Skip to main content
Log in

Pharmacologic Therapies for Acromegaly

A Review of Their Effects on Glucose Metabolism and Insulin Resistance

  • Review Article
  • Published:
Treatments in Endocrinology

Abstract

Acromegaly is associated with insulin resistance and an increased incidence of cardiovascular disease. However, it remains unclear to what extent the effects of growth hormone (GH) excess on cardiovascular morbidity and mortality are mediated through insulin resistance versus through other direct or indirect effects of GH. Adequate control of GH excess by surgery or pharmacologic interventions is associated with decreased insulin resistance, reflected in decreased plasma insulin levels and fasting glucose levels or improved glucose tolerance. Despite divergent effects of both somatostatin and somatostatin analogs on GH, insulin and glucagon secretion, and glucose absorption, treatment with the somatostatin analogs octreotide and lanreotide has only limited effects on glucose metabolism. However, glucose sensitivity has only been formally examined using a hyperinsulinemic euglycemic clamp in a minority of these studies. Treatment with the GH-receptor antagonist pegvisomant ameliorates insulin sensitivity, reflected in decreased fasting plasma insulin levels and fasting glucose levels. Nonetheless, the effect of pegvisomant on glucose sensitivity has not been formally tested by hyperinsulinemic clamp conditions. In acromegaly, preliminary observations on new octreotide analogs with greater specificity for somatostatin-receptor subtypes indicate that these compounds achieve better control of GH hypersecretion than octreotide, but may also negatively influence insulin release. Assessment of insulin secretion and glucose levels in acromegalic patients during administration of these compounds is thus mandatory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Orme SM, McNally RJ, Cartwright RA, et al. Mortality and cancer incidence in acromegaly: a retrospective cohort study. United Kingdom Acromegaly Study Group. J Clin Endocrinol Metab 1998; 83(8): 2730–4

    Article  PubMed  CAS  Google Scholar 

  2. Adler AI, Neil HA, Manley SE, et al. Hyperglycemia and hyperinsulinemia at diagnosis of diabetes and their association with subsequent cardiovascular disease in the United Kingdom Prospective Diabetes Study (UKPDS 47). Am Heart J 1999; 138 (5 Pt 1): S353–9

    PubMed  CAS  Google Scholar 

  3. Rajasoorya C, Holdaway IM, Wrightson P, et al. Determinants of clinical outcome and survival in acromegaly. Clin Endocrinol (Oxf) 1994; 41(1): 95–102

    Article  CAS  Google Scholar 

  4. de Vegt F, Dekker JM, Stehouwer CD, et al. Similar 9-year mortality risks and reproducibility for the World Health Organization and American Diabetes Association glucose tolerance categories: the Hoorn Study. Diabetes Care 2000; 23(1): 40–4

    Article  PubMed  Google Scholar 

  5. Lakka HM, Laaksonen DE, Lakka TA, et al. The metabolic syndrome and total and cardiovascular disease mortality in middle-aged men. JAMA 2002; 288(21): 2709–16

    Article  PubMed  Google Scholar 

  6. Roelfsema F, Frolich M. Glucose tolerance and plasma immunoreactive insulin levels in acromegalics before and after selective transsphenoidal surgery. Clin Endocrinol (Oxf) 1985; 22(4): 531–7

    Article  CAS  Google Scholar 

  7. Wasada T, Aoki K, Sato A, et al. Assessment of insulin resistance in acromegaly associated with diabetes mellitus before and after transsphenoidal adenomectomy. Endocr J 1997; 44(4): 617–20

    Article  PubMed  CAS  Google Scholar 

  8. Battezzati A, Benedini S, Fattorini A, et al. Insulin action on protein metabolism in acromegalic patients. Am J Physiol Endocrinol Metab 2003; 284(4): E823–9

