol Ther 2002; 4(4): 505–14

    Article  PubMed  Google Scholar 

  139. Rosenstock J, Wyne K. Insulin treatment in type 2 diabetes. In: Goldstein BJ, Muller-Wieland D, editors. Textbook of type 2 diabetes. London: Martin Dunitz, 2003: 131–54

    Google Scholar 

  140. Riddle MC, Rosenstock J, Gerich J, et al. The Treat-to-Target trial: randomized addition of glargine or human NPH insulin to oral therapy of type 2 diabetic patients. Diabetes Care 2003; 26(11): 3080–6

    Article  PubMed  CAS  Google Scholar 

  141. Raskin P, Allen E, Hollander P, et al. Initiating insulin therapy in type 2 diabetes: a comparison of biphasic and basal insulin analogs. Diabetes Care 2005; 28(2): 260–5

    Article  PubMed  CAS  Google Scholar 

  142. Sauer WH, Berlin JA, Kimmel SE. Thiazolidinediones and prevention of myocardial infarction in patients with type 2 diabetes [abstract]. Circulation 2002; 106Suppl. II: 11–562

    Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Raskin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, A., Raskin, P. Thiazolidinediones and Insulin. Mol Diag Ther 4, 205–220 (2005). https://doi.org/10.2165/00024677-200504040-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200504040-00002

Keywords

Navigation