Skip to main content
Log in

Angiotensin Antagonism in Coronary Artery Disease

Results after Coronary Revascularisation

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

The renin-angiotensin system (RAS) is an ancient and complex cascade of homeostatic reactions aimed at regulating primordial functions that ensure organ perfusion through the control of blood pressure and the regulation of renal-cardiac activity. However, the over-expression or lack of compensatory mechanisms of any of its components may initiate detrimental effects that potentially lead to disease, a balance that makes the RAS a sequence with a labile physiological equilibrium and with a strong harm potential. These characteristics of the RAS in general, and of the angiotensin converting enzyme (ACE) in particular, make it not only an important complex for the regulation of blood pressure and neuropeptide metabolism, but also a fascinating subject of study from a biochemical, evolutionary and genetic point of view.

Pharmacological interventions that influence the RAS by inhibiting the ACE or the angiotensin II type 1 receptor (AT1R) have demonstrated sustained efficacy in reducing the incidence of cardiovascular events and, consequently, vascular mortality in several clinical situations.

ACE inhibitors and angiotensin II receptor antagonists (ARAs) reduce blood pressure and have cardio- and vasculoprotective effects. Anti-atherosclerotic effects have also been attributed to these drugs. For these reasons, it has been hypothesised that RAS inhibitors could also reduce the recurrence of ischaemic events after myocardial revascularisation procedures, namely coronary artery by-pass graft surgery (CABG) or percutaneous coronary interventions (PCI).

Information available on the effect of ACE inhibitors and ARAs in patients with coronary artery disease (CAD) previously treated with revascularisation techniques indicates a substantial reduction of mortality and infarction in these patients. However, data regarding the progression of CAD, restenosis or reocclusion of vascular conduits of the coronary circulation after myocardial revascularisation are inconsistent.

In most studies, the administration of ACE inhibitors neither improved the ischaemic threshold nor reduced the need for new revascularisation procedures. On the contrary, ACE inhibitors have been associated with higher restenosis rates after PCI in some retrospective series. Conversely, a single, exploratory randomised trial demonstrated that the selective AT1R antagonist valsartan significantly reduced stent restenosis after PCI. In patients undergoing CABG, ACE inhibitors did not reduce the risk of graft degeneration or occlusion. Studies that evaluated a possible anti-atherosclerotic effect of ACE inhibitors (including some large randomised trials) have generally been negative.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Table I
Table II
Fig. 2
Fig. 3
Fig. 4
Table III
Fig. 5
Fig. 6
Table IV
Table V

Similar content being viewed by others

References

  1. Dzau VJ. Mechanism of protective effects of ACE inhibition on coronary artery disease. Eur Heart J 1998; 19 Suppl. J: J2–6

    PubMed  CAS  Google Scholar 

  2. Vanuhotte PM. Endothelial dysfunction and inhibition of converting enzyme. Eur Heart J 1998; 19 Suppl. J: J7–15

    Google Scholar 

  3. Ferrari R. Effect of ACE inhibition on myocardial ischemia. Eur Heart J 1998; 19 Suppl. J: J30–5

    PubMed  CAS  Google Scholar 

  4. Niu T, Chen X, Xu X. Angiotensin converting enzyme gene insertion/deletion polymorphism and cardiovascular disease. Drugs 2002; 62(7): 977–93

    PubMed  CAS  Google Scholar 

  5. Lonn E M, Yusuf S, Jha P, et al. Emerging role of angiotensin-converting enzyme inhibitors in cardiac and vascular protection. Circulation 1994; 90: 2056–69

    PubMed  CAS  Google Scholar 

  6. Dzau VJ, Sasamura H, Hein L. Heterogeneity of angiotensin synthetic pathways and receptor subtypes: physiological and pharmacological implications. J Hypertens 1993; 11 Suppl. 3: S13–22

    CAS  Google Scholar 

  7. Urata K, Kinoshita A, Misono K, et al. Identification of a highly specific chymase as the major angiotensin-forming enzyme in the human heart. J Biol Chem 1990; 265: 22348–82