    PubMed  CAS  Google Scholar 

  9. Freda PU, Reyes CM, Conwell IM, et al. Serum ghrelin levels in acromegaly: effects of surgical and long-acting octreotide therapy. J Clin Endocrinol Metab 2003; 88(5): 2037–44

    Article  PubMed  CAS  Google Scholar 

  10. Jaffrain-Rea ML, Minniti G, Moroni C, et al. Impact of successful transsphenoidal surgery on cardiovascular risk factors in acromegaly. Eur J Endocrinol 2003; 148(2): 193–201

    Article  PubMed  CAS  Google Scholar 

  11. Kasayama S, Otsuki M, Takagi M, et al. Impaired beta-cell function in the presence of reduced insulin sensitivity determines glucose tolerance status in acromegalic patients. Clin Endocrinol (Oxf) 2000; 52(5): 549–55

    Article  CAS  Google Scholar 

  12. Moller N, Schmitz O, Joorgensen JO, et al. Basal- and insulin-stimulated substrate metabolism in patients with active acromegaly before and after adenomectomy. J Clin Endocrinol Metab 1992; 74(5): 1012–9

    Article  PubMed  CAS  Google Scholar 

  13. Ronchi CL, Orsi E, Giavoli C, et al. Evaluation of insulin resistance in acromegalic patients before and after treatment with somatostatin analogues. J Endocrinol Invest 2003; 26(6): 533–8

    PubMed  CAS  Google Scholar 

  14. Biermasz NR, van Dulken H, Roelfsema F. Ten-year follow-up results of transsphenoidal microsurgery in acromegaly. J Clin Endocrinol Metab 2000; 85(12): 4596–602

    Article  PubMed  CAS  Google Scholar 

  15. Beauregard C, Truong U, Hardy J, et al. Long-term outcome and mortality after transsphenoidal adenomectomy for acromegaly. Clin Endocrinol (Oxf) 2003; 58(1): 86–91

    Article  Google Scholar 

  16. Swearingen B, Barker FG, Katznelson L, et al. Long-term mortality after transsphenoidal surgery and adjunctive therapy for acromegaly. J Clin Endocrinol Metab 1998; 83(10): 3419–26

    Article  PubMed  CAS  Google Scholar 

  17. Eastman RC, Gorden P, Glatstein E, et al. Radiation therapy of acromegaly. Endocrinol Metab Clin North Am 1992; 21(3): 693–712

    PubMed  CAS  Google Scholar 

  18. Biermasz NR, Dulken HV, Roelfsema F. Postoperative radiotherapy in acromegaly is effective in reducing GH concentration to safe levels. Clin Endocrinol (Oxf) 2000; 53(3): 321–7

    Article  CAS  Google Scholar 

  19. Barrande G, Pittino-Lungo M, Coste J, et al. Hormonal and metabolic effects of radiotherapy in acromegaly: long-term results in 128 patients followed in a single center. J Clin Endocrinol Metab 2000; 85(10): 3779–85

    Article  PubMed  CAS  Google Scholar 

  20. Lamberts SW, Uitterlinden P, Verschoor L, et al. Long-term treatment of acromegaly with the somatostatin analogue SMS 201-995. N Engl J Med 1985 Dec 19; 313(25): 1576–80

    Article  PubMed  CAS  Google Scholar 

  21. Lamberts SW, Oosterom R, Neufeld M, et al. The somatostatin analog SMS 201-995 induces long-acting inhibition of growth hormone secretion without rebound hypersecretion in acromegalic patients. J Clin Endocrinol Metab 1985; 60(6): 1161–5

    Article  PubMed  CAS  Google Scholar 

  22. Heron I, Thomas F, Dero M, et al. Pharmacokinetics and efficacy of a long-acting formulation of the new somatostatin analog BIM 23014 in patients with acromegaly. J Clin Endocrinol Metab 1993; 76(3): 721–7

    Article  PubMed  CAS  Google Scholar 

  23. Stewart PM, Kane KF, Stewart SE, et al. Depot long-acting somatostatin analog (Sandostatin LAR®) is an effective treatment for acromegaly. J Clin Endocrinol Metab 1995; 80(11): 3267–72

