Skip to main content
Log in

Nitrone-Related Therapeutics

Potential of NXY-059 for the Treatment of Acute Ischaemic Stroke

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

At present, none of the neurodegenerative diseases such as Parkinson’s disease, Alzheimer’s disease and stroke are treatable with compounds that slow or halt neuronal cell death. However, the prototype nitrone radical trap α-phenyl-tert-butylnitrone (PBN) has been shown to be an effective neuroprotective agent in various models of neurodegeneration. Some of these data are briefly reviewed as an introduction to an examination of the effect of the novel nitrone radical trapping agent disodium 2,4-disulfophenyl-N-tert-butylnitrone (NXY-059) in various animal models of stroke. NXY-059 has been shown to be an effective neuroprotective agent in both transient (reperfusion) and permanent focal ischaemia models in rats. In both types of model, NXY-059 has a large window of opportunity, providing effective neuroprotection when given up to 5 hours after the start of the occlusion in transient ischaemia and 4 hours after the start of permanent ischaemia. The compound is also effective in a marmoset permanent ischaemia model when administered up to 4 hours after the start of the occlusion. In this model it has been found to attenuate the problem of spatial neglect and maintain function to the paretic arm. NXY-059 administration also improves motor function in a rat haemorrhagic stroke model and has a neuroprotective effect in a rabbit thromboembolic stroke model. The compound is also well tolerated in stroke patients at plasma levels shown to provide a maximum neuroprotective effect in animal models of stroke.

NXY-059, like PBN, is a nitrone with free radical trapping properties and this may be the basis of its neuroprotective action. However, experiments with PBN and NXY-059 suggest the possibility of other mechanisms being involved and these are also reviewed. Further experiments are required to fully elucidate the mechanism of action of these very effective neuroprotective agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Fig. 2
Table II
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Wood PL, editor. Neuroinflammation: mechanisms and management. Totowa (NJ): Humana Press, 1998

    Google Scholar 

  2. 2000 heart and stroke statistical update. Dallas (TX): American Heart Association, 2002

  3. Grutzendler J, Morris JC. Cholinesterase inhibitors for Alzheimer’s disease. Drugs 2001; 61(1): 41–52

    Article  PubMed  CAS  Google Scholar 

  4. Guttaman M, Kish SJ, Furukawa Y. Current concepts in the diagnosis and management of Parkinson’s disease. CMAJ 2003; 168(3): 293–301

    Google Scholar 

  5. Wardlaw JM, Warlow CP, Counsell C. Systematic review of evidence on thrombolytic therapy for acute ischemic stroke. Lancet 1997; 350(9078): 607–14

    Article  PubMed  CAS  Google Scholar 

  6. Jean WC, Spellman SR, Nussbaum ES, et al. Reperfusion injury after focal cerebral ischemia: the role of inflammation and the therapeutic horizon. Neurosurgery 1998; 43(6): 1382–97

    PubMed  CAS  Google Scholar 

  7. NINDS t-PA Stroke Study Group. Tissue plasminogen activator for acute ischemic stroke. N Engl J Med 1995; 333: 1581–7

    Article  Google Scholar 

  8. Cao W, Carney JM, Duchon A, et al. Oxygen free radical involvement in ischemia and reperfusion injury to brain. Neurosci Lett 1988; 88: 233–8

    Article  PubMed  CAS  Google Scholar 

  9. Floyd RA, Carney JM. Free radical damage to protein and DNA: mechanisms involved and relevant observations on brain undergoing oxidative stress. Ann Neurol 1992; 32: S22–7

    Article  PubMed  CAS  Google Scholar 

  10. Floyd RA. Protective action of nitrone-based free radical traps against oxidative damage to the central nervous system. Adv Pharmacol 1997; 38: 361–78

    Article  PubMed  CAS  Google Scholar 

  11. Hensley K, Carney JM, Stewart CA, et al. Nitrone-based free radical traps as neuroprotective agents in cerebral ischemia and other pathologies. In: Green AR, Cross AJ, editors. Neuroprotective agents and cerebral ischaemia. London: Academic Press Ltd, 1996: 299–317

