Skip to main content
Log in

Apolipoprotein E and Alzheimer’s Disease

Therapeutic Implications

  • Leading Article
  • Published:
CNS Drugs Aims and scope Submit manuscript

Abstract

Apolipoprotein E (APOE) is a plasma protein that plays an important role in cholesterol transport. The protein exists in 3 different isoforms coded for by alleles ε2, ε3 and ε4. Recent studies have shown that the frequency of the APOE ε4 allele is much greater among individuals with Alzheimer’s disease than age-matched healthy controls [an approximate 4-fold increase (36.6 vs 9.4%) in one recent study]. However, due to an insufficient sensitivity of the APOE ε4 allele in detecting patients with Alzheimer’s disease and the presence of this allele in demented and nondemented individuals, APOE genotyping should not be used alone as a sole diagnostic test for Alzheimer’s disease. An additional recent findings that central muscarinic receptor binding, as revealed by positron emission tomography (PET) and [11C]benztropine, declines with the progression of Alzheimer’s disease regardless of the presence or absence of APOE ε4 allele. These findings suggest that measures of acetylcholine neurotransmission in the living Alzheimer’s disease brain by PET help to visualise altered cholinergic function during the clinical course of Alzheimer’s disease and to identify appropriate individuals who are more likely to respond to emerging cholinergic interventions

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Strittmatter WJ, Saunders AM, Schmechel D, et al. Apolipoprotein E: high-avidity binding to β-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 1993; 90: 1977–81

    Article  PubMed  CAS  Google Scholar 

  2. Saunders AM, Strittmatter WJ, Schmechel D, et al. Association of apolipoprotein E allele ε4 with late-onset familial and sporadic Alzheimer’s disease. Neurology 1993; 43: 1467–72

    Article  PubMed  CAS  Google Scholar 

  3. Muramatsu T, Higuchi S, Arai H, et al. Apolipoprotein E ε4 allele distribution in alcoholic dementia and in Alzheimer’s disease in Japan. Ann Neurol 1994; 36: 797–9

    Article  PubMed  CAS  Google Scholar 

  4. Roses AD. Apolipoprotein E genotyping in the differential diagnosis, not prediction, of Alzheimer’s disease. Ann Neurol 1996; 38: 6–14

    Article  Google Scholar 

  5. Arai H, Higuchi S, Sasaki H. Apolipoprotein E genotyping and cerebrospinal fluid tau protein: implication for the clinical diagnosis of Alzheimer’s disease. Gerontology 1997; 43 Suppl. 1: 2–10

    Article  PubMed  CAS  Google Scholar 

  6. Mayeux R, Saunders AM, Shea S, et al. Utility of the apolipoprotein genotype in the diagnosis of Alzheimer’s disease. N Engl J Med 1998; 338: 506–11

    Article  PubMed  CAS  Google Scholar 

  7. Saunders AM, Hulette C, Welsh-Bohmer KA, et al. Specificity, sensitivity, and predictive value of apolipoprotein E genotyping for sporadic Alzheimer’s disease. Lancet 1996; 348: 90–3

    Article  PubMed  CAS  Google Scholar 

  8. Welsh-Bohmer KA, Gearing M, Saunders AM, et al. Apolipoprotein E genotype in a neuropathological series from the Consortium to Establish a Registry for Alzheimer’s Disease. Ann Neurol 1997; 42: 319–25

    Article  PubMed  CAS  Google Scholar 

  9. American College of Medical Genetics/American Society of Human Genetics Working Group on ApoE and Alzheimer Disease. Statement on use of apolipoprotein E testing for Alzheimer disease. JAMA 1995; 274: 1627–9

    Article  Google Scholar 

  10. The Ronald and Nancy Reagan Research Institute of the Alzheimer’s Association and the National Institute on Aging Working Group. Consensus report of the working group on: ‘molecular and biochemical markers of Alzheimer’s disease’. Neurobiol Aging 1998; 19: 109–16

    Article  Google Scholar 

  11. Hyman BT, Gomez-Isla T, Briggs M, et al. Apolipoprotein E and cognitive change in an elderly population. Ann Neurol 1996; 40: 55–66