    Article  PubMed  CAS  Google Scholar 

  24. Trainer PJ, Drake WM, Katznelson L, et al. Treatment of acromegaly with the growth hormone-receptor antagonist pegvisomant. N Engl J Med 2000 Apr 20; 342(16): 1171–7

    Article  PubMed  CAS  Google Scholar 

  25. Matthews DR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 1985; 28(7): 412–9

    Article  PubMed  CAS  Google Scholar 

  26. Kuhn JM, Basin C, Mollard M, et al. Effects of the new somatostatin analogue (BIM 23014) on blood glucose homeostasis in normal men. Eur J Clin Invest 1992; 22(12): 793–9

    Article  PubMed  CAS  Google Scholar 

  27. Rizza RA, Mandarino LJ, Gerich JE. Effects of growth hormone on insulin action in man: mechanisms of insulin resistance, impaired suppression of glucose production, and impaired stimulation of glucose utilization. Diabetes 1982; 31 (8 Pt 1): 663–9

    Article  PubMed  CAS  Google Scholar 

  28. Rosenfeld RG, Wilson DM, Dollar LA, et al. Both human pituitary growth hormone and recombinant DNA-derived human growth hormone cause insulin resistance at a postreceptor site. J Clin Endocrinol Metab 1982; 54(5): 1033–8

    Article  PubMed  CAS  Google Scholar 

  29. Bratusch-Marrain PR, Smith D, DeFronzo RA. The effect of growth hormone on glucose metabolism and insulin secretion in man. J Clin Endocrinol Metab 1982; 55(5): 973–82

    Article  PubMed  CAS  Google Scholar 

  30. Costa C, Solanes G, Visa J, et al. Transgenic rabbits overexpressing growth hormone develop acromegaly and diabetes mellitus. FASEB J 1998; 12(14): 1455–60

    PubMed  CAS  Google Scholar 

  31. Rossetti L, Frontoni S, Dimarchi R, et al. Metabolic effects of IGF-1 in diabetic rats. Diabetes 1991; 40(4): 444–8

    Article  PubMed  CAS  Google Scholar 

  32. Boulware SD, Tamborlane WV, Rennert NJ, et al. Comparison of the metabolic effects of recombinant human insulin-like growth factor-1 and insulin: dose-response relationships in healthy young and middle-aged adults. J Clin Invest 1994; 93(3): 1131–9

    Article  PubMed  CAS  Google Scholar 

  33. Yakar S, Liu JL, Fernandez AM, et al. Liver-specific IGF-1 gene deletion leads to muscle insulin insensitivity. Diabetes 2001; 50(5): 1110–8

    Article  PubMed  CAS  Google Scholar 

  34. Sjogren K, Wallenius K, Liu JL, et al. Liver-derived IGF-1 is of importance for normal carbohydrate and lipid metabolism. Diabetes 2001; 50(7): 1539–45

    Article  PubMed  CAS  Google Scholar 

  35. Yakar S, Setser J, Zhao H, et al. Inhibition of growth hormone action improves insulin sensitivity in liver IGF-1-deficient mice. J Clin Invest 2004; 113(1): 96–105

    PubMed  CAS  Google Scholar 

  36. Hussain MA, Schmitz O, Mengel A, et al. Insulin-like growth factor-1 stimulates lipid oxidation, reduces protein oxidation, and enhances insulin sensitivity in humans. J Clin Invest 1993; 92(5): 2249–56

    Article  PubMed  CAS  Google Scholar 

  37. Garcia Lopez JM, De la Fuente A, Tome MA, et al. Acromegaly and insulin resistance: a case study. Acta Endocrinol (Copenh) 1986; 111(4): 445–51