    Chapter  Google Scholar 

  12. Floyd RA, Stewart CA, Tabatabaie T, et al. Apoptosis in brain cells-role in neurodegeneration. In: Christen Y, Doly M, Droy-Lefaix M-T, editors. Les seminaires ophtalmologiques d’IP-SEN: retine, apoptose et cytokines. Paris: Irvinn, 1997: 17–30

    Google Scholar 

  13. Floyd RA, Hensley K. Nitrone inhibition of age-associated oxidative damage. Ann N Y Acad Sci 2000; 899: 222–37

    Article  PubMed  CAS  Google Scholar 

  14. Green AR, Ashwood T, Odergren T, et al. Nitrones as neuroprotective agents in cerebral ischemia, with particular reference to NXY-059. Pharmacol Ther 2003; 100(3): 195–294

    Article  PubMed  CAS  Google Scholar 

  15. Novelli G, Angiolini P, Cansales G, et al. Anti-shock action of phenyl-t-butyl-nitrone, a spin trapper. In: Novelli GP, Ursini F, editors. Oxygen free radicals in shock. Basel: Karger, 1986: 119–24

    Google Scholar 

  16. Novelli GP, Angiolini P, Tani R, et al. Phenyl-t-butyl-nitrone is active against traumatic shock in rats. Free Radic Res Commun 1986; 1(5): 321–7

    Article  PubMed  CAS  Google Scholar 

  17. Novelli GP, Angiolini P, Tani R. The spin trap phenyl butyl nitrone prevents lethal shock in the rat. In: Poll G, Cheeseman KH, Dianzani MU, et al., editors. Free radicals in liver injury. Oxford: IRL Press Limited, 1986: 225–8

    Google Scholar 

  18. McKechnie K, Furman BL, Parratt JR. Modification by oxygen free radical scavengers of the metabolic and cardiovascular effects of endotoxin infusion in conscious rats. Circ Shock 1986; 19(4): 429–39

    PubMed  CAS  Google Scholar 

  19. Hamburger SA, McCay PB. Endotoxin-induced mortality in rats is reduced by nitrones. Circ Shock 1989; 29(4): 329–34

    PubMed  CAS  Google Scholar 

  20. Pogrebniak HW, Merino MJ, Hahn SM, et al. Spin trap salvage from endotoxemia: the role of cytokine down-regulation. Surgery 1992; 112(2): 130–9

    PubMed  CAS  Google Scholar 

  21. Floyd RA. Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 1990; 4(9): 2587–97

    PubMed  CAS  Google Scholar 

  22. Carney JM, Starke-Reed PE, Oliver CN, et al. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert-butyl-α-phenylnitrone. Proc Natl Acad Sci U S A 1991; 88(9): 3633–6

    Article  PubMed  CAS  Google Scholar 

  23. Carney JM, Floyd RA. Phenyl butyl nitrone compositions, and methods for treatment of oxidative tissue damage. US patent 5 025032. Filed: 10-07-89. 1991, 18

  24. Phillis JW, Clough-Helfman C. Protection from cerebral ischemic injury in gerbils with the spin trap agent N-tert-butyl-α phenylnitrone (PBN). Neurosci Lett 1990; 116(3): 315–9

    Article  PubMed  CAS  Google Scholar 

  25. Cao X, Phillis JW. α-Phenyl-tert-butyl-nitrone reduces cortical infarct and edema in rats subjected to focal ischemia. Brain Res 1994; 644(2): 267–72

    Article  PubMed  CAS  Google Scholar 

  26. Mori H, Arai T, Ishii H, et al. Neuroprotective effects of pterin-6-aldehyde in gerbil global brain ischemia: comparison with those of α-phenyl-N-tert-butyl nitrone. Neurosci Lett 1998; 241(2–3): 99–102

    Article  PubMed  CAS  Google Scholar 

  27. Zhao Q, Pahlmark K, Smith M-I, et al. Delayed treatment with the spin trap a-phenyl-N-tert-butyl nitrone (PBN) reduces infarct size following transient middle cerebral artery occlusion in rats. Acta Physiol Scand 1994; 152(3): 349–50