    Article  PubMed  CAS  Google Scholar 

  12. Arai H, Higuchi S, Muramatsu T, et al. Apolipoprotein E gene in diffuse Lewy body disease with or without co-existing Alzheimer’s disease [letter]. Lancet 1994; 244: 1307

    Article  Google Scholar 

  13. Itabashi S, Arai H, Higuchi S, et al. APOE ε4 allele in Alzheimer’s and non-Alzheimer’s dementias. Lancet 1996; 348: 960–1

    Article  PubMed  CAS  Google Scholar 

  14. Corder EH, Saunders AM, Strittmatter WJ, et al. Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 1993; 261: 921–3

    Article  PubMed  CAS  Google Scholar 

  15. Poirier J, Davinon J, Bouthillier D, et al. Apolipoprotein E polymorphism and Alzheimer’s disease. Lancet 1993; 342: 697–9

    Article  PubMed  CAS  Google Scholar 

  16. Farrer LA, Cupples LA, Haines JL, et al. Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. JAMA 1997; 278: 1349–56

    Article  PubMed  CAS  Google Scholar 

  17. Gaykema RPA, Gaal G, Traber J, et al. The basal forebrain cholinergic system: efferent and afferent connectivity and long-term effects of lesions. Acta Psychiatr Scand 1991; 366 Suppl. : 14–26

    Article  CAS  Google Scholar 

  18. Collerton D. Cholinergic function and intellectual decline in Alzheimer’s disease [review]. Neuroscience 1986; 19: 1–28

    Article  PubMed  CAS  Google Scholar 

  19. Whitehouse PJ, Price DL, Clark AW, et al. Alzheimer disease: evidence for selective loss of cholinergic neurons in the nucleus basalis. Ann Neurol 1981; 10: 122–6

    Article  PubMed  CAS  Google Scholar 

  20. Bird TD, Stranahan S, Sumi SM, et al. Alzheimer’s disease: choline acetyltransferase activity in brain tissue from clinical and pathological subgroups. Ann Neurol 1983; 4: 284–93

    Article  Google Scholar 

  21. Perry EK. The cholinergic hypothesis — ten years on [review]. Br Med Bull 1986; 42: 63–9

    PubMed  CAS  Google Scholar 

  22. Bierer LM, Haroutunian V, Gabriel S, et al. Neurochemical correlates of dementia severity in Alzheimer’s disease: relative importance of the cholinergic deficits. J Neurochem 1995; 64: 749–60

    Article  PubMed  CAS  Google Scholar 

  23. Flynn DD, Mash DL. Characterization of L-[3H]nicotine binding in human cerebral cortex: comparison between Alzheimer’s disease and the normal. J Neurochem 1986; 47: 1948–54

    Article  PubMed  CAS  Google Scholar 

  24. Perry EK, Perry RH, Smith CJ, et al. Cholinergic receptors in cognitive disorders. Can J Neurol Sci 1986; 13: 51–7

    Google Scholar 

  25. Perry EK, Morris CM, Court JA, et al. Alteration in nicotine binding sites in Parkinson’s disease, Lewy body dementia and Alzheimer’s disease: possible index of early neuropathology. Neuroscience 1995; 64: 385–95

    Article  PubMed  CAS  Google Scholar 

  26. Schröder H, Giacobini E, Struble RG, et al. Nicotinic cholinoceptive neurons in the frontal cortex are reduced in Alzheimer’s disease. Neurobiol Aging 1991; 12: 259–62

    Article  PubMed  Google Scholar 

  27. Shimohama S, Taniguchi T, Fujiwara H, et al. Changes in nicotinic and muscarinic cholinergic receptors in Alzheimer type dementia. J Neurochem 1986; 46: 288–93

    Article  PubMed  CAS  Google Scholar 

  28. Whitehouse PJ, Martino AM, Antuono PG, et al. Nicotinic acetylcholine binding sites in Alzheimer’s disease. Brain Res 1986; 371: 146–51

    Article  PubMed  CAS  Google Scholar 

  29. Whitehouse PJ, Martino AM, Wagster MV, et al. Reductions in [3H]nicotinic acetylcholine binding in Alzheimer’s disease and Parkinson’s disease: an autoradiographic study. Neurology 1988; 38: 720–3