    Google Scholar 

  38. Garcia-Estevez DA, Araujo-Vilar D, Cabezas-Cerrato J. Non-insulin-mediated glucose uptake in several insulin-resistant states in the postabsortive period. Diabetes Res Clin Pract 1998; 39(2): 107–13

    Article  PubMed  CAS  Google Scholar 

  39. Cerasi E, Luft R. Insulin response to glucose loading in acromegaly. Lancet 1964; 15: 769–71

    Article  Google Scholar 

  40. Luft R, Cerasi E, Hamberger CA. Studies on the pathogenesis of diabetes in acromegaly. Acta Endocrinol (Copenh) 1967; 56(4): 593–607

    CAS  Google Scholar 

  41. Sonksen PH, Greenwood FC, Ellis JP, et al. Changes of carbohydrate tolerance in acromegaly with progress of the disease and in response to treatment. J Clin Endocrinol Metab 1967; 27(10): 1418–30

    Article  PubMed  CAS  Google Scholar 

  42. Wass JA, Cudworth AG, Bottazzo GF, et al. An assessment of glucose intolerance in acromegaly and its response to medical treatment. Clin Endocrinol (Oxf) 1980; 12(1): 53–9

    Article  CAS  Google Scholar 

  43. Lawrence JH, Tobias CA, Linfoot JA, et al. Successful treatment of acromegaly: metabolic and clinical studies in 145 patients. J Clin Endocrinol Metab 1970; 31(2): 180–98

    Article  PubMed  CAS  Google Scholar 

  44. Hansen I, Tsalikian E, Beaufrere B, et al. Insulin resistance in acromegaly: defects in both hepatic and extrahepatic insulin action. Am J Physiol 1986; 250 (3 Pt 1): E269–73

    PubMed  CAS  Google Scholar 

  45. Foss MC, Saad MJ, Paccola GM, et al. Peripheral glucose metabolism in acromegaly. J Clin Endocrinol Metab 1991; 72(5): 1048–53

    Article  PubMed  CAS  Google Scholar 

  46. Ezzat S, Forster MJ, Berchtold P, et al. Acromegaly: clinical and biochemical features in 500 patients. Medicine (Baltimore) 1994; 73(5): 233–40

    CAS  Google Scholar 

  47. Koop BL, Harris AG, Ezzat S. Effect of octreotide on glucose tolerance in acromegaly. Eur J Endocrinol 1994; 130(6): 581–6

    Article  PubMed  CAS  Google Scholar 

  48. Colao A, Ferone D, Cappabianca P, et al. Effect of octreotide pretreatment on surgical outcome in acromegaly. J Clin Endocrinol Metab 1997; 82(10): 3308–14

    Article  PubMed  CAS  Google Scholar 

  49. Colao A, Baldelli R, Marzullo P, et al. Systemic hypertension and impaired glucose tolerance are independently correlated to the severity of the acromegalic cardiomyopathy. J Clin Endocrinol Metab 2000; 85(1): 193–9

    Article  PubMed  CAS  Google Scholar 

  50. Fontbonne AM, Eschwege EM. Insulin and cardiovascular disease: Paris Prospective Study. Diabetes Care 1991; 14(6): 461–9

    Article  PubMed  CAS  Google Scholar 

  51. de Simone G, Devereux RB, Palmieri V, et al. Relation of insulin resistance to markers of preclinical cardiovascular disease: the Strong Heart Study. Nutr Metab Cardiovasc Dis 2003; 13(3): 140–7

    Article  PubMed  Google Scholar 

  52. Hanley AJ, Williams K, Stern MP, et al. Homeostasis model assessment of insulin resistance in relation to the incidence of cardiovascular disease: the San Antonio Heart Study. Diabetes Care 2002; 25(7): 1177–84

    Article  PubMed  Google Scholar 

  53. Anand SS, Yi Q, Gerstein H, et al. Relationship of metabolic syndrome and fibrinolytic dysfunction to cardiovascular disease. Circulation 2003; 108(4): 420–5