    Article  PubMed  CAS  Google Scholar 

  28. Pahlmark K, Siesjo BK. Effects of the spin trap-a-phenyl-N-tert-butyl nitrone (PBN) in transient forebrain ischaemia in the rat. Acta Physiol Scand 1996; 157(1): 41–51

    Article  PubMed  CAS  Google Scholar 

  29. Schulz JB, Henshaw DR, Siwek D, et al. Involvement of free radicals in excitotoxicity in vivo. J Neurochem 1995; 64(5): 2239–47

    Article  PubMed  CAS  Google Scholar 

  30. H Q-P, Smith M-L, Li P-A, et al. Necrosis of the substantia nigra, pars reticulate in flurothys-induced status epilepticus is ameliorated by the spin trap α-phenyl-n-tert-butyl nitrone. Free Radie Biol Med 1997; 22(5): 917–22

    Article  Google Scholar 

  31. Floyd RA, Hensley K, Bing G. Evidence for enhanced neuroinflammatory processes in neurodegenerative diseases and the action of nitrones as potential therapeutics. J Neural Transm 2000; (60): 387-414

  32. Leib SL, Kim YS, Chow LL, et al. Reactive oxygen intermediates contribute to necrotic and apoptotic neuronal injury in an infant rat model of bacterial meningitis due to group B streptococci. J Clin Invest 1996; 98(11): 2632–9

    Article  PubMed  CAS  Google Scholar 

  33. Fechter LD, Liu Y, Pearce TA. Cochlear protection from carbon monoxide exposure by free radical blockers in the guinea pig. Toxicol Appl Pharmacol 1997; 142(1): 47–55

    Article  PubMed  CAS  Google Scholar 

  34. Tabatabaie T, Kotake Y, Wallis G, et al. Spin trapping agent phenyl N-tert-butylnitrone protects against the onset of drug-induced insulin-dependent diabetes mellitus. FEBS Lett 1997; 407(2): 148–52

    Article  PubMed  CAS  Google Scholar 

  35. Parman T, Wiley MJ, Wells PG. Free radical-mediated oxidative DNA damage in the mechanism of thalidomide teratogenicity. Nature Med 1999; 5(5): 582–5

    Article  PubMed  CAS  Google Scholar 

  36. Pedraza-Chaverri J, Tapia E, Bobadilla N. Ischemia-reperfusion induced acute renal failure in the rat is ameliorated by the spin-trapping agent α-phenyl-N-tert-butyl nitrone (PBN). Ren Fail 1992; 14(4): 467–71

    Article  PubMed  CAS  Google Scholar 

  37. Saito K, Yoshioka H, Cutler RG. A spin trap, N-tert-butyl-α-phenylnitrone extends the life span of mice. Biosci Biotechnol Biochem 1998; 62(4): 792–4

    Article  PubMed  CAS  Google Scholar 

  38. Edamatsu R, Mori A, Packer L. The spin-trap N-tert-a-phenyl-butylnitrone prolongs the life span of the senescence accelerated mouse. Biochem Biophys Res Commun 1995; 211(3): 847–9

    Article  PubMed  CAS  Google Scholar 

  39. Sack CA, Socci DJ, Crandall BM, et al. Antioxidant treatment with phenyl-α-tert-butyl nitrone (PBN) improves the cognitive performance and survival of aging rats. Neurosci Lett 1996; 205(3): 181–4

    Article  PubMed  CAS  Google Scholar 

  40. Green AR, Cross AJ. Techniques for examining neuroprotective drugs in vivo. Int Rev Neurobiol 1997; 40: 47–68

    Article  PubMed  CAS  Google Scholar 

  41. Mohr JP, Gautier JC, Hier DB. Middle cerebral artery disease. In: Barnett HJM, Mohr JP, Stein BM, et al., editors. Stroke: pathophysiology, diagnosis and management. New York: Churchill Livingstone, 1986: 377–450

    Google Scholar 

  42. Kuroda S, Tsuchidate R, Smith M-L. Neuroprotective effects of a novel nitrone, NXY-059, after transient focal cerebral ischemia in the rat. J Cereb Blood Flow Metab 1999; 19(7): 778–87