    Article  PubMed  CAS  Google Scholar 

  30. Mash DC, Flynn DD, Potter LT. Loss of M2 muscarine receptors in the cerebral cortex in Alzheimer’s disease and experimental cholinergic denervation. Science 1985; 228: 1115–7

    Article  PubMed  CAS  Google Scholar 

  31. Araujo DM, Lapchak PA, Robitaille Y, et al. Differential alteration of various cholinergic markers in cortical and subcortical regions of human brain in Alzheimer’s disease. J Neurochem 1988; 50: 1914–23

    Article  PubMed  CAS  Google Scholar 

  32. Quirion R, Aubert I, Lapchak PA, et al. Muscarinic receptor subtypes in human neurodegenerative disorders: focus on Alzheimer’s disease. Trends Pharmacol Sci 1989; 10 Suppl. : 80–4

    Google Scholar 

  33. Rinne JO, Lönnberg P, Marjamäki P, et al. Brain muscarinic receptors subtypes are differently affected in Alzheimer’s disease and Parkinson’s disease. Brain Res 1989; 483: 402–6

    Article  PubMed  CAS  Google Scholar 

  34. Palacios JM, Cortés R, Probst A, et al. Mapping of subtypes of muscarinic receptors in the human brain with receptor autoradiographic techniques. Trends Pharmacol Sci 1989; 7 Suppl. : 56–60

    Google Scholar 

  35. Kuhl DE, Minoshima S, Fessier JA, et al. In vivo mapping of cholinergic terminals in normal aging, Alzheimer’s disease, and Parkinson’s disease. Ann Neurol 1996; 40: 399–410

    Article  PubMed  CAS  Google Scholar 

  36. Nordberg A. Clinical studies in Alzheimer patients with positron emission tomography [review]. Behav Brain Res 1993; 57: 215–24

    Article  PubMed  CAS  Google Scholar 

  37. Holman BL, Gibson RE, Hill TC, et al. Muscarinic acetylcholine receptors in Alzheimer’s disease. In vivo imaging with iodine 123-labeled 3-quinuclidinyl-4-iodobenzilate and emission tomography. JAMA 1985; 254: 3063–6

    Article  PubMed  CAS  Google Scholar 

  38. Weinberger DR, Gibson R, Coppola R, et al. The distribution of cerebral muscarinic acetylcholine receptors in vivo in patients with dementia. A controlled study with 123IQNB and single photon emission computed tomography. Arch Neurol 1991; 48: 169–76

    Article  PubMed  CAS  Google Scholar 

  39. Patlak CS, Blasberg RC, Fenstermacher JD. Graphical evaluation of blood-to-brain transfer constants from multiple-time uptake data. J Cereb Blood Flow Metab 1983; 3: 1–7

    Article  PubMed  CAS  Google Scholar 

  40. Friston KJ, Holmes AP, Worsley KJ, et al. Statistical parametric maps in functional imaging: a general linear approach. Hum Brain Mapp 1995; 2: 189–210

    Article  Google Scholar 

  41. Farlow M, Gracon SI, Hershey LA, et al. A controlled trial of tacrine in Alzheimer’s disease. The Tacrine Study Group. JAMA 1992; 268: 2523–9

    Article  PubMed  CAS  Google Scholar 

  42. Knapp MJ, Knopman DS, Solomon PR, et al. A 30-week randomized controlled trial of high-dose tacrine in patients with Alzheimer’s disease. The Tacrine Study Group. JAMA 1994; 271: 985–91

    Article  PubMed  CAS  Google Scholar 

  43. Rogers SL, Farlow MR, Doody RS, et al. A 24-week, double-blind, placebo-controlled trial of donepezil in patients with Alzheimer’s disease. Neurology 1998; 50: 136–45

    Article  PubMed  CAS  Google Scholar 

  44. Cummings JL, Cyrus PA, Bieber F, et al. Metrifonate treatment of the cognitive deficits of Alzheimer’s disease. Metrifonate Study Group. Neurology 1998; 50: 1214–21

    Article  PubMed  CAS  Google Scholar 

  45. Growdon JH, Locascio JJ, Corkin S, et al. Apolipoprotein E genotype does not influence rates of cognitive decline in Alzheimer’s disease. Neurology 1996; 47: 444–8