    Article  PubMed  CAS  Google Scholar 

  54. Patel YC, Greenwood MT, Warszynska A, et al. All five cloned human somatostatin receptors (hSSTRl-5) are functionally coupled to adenylyl cyclase. Biochem Biophys Res Commun 1994; 198(2): 605–12

    Article  PubMed  CAS  Google Scholar 

  55. Lamberts SW, van der Lely AJ, de Herder WW, et al. Octreotide. N Engl J Med 1996; 334(4): 246–54

    Article  PubMed  CAS  Google Scholar 

  56. Davies RR, Miller M, Turner SJ, et al. Effects of somatostatin analogue SMS 201-995 in normal man. Clin Endocrinol (Oxf) 1986; 24(6): 665–74

    Article  CAS  Google Scholar 

  57. Lamberts SW, Verleun T, Zuiderwijk JM, et al. The effect of the somatostatin analog SMS 201-995 on normal growth hormone secretion in the rat: a comparison with the effect of bromocriptine on normal prolactin secretion. Acta Endocrinol (Copenh) 1987; 115(2): 196–202

    CAS  Google Scholar 

  58. Krejs GJ, Browne R, Raskin P. Effect of intravenous somatostatin on jejunal absorption of glucose, amino acids, water, and electrolytes. Gastroenterology 1980; 78(1): 26–31

    PubMed  CAS  Google Scholar 

  59. Barnard LB, Grantham WG, Lamberton P, et al. Treatment of resistant acromegaly with a long-acting somatostatin analogue (SMS 201-995). Ann Intern Med 1986; 105(6): 856–61

    PubMed  CAS  Google Scholar 

  60. Vance ML, Harris AG. Long-term treatment of 189 acromegalic patients with the somatostatin analog octreotide: results of the International Multicenter Acromegaly Study Group. Arch Intern Med 1991; 151(8): 1573–8

    Article  PubMed  CAS  Google Scholar 

  61. James RA, Moller N, Chatterjee S, et al. Carbohydrate tolerance and serum lipids in acromegaly before and during treatment with high-dose octreotide. Diabet Med 1991; 8(6): 517–23

    Article  PubMed  CAS  Google Scholar 

  62. Ho KK, Jenkins AB, Furier SM, et al. Impact of octreotide, a long-acting somatostatin analogue, on glucose tolerance and insulin sensitivity in acromegaly. Clin Endocrinol (Oxf) 1992; 36(3): 271–9

    Article  CAS  Google Scholar 

  63. Sato K, Takamatsu K, Hashimoto K. Short-term effects of octreotide on glucose tolerance in patients with acromegaly. Endocr J 1995; 42(6): 739–45

    Article  PubMed  CAS  Google Scholar 

  64. Ayuk J, Stewart SE, Stewart PM, et al. Long-term safety and efficacy of depot long-acting somatostatin analogs for the treatment of acromegaly. J Clin Endocrinol Metab 2002; 87(9): 4142–6

    Article  PubMed  CAS  Google Scholar 

  65. Ezzat S, Ren SG, Braunstein GD, et al. Octreotide stimulates insulin-like growth factor-binding protein-1: a potential pituitary-independent mechanism for drug action. J Clin Endocrinol Metab 1992; 75(6): 1459–63

    Article  PubMed  CAS  Google Scholar 

  66. Breidert M, Pinzer T, Wildbrett J, et al. Long-term effect of octreotide in acromegaly on insulin resistance. Horm Metab Res 1995; 27(5): 226–30

    Article  PubMed  CAS  Google Scholar 

  67. Arosio M, Machelli S, Rossi CM, et al. Effects of treatment with octreotide in acromegalic patients: a multicenter Italian study. Italian Multicenter Octreotide Study Group. Eur J Endocrinol 1995; 133(4): 430–9