    Article  PubMed  CAS  Google Scholar 

  43. Sydserff SG, Borelli AR, Green AR, et al. Effect of NXY-059 on infarct volume after transient or permanent middle cerebral artery occlusion in the rat: studies on dose, plasma concentration and therapeutic time window. Br J Pharmacol 2002; 135(1): 103–12

    Article  PubMed  CAS  Google Scholar 

  44. Cheng M, Cao W, Tuck G, et al. NXY-059: neuroprotective effects in a permanent focal stroke model [abstract]. Cardiovasc Dis 1999; 9Suppl. 1: 119

    Google Scholar 

  45. Zhao A, Cheng M, Maples KR, et al. NXY-059, a novel free radical trapping compound, reduces cortical infarction after permanent focal cerebral ischemia in the rat. Brain Res 2001; 909(1–2): 46–50

    Article  PubMed  CAS  Google Scholar 

  46. Marshall JWB, Duffin KJ, Green AR, et al. NXY-059, a free radical-trapping agent, substantially lessens the functional disability resulting from cerebral ischemia in a primate species. Stroke 2001; 32(1): 190–8

    Article  PubMed  CAS  Google Scholar 

  47. Lees KR, Sharma AK, Ford GA, et al. Tolerability and pharmacokinetics of the nitrone NXY-059 in patients with acute stroke. Stroke 2001; 32(3): 675–80

    Article  PubMed  CAS  Google Scholar 

  48. Marshall JWB, Cummings RM, Bowes LJ, et al. Neuroprotective efficacy of NXY-059 in a primate model of stroke when administered 4 hours post occlusion. Stroke 2003; 34(9): 2228–33

    Article  PubMed  CAS  Google Scholar 

  49. Lees KR, Barer D, Ford GA, et al. Tolerability of NXY-059 at higher target concentrations in patients with acute stroke. Stroke 2003; 34(2): 482–7

    Article  PubMed  CAS  Google Scholar 

  50. Peeling J, Yan H-J, Chen S-G, et al. Protective effects of free radical inhibitors in intracerebral hemorrhage in rat. Brain Res 1998; 795(1-2): 63–70

    Article  PubMed  CAS  Google Scholar 

  51. Peeling J, Del Bigio MR, Corbett D, et al. Efficacy of disodium 4-[(tert-butylimino)methyl] benzene-l,3-disulfonate N-oxide (NXY-059), a free radical trapping agent, in a rat model of hemorrhagic stroke. Neuropharmacology 2001; 40(3): 433–9

    Article  PubMed  CAS  Google Scholar 

  52. Lapchak PQ, Araujo DM, Song D, et al. Neuroprotective effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-l,3-disulfonate N-oxide (generic NXY-059) in rabbit small clot embolic stroke model. Stroke 2002; 33(5): 1411–5

    Article  PubMed  CAS  Google Scholar 

  53. Lapchak PA, Araujo DM, Song D, etal. Effects of the spin trap agent disodium-[(tert-butylimino)methyl]benzene-1,3-disulfonate N-oxide (generic NXY-059) on intracerebral hemorrhage in a rabbit large clot embolic stroke model. Stroke 2002; 33: (6): 1665–70

    Article  PubMed  CAS  Google Scholar 

  54. Edenius C, Strid S, Borgå O, et al. Pharmacokinetics of NXY-059, a nitrone-based free radical trapping agent, in healthy young and elderly subjects. J Stroke Cerebrovasc Dis 2002; 11(1): 34–43

    Article  PubMed  Google Scholar 

  55. Strid S, Borgå O, Edenius C, et al. Pharmacokinetics in renally impaired subjects of NXY-059, a nitrone-based, free-radical trapping agent developed for the treatment of acute stroke. Eur J Clin Pharmacol 2002; 58(6): 409–15

    Article  PubMed  CAS  Google Scholar 

  56. Floyd RA, Carney JM. Nitrone radical traps protect in experimental neurodegenerative diseases. In: Chapman CA, Olanow CW, Jenner P, et al., editors. Neuroprotective approaches to the treatment of Parkinson’s disease and other neurodegenerative disorders. London: Academic Press Limited, 1996: 69–90