    Article  PubMed  CAS  Google Scholar 

  46. Basun H, Grut M, Winblad B, et al. Apolipoprotein ε4 allele and disease progression in patients with late-onset Alzheimer’s disease. Neurosci Lett 1995; 183: 32–4

    Article  PubMed  CAS  Google Scholar 

  47. Frisoni GB, Govoni S, Geroldi C, et al. Gene dose of the epsilon 4 allele of apolipoprotein E and disease progression in sporadic late-onset Alzheimer’s disease. Ann Neurol 1995; 37: 596–604

    Article  PubMed  CAS  Google Scholar 

  48. Stern Y, Brandt J, Albert M, et al. The absence of an apolipoprotein ε4 allele is associated with a more aggressive form of Alzheimer’s disease. Ann Neurol 1997; 41: 615–20

    Article  PubMed  CAS  Google Scholar 

  49. Higuchi M, Arai H, Nakagawa T, et al. Regional cerebral glucose utilization is modulated by the dosage of apolipoprotein E type 4 allele and α1-antichymotrypsin type A allele in Alzheimer’s disease. Neuroreport 1997; 8: 2639–44

    Article  PubMed  CAS  Google Scholar 

  50. Lehtovirta M, Soininen H, Laakso MP, et al. SPECT and MRI analysis in Alzheimer’s disease: relation to apolipoprotein E epsilon 4 allele. J Neurol Neurosurg Psychiatry 1996; 60: 644–9

    Article  PubMed  CAS  Google Scholar 

  51. Corder EH, Jelic V, Basun H, et al. No difference in cerebral glucose metabolism in patients with Alzheimer disease and differing apolipoprotein E genotypes. Arch Neurol 1997; 54: 273–7

    Article  PubMed  CAS  Google Scholar 

  52. Poirier J. Apolipoprotein E in animal models of CNS injury and in Alzheimer’s disease. Trends Neurosci 1994; 12: 525–30

    Article  Google Scholar 

  53. Poirier J, Delisle M-C, Quirion R, et al. Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proc Natl Acad Sci U S A 1995; 92: 12260–4

    Article  PubMed  CAS  Google Scholar 

  54. Soininen H, Kosunen O, Helisalmi S, et al. A severe loss of choline acetyltransferase in the frontal cortex of Alzheimer patients carrying apolipoprotein ε4 allele. Neurosci Lett 1995; 187: 79–82

    Article  PubMed  CAS  Google Scholar 

  55. Farlow MR, Lahiri DK, Poirier J, et al. Treatment outcome of tacrine therapy depends on apolipoprotein genotype and gender of the subjects with Alzheimer’s disease. Neurology 1998; 50: 669–77

    Article  PubMed  CAS  Google Scholar 

  56. Riekkinen M, Soininen H, Riekkinen P Sr, et al. Tetrahydroaminoacridine improves the recency effect in Alzheimer’s disease. Neuroscience 1998; 83: 471–9

    Article  PubMed  CAS  Google Scholar 

  57. Bodick NC, Offen WW, Shannon HE, et al. The selective muscarinic agonist xanomeline improves both the cognitive deficits and behavioral symptoms of Alzheimer’s disease. Alzheimer Dis Assoc Disord 1997; 11 Suppl. 4: S16–22

    PubMed  CAS  Google Scholar 

  58. Richard F, Helbecque N, Neuman E, et al. APOE genotyping and response to drug treatment in Alzheimer’s disease [letter]. Lancet 1997; 349: 539

    Article  PubMed  CAS  Google Scholar 

  59. Cacabelos R, Rodriguez B, Carrera C, et al. Behavioral changes associated with different apolipoprotein E genotypes in dementia. Alzheimer Dis Assoc Disord 1997; 11 Suppl. 4: S27–S34

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroyuki Arai.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Higuchi, M., Arai, H., Okamura, N. et al. Apolipoprotein E and Alzheimer’s Disease. Mol Diag Ther 11, 411–420 (1999). https://doi.org/10.2165/00023210-199911060-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00023210-199911060-00001

Keywords

Navigation