    Article  PubMed  CAS  Google Scholar 

  68. Giusti M, Gussoni G, Cuttica CM, et al. Effectiveness and tolerability of slow release lanreotide treatment in active acromegaly: six-month report on an Italian multicenter study. Italian Multicenter Slow Release Lanreotide Study Group. J Clin Endocrinol Metab 1996; 81(6): 2089–97

    Article  PubMed  CAS  Google Scholar 

  69. van der Lely AJ, Hutson RK, Trainer PJ, et al. Long-term treatment of acromegaly with pegvisomant, a growth hormone receptor antagonist. Lancet 2001; 358(9295): 1754–9

    Article  PubMed  Google Scholar 

  70. Rose DR, Clemmons DR. Growth hormone receptor antagonist improves insulin resistance in acromegaly. Growth Horm IGF Res 2002; 12(6): 418–24

    Article  PubMed  CAS  Google Scholar 

  71. Ronchi C, Epaminonda P, Cappiello V, et al. Effects of two different somatostatin analogs on glucose tolerance in acromegaly. J Endocrinol Invest 2002; 25(6): 502–7

    PubMed  CAS  Google Scholar 

  72. Drake WM, Rowles SV, Roberts ME, et al. Insulin sensitivity and glucose tolerance improve in patients with acromegaly converted from depot octreotide to pegvisomant. Eur J Endocrinol 2003; 149(6): 521–7

    Article  PubMed  CAS  Google Scholar 

  73. Data on file, Ipsen-Beaufour, 2000

  74. al Maskari M, Gebbie J, Kendall-Taylor P. The effect of a new slow-release, long-acting somatostatin analogue, lanreotide, in acromegaly. Clin Endocrinol (Oxf) 1996; 45(4): 415–21

    Article  Google Scholar 

  75. Colao A, Marzullo P, Lombardi G. Effect of a six-month treatment with lanreotide on cardiovascular risk factors and arterial intima-media thickness in patients with acromegaly. Eur J Endocrinol 2002; 146(3): 303–9

    Article  PubMed  CAS  Google Scholar 

  76. Caron P, Morange-Ramos I, Cogne M, et al. Three-year follow-up of acromegalic patients treated with intramuscular slow-release lanreotide. J Clin Endocrinol Metab 1997; 82(1): 18–22

    Article  PubMed  CAS  Google Scholar 

  77. Chanson P, Boerlin V, Ajzenberg C, et al. Comparison of octreotide acetate LAR and lanreotide SR in patients with acromegaly. Clin Endocrinol (Oxf) 2000; 53(5): 577–86

    Article  CAS  Google Scholar 

  78. Kendall-Taylor P, Miller M, Gebbie J, et al. Long-acting octreotide LAR compared with lanreotide SR in the treatment of acromegaly. Pituitary 2000; 3(2): 61–5

    Article  PubMed  CAS  Google Scholar 

  79. Cozzi R, Dallabonzana D, Attanasio R, et al. A comparison between octreotide-LAR and lanreotide-SR in the chronic treatment of acromegaly. Eur J Endocrinol 1999; 141(3): 267–71

    Article  PubMed  CAS  Google Scholar 

  80. Turner HE, Vadivale A, Keenan J, et al. A comparison of lanreotide and octreotide LAR for treatment of acromegaly. Clin Endocrinol (Oxf) 1999; 51(3): 275–80

    Article  CAS  Google Scholar 

  81. Caron P, Beckers A, Cullen DR, et al. Efficacy of the new long-acting formulation of lanreotide (lanreotide Autogel®) in the management of acromegaly. J Clin Endocrinol Metab 2002; 87(1): 99–104

    Article  PubMed  CAS  Google Scholar 

  82. Data on file, Ipsen-Beaufour, 2002

  83. Lancranjan I, Bruns C, Grass P, et al. Sandostatin LAR®: a promising therapeutic tool in the management of acromegalic patients. Metabolism 1996; 45(8 Suppl. 1): 67–71