    Google Scholar 

  57. Trudeau-Lame ME, Kalgutkar AS, LaFontaine M. Pharmacokinetics and metabolism of the reactive oxygen scavenger α-phenyl-N-tert-butylnitrone in the male Sprague-Dawley rat. Drug Metab Dispos 2003; 31(2): 147–52

    Article  PubMed  CAS  Google Scholar 

  58. Cheng HY, Liu T, Feuerstein G, et al. Distribution of spin-trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radie Biol Med 1993; 14(3): 243–50

    Article  CAS  Google Scholar 

  59. Maples KR, Ma F, Zhang YK. Comparison of the radical trapping ability of PBN, S-PBN and NXY-059. Free Radie Res 2001; 34(4): 417–26

    Article  CAS  Google Scholar 

  60. Matsuo Y, Kihara T, Ikeda M, et al. Role of neutrophils in radical production during ischemia and reperfusion of the rat brain: effect of neutrophil depletion on extracellular ascorbyl radical formation. J Cereb Blood Flow Metab 1995; 15(6): 941–7

    Article  PubMed  CAS  Google Scholar 

  61. Morimoto T, Globus MY, Busto R, et al. Simultaneous measurement of salicylate hydroxylation and glutamate release in the penumbral cortex following transient middle cerebral artery occlusion in rats. J Cereb Blood Flow Metab 1996; 16(1): 92–9

    Article  PubMed  CAS  Google Scholar 

  62. Solenski NJ, Kwan AL, Yanamoto H, et al. Differential hydroxylation of salicylate in core and penumbra regions during focal reversible cerebral ischemia. Stroke 1997; 28(12): 2545–51

    Article  PubMed  CAS  Google Scholar 

  63. Tasdemiroglu E, Christenberry PD, Ardell JL, et al. Effects of antioxidants on the blood-brain barrier and postischemic hyperemia. Acta Neurochir (Wien) 1994; 131(3–4): 302–9

    Article  CAS  Google Scholar 

  64. Biasing IE, Mertsch K, Haseloff RF. Nitronyl nitroxides, a novel group of protective agents against oxidative stress in endothelial cells forming the blood-brain barrier. Neuropharmacology 2002; 43(6): 1006–14

    Article  Google Scholar 

  65. Clark WM, Madden KP, Rothlein R, et al. Reduction of central nervous system ischemic injury by monoclonal antibody to intracellular adhesion molecule. J Neurosurg 1991; 75(4): 623–7

    Article  PubMed  CAS  Google Scholar 

  66. Zhang RL, Chopp M, Jiang N. Anti-cellular adhesion molecule-1 antibody reduces ischemic cell artery occlusion in the Wistar rat. Stroke 1995; 26(8): 1438–43

    Article  PubMed  CAS  Google Scholar 

  67. Jiang N, Chopp M, Chahwala S. Neutrophil inhibitory factor treatment of focal cerebral ischemia in the rat. Brain Res 1998; 788(1–2): 25–34

    Article  PubMed  CAS  Google Scholar 

  68. Prestigiacomo CJ, Kim SC, Connolly ES, et al. CD18-mediated neutrophil recruitment contributes to the pathogenesis of reperfused but not nonreperfused stroke. Stroke 1999; 30(5): 1110–7

    Article  PubMed  CAS  Google Scholar 

  69. Prieto J, Beatty PG, Clark EA, et al. Molecules mediating adhesion of T and B cells, monocytes and granulocytes to vascular endothelial cells. Immunology 1988; 63(4): 631–7

    PubMed  CAS  Google Scholar 

  70. Zhang RL, Chopp M, Chen H, et al. Temporal profile of ischemic tissue damage, neutrophil response, and vascular plugging following permanent and transient (2 h) middle cerebral artery occlusion in the rat. J Neurol Sci 1994; 125(1): 3–10

    Article  PubMed  CAS  Google Scholar 

  71. Chen G, Griffin M, Poyer JL, et al. HPLC procedure for the pharmacokinetic study of the spin trapping agent α-phenyl-N-tert-butyl nitrone (PBN). Free Radie Biol Med 1990; 9(2): 93–8

    Article  CAS  Google Scholar 

  72. Cheng H, Lui T, Feurerstein G, et al. Distribution of spin trapping compounds in rat blood and brain: in vivo microdialysis determination. Free Radie Biol Med 1993; 14(3): 243–50

    Article  CAS  Google Scholar 

  73. Dehouck MP, Cecchelli R, Green AR, et al. In vitro blood-brain barrier permeability and cerebral endothelial cell uptake of the neuroprotective nitrone compound NXY-059 in normoxic, hypoxic and ischemic conditions. Brain Res 2002; 955(1–2): 229–35

    Article  PubMed  CAS  Google Scholar 

  74. Peters O, Back T, Lindauer U, et al. Increased formation of reactive oxygen species after permanent and reversible middle cerebral artery occlusion in the rat. J Cereb Blood Flow Metab 1998; 18(2): 196–205

    Article  PubMed  CAS  Google Scholar 

  75. Floyd RA. Neuroinflammatory processes are important in neurodegenerative diseases: an hypothesis to explain the increased formation of reactive oxygen and nitrogen species as major factors involved in neurodegenerative disease development. Free Radie Biol Med 1999; 26(9–10): 1346–55

    Article  CAS  Google Scholar 

  76. McGeer PL, Akiyama H, Itagaki S, et al. Activation of the classical complement pathway in brain tissue of Alzheimer patients. Neurosci Lett 1989; 107(1–3): 341–6

    Article  PubMed  CAS  Google Scholar 

  77. McGeer PL, McGeer E, Rogers J, et al. Anti-inflammatory drugs and Alzheimer disease [letter]. Lancet 1990; 335(8696): 1037

    Article  PubMed  CAS  Google Scholar 

  78. Aisen PS. Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerontology 1997; 43(1–2): 143–9

    Article  PubMed  CAS  Google Scholar 

  79. McGeer PL, McGeer EG. Inflammation of the brain in Alzheimer’s disease: implications for therapy. J Leukot Biol 1999; 65(4): 409–15

    CAS  Google Scholar 

  80. Hensley K, Floyd RA, Zheng N-Y, et al. p38 Kinase is activated in the Alzheimer’s disease brain. J Neurochem 1999; 72(5): 2053–8

    Article  PubMed  CAS  Google Scholar 

  81. Langsten JW, Forno LS, Tetrud J, et al. Evidence of active nerve cell degeneration in the substantia nigra of humans years after l-methyl-4-phenyl-l,2,3,6-tetrahydropyridine exposure. Ann Neurol 1999; 46(4): 598–605

    Article  Google Scholar 

  82. Walton KM, DiRocco R, Bartlett BA, et al. Activation of p38MAPK in microglia after ischemia. J Neurochem 1998; 70(4): 1764–7

    Article  PubMed  CAS  Google Scholar 

  83. Sugino T, Nozaki K, Takagi Y, et al. Activation of mitogen-activated protein kinases after transient forebrain ischemia in gerbil hippocampus. J Neurosci 2000; 20(12): 4506–14

    PubMed  CAS  Google Scholar 

  84. Kotake Y, Sang H, Wallis GL, et al. Phenyl N-tert-butylnitrone provides protection from endotoxin shock through amplified production of the anti-inflammatory cytokine interleukin-10. Arch Biochem Biophys 1999; 371(1): 129–31

    Article  PubMed  CAS  Google Scholar 

  85. Tabatabaie T, Stewart C, Pye Q, et al. In vivo trapping of nitric oxide in the brain of neonatal rats treated with the HIV-1 envelope protein gp 120: protective effects of α-phenyl-tert-butylnitrone. Biochem Biophys Res Commun 1996; 221(2): 386–90

    Article  PubMed  CAS  Google Scholar 

  86. Iadecola C, Zhang F, Xu X. Inhibition of inducible nitric oxide synthase ameliorates cerebral ischemic damage. Am J Physiol 1995; 268 (1 Pt 2): R286–92

    PubMed  CAS  Google Scholar 

  87. Iadecola C, Zhang F, Casey R, et al. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia. Stroke 1996; 27(8): 1373–80