    Article  PubMed  CAS  Google Scholar 

  84. van Thiel SW, Romijn JA, Biermasz NR, et al. Octreotide long-acting repeatable and lanreotide Autogel® are equally effective in controlling growth hormone secretion in acromegalic patients. Eur J Endocrinol 2004 Apr; 150(4): 489–95

    Article  PubMed  Google Scholar 

  85. Saveanu A, Gunz G, Dufour H, et al. BIM-23244, a somatostatin receptor subtype 2- and 5-selective analog with enhanced efficacy in suppressing growth hormone (GH) from octreotide-resistant human GH-secreting adenomas. J Clin Endocrinol Metab 2001; 86(1): 140–5

    Article  PubMed  CAS  Google Scholar 

  86. Kumar U, Sasi R, Suresh S, et al. Subtype-selective expression of the five somatostatin receptors (hSSTRl-5) in human pancreatic islet cells: a quantitative double-label immunohistochemical analysis. Diabetes 1999; 48(1): 77–85

    Article  PubMed  CAS  Google Scholar 

  87. Strowski MZ, Parmar RM, Blake AD, et al. Somatostatin inhibits insulin and glucagon secretion via two receptor subtypes: an in vitro study of pancreatic islets from somatostatin receptor 2 knockout mice. Endocrinology 2000; 141(1): 111–7

    Article  PubMed  CAS  Google Scholar 

  88. Brans C, Lewis I, Briner U, et al. SOM 230: a novel somatostatin peptidomimetic with broad somatotropin release inhibiting factor (SRIF) receptor binding and a unique antisecretory profile. Eur J Endocrinol 2002; 146(5): 707–16

    Article  Google Scholar 

  89. Weckbecker G, Briner U, Lewis I, et al. SOM 230: a new somatostatin peptidomimetic with potent inhibitory effects on the growth hormone/insulin-like growth factor-1 axis in rats, primates, and dogs. Endocrinology 2002; 143(10): 4123–30

    Article  PubMed  CAS  Google Scholar 

  90. Van Der HJ, de Herder WW, Feelders RA, et al. A single-dose comparison of the acute effects between the new somatostatin analog SOM 230 and octreotide in acromegalic patients. J Clin Endocrinol Metab 2004; 89(2): 638–45

    Article  Google Scholar 

  91. Ross RJ, Leung KC, Maamra M, et al. Binding and functional studies with the growth hormone receptor antagonist, B2036-PEG (pegvisomant), reveal effects of pegylation and evidence that it binds to a receptor dimer. J Clin Endocrinol Metab 2001; 86(4): 1716–23

    Article  PubMed  CAS  Google Scholar 

  92. Thorner MO, Strasburger CJ, Wu Z, et al. Growth hormone (GH) receptor blockade with a PEG-modified GH (B2036-PEG) lowers serum insulin-like growth factor-1 but does not acutely stimulate serum GH. J Clin Endocrinol Metab 1999; 84(6): 2098–103

    Article  PubMed  CAS  Google Scholar 

  93. Muller AF, Leebeek FW, Janssen JA, et al. Acute effect of pegvisomant on cardiovascular risk markers in healthy men: implications for the pathogenesis of atherosclerosis in GH deficiency. J Clin Endocrinol Metab 2001; 86(11): 5165–71

    Article  PubMed  CAS  Google Scholar 

  94. Parkinson C, Drake WM, Roberts ME, et al. A comparison of the effects of pegvisomant and octreotide on glucose, insulin, gastrin, cholecystokinin, and pancreatic polypeptide responses to oral glucose and a standard mixed meal. J Clin Endocrinol Metab 2002; 87(4): 1797–804

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto M. Pereira.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pereira, A.M., Biermasz, N.R., Roelfsema, F. et al. Pharmacologic Therapies for Acromegaly. Mol Diag Ther 4, 43–53 (2005). https://doi.org/10.2165/00024677-200504010-00005

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00024677-200504010-00005

Keywords

Navigation