    Article  PubMed  CAS  Google Scholar 

  88. Stewart CA, Hyam K, Wallis G, et al. Phenyl-N-tert-butylnitrone demonstrates broad-spectrum inhibition of apoptosis-associated gene expression in endotoxin-treated rats. Arch Biochem Biophys 1999; 365(1): 71–4

    Article  PubMed  CAS  Google Scholar 

  89. Yoshimoto T, Kristián T, Hu B, et al. NXY-059 maintains Akt activation and inhibits release of cytochrome C after focal cerebral ischemia. Brain Res 2002; 947(2): 191–8

    Article  PubMed  CAS  Google Scholar 

  90. Yoshimoto T, Kristián T, Hu B, et al. Effect of NXY-059 on secondary mitochondrial dysfunction after transient focal ischemia: comparison with cyclosporin A. Brain Res 2002; 932(1-2): 99–109

    Article  PubMed  CAS  Google Scholar 

  91. Hensley K, Pye QN, Maidt ML, et al. Interaction of α-phenyl-N-tert-butyl nitrone and alternative electron acceptors with complex I indicates a substrate reduction site upstream from the rotenone binding site. J Neurochem 1998; 71(6): 2549–57

    Article  PubMed  CAS  Google Scholar 

  92. Robinson KA, Stewart CA, Pye Q, et al. Basal protein phosphorylation is decreased and phosphatase activity increased by an antioxidant and a free radical trap in primary rat glia. Arch Biochem Biophys 1999; 365(2): 211–5

    Article  PubMed  CAS  Google Scholar 

  93. Suzuki YJ, Forman HJ, Sevanian A. Oxidants as stimulators of signal transduction. Free Radic Biol Med 1997; 22(1–2): 269–85

    Article  PubMed  CAS  Google Scholar 

  94. Garcia-Estrada O, Gonzalez-Perez RE, Gonzalez-Castaneda A, et al. An alpha-lipoic acid-vitamin E mixture reduces post-embolism lipid peroxidation, cerebral infarction, and neurological deficit in rats. Neurosci Res 2003; 47: 219–24

    Article  PubMed  CAS  Google Scholar 

  95. Mori H, Arai T, Ishii H, et al. Neuroprotective effects of pterin-6-aldehyde in gerbil global brain ischemia: comparison with those of α-phenyl-N-tert-butyl nitrone. Neurosci Lett 1998; 241: 99–102

    Article  PubMed  CAS  Google Scholar 

  96. Mackensen GB, Patel M, Sheng H, et al. Neuroprotection from delayed postischemic administration of a metalloporphyrin catalytic antioxidant. J Neurosci 2001; 21: 4582–92

    PubMed  CAS  Google Scholar 

  97. Bowler RP, Sheng H, Enghild JJ, et al. A catalytic antioxidant (AEOL 10150) attenuates expression of inflammatory genes in stroke. Free Radie Biol Med 2002; 33: 1141–52

    Article  CAS  Google Scholar 

  98. Ginsberg MD, Becker DA, Busto R, et al. Stilbazulenyl nitrone, a novel antioxidant, is highly neuroprotective in focal ischemia. Ann Neurol 2003; 54: 330–42

    Article  PubMed  CAS  Google Scholar 

  99. Green AR, Odergren T, Ashwood T. Animal models of stroke: do they have value for discovering neuroprotective agents? Trends Pharmacol Sci 2003; 24(8): 402–8

    Article  CAS  Google Scholar 

  100. Massieu L, Thedinga KH, McVey M, et al. A comparative analysis of the neuroprotective properties of competitive and uncompetitive N-methyl-D-asparate receptor antagonists in vivo: implications for the process of excitotoxic degeneration and its therapy. Neuroscience 1993; 55(4): 883–92

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Results of some of the basic science studies reported herein were funded in part by NIH grant NS35747. NXY-059 is being developed by AstraZeneca under license from Renovis, Inc. (South San Francisco, CA, USA). Dr Floyd is a member of the scientific advisory board of Renovis, Inc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Floyd.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maples, K.R., Green, A.R. & Floyd, R.A. Nitrone-Related Therapeutics. CNS Drugs 18, 1071–1084 (2004). https://doi.org/10.2165/00023210-200418150-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-200418150-00003

Keywords

Navigation