    PubMed  CAS  Google Scholar 

  8. Linz W, Wiemer G, Gohlke P, et al. Contribution of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev 1995; 47: 25–49

    PubMed  CAS  Google Scholar 

  9. Nussberger J, Cugno M, Amstutz C, et al. Plasma bradykinin in angio-oedema. Lancet 1998; 351: 1693–7

    PubMed  CAS  Google Scholar 

  10. Sadoshima J, Izumo S. Molecular characterization of angiotensin II-induced cardiac hypertrophy and hyperplasia of cardiac fibroblasts: critical role of AT1 receptor subtype. Circ Res 1993; 73: 413–23

    PubMed  CAS  Google Scholar 

  11. Schunkert H, Sadoshima J, Cornelius T, et al. Angiotensin-II-induced growth responses in isolated hearts: evidence for load-independent induction of cardiac protein synthesis by angiotensin II. Circ Res 1995; 76: 489–97

    PubMed  CAS  Google Scholar 

  12. Asano K, Dutcher DL, Port JD, et al. Selective downregulation of the angiotensin II AT1 receptor subtype in failing human myocardium. Circulation 1997; 95: 1193–2000

    PubMed  CAS  Google Scholar 

  13. Haywood GA, Gullestad L, Katsuya T, et al. AT1 and AT2 angiotensin receptor gene expression in human heart failure. Circulation 1997; 95: 1201–6

    PubMed  CAS  Google Scholar 

  14. Nakajima M, Hutchinson HG, Fujinaga M, et al. The angiotensin II type 2 (AT2) receptor antagonizes the growth effects of the AT1 receptor: gain-of-function study using gene transfer. Proc Natl Acad Sci U S A 1995; 92: 10663–7

    PubMed  CAS  Google Scholar 

  15. Stoll M, Steckelings U, Paul M, et al. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 651–7

    PubMed  CAS  Google Scholar 

  16. Bartunek J, Weinberg EO, Tajima M, et al. Angiotensin II type 2 receptor blockade amplifies the early signals of cardiac growth response to angiotensin II in hypertrophied hearts. Circulation 1999; 99: 22–5

    PubMed  CAS  Google Scholar 

  17. Burnier M. Angiotensin II type 1 receptor blockers. Circulation 2001; 103: 904–12

    PubMed  CAS  Google Scholar 

  18. The CONSENSUS Trial Study Group. Effect of enalapril on mortality in severe congestive heart failure. N Engl J Med 1987; 316: 1429–35

    Google Scholar 

  19. SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fraction and congestive heart failure. N Engl J Med 1991; 325: 293–302

    Google Scholar 

  20. Garg R, Yusuf S,for the collaborative group on ACE inhibitor trials. Overview of randomized trials of angiotensin-converting enzyme inhibitors on mortality and morbidity in patients with heart failure. JAMA 1995; 273: 1450–6

    PubMed  CAS  Google Scholar 

  21. The SOLVD Investigators. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med 1992; 327: 685–91

    Google Scholar 

  22. Pfeffer MA, Braunwald E, Moyè L. Effect of captopril on mortality and morbidity in patients with left ventricular dysfunction after myocardial infarction: the SAVE Investigators. N Engl J Med 1992; 327: 669–77

    PubMed  CAS  Google Scholar 

  23. The Acute Ramipril Efficacy (AIRE) Study Investigators. Effect of ramipril on mortality and morbidity of survivors of acute myocardial infarction with clinical evidence of heart failure. Lancet 1993; 342: 821–8

    Google Scholar 

  24. Torp-Pedersen C, Kober L, for the TRACE study group. Effect of ACE inhibitor trandolapril on life expectancy of patients with reduced left-ventricular function after myocardial infarction. Lancet 1999; 354: 9–12

    PubMed  CAS  Google Scholar 

  25. Pitt B, O’Neill B, Feldman R, et al. The Quinalapril Ischemic Event Trial (QUIET): evaluation of chronic ACE inhibitor therapy in patients with ischemic heart disease and preserved left ventricular function. Am J Cardiol 2001; 87: 1058–63

    PubMed  CAS  Google Scholar 

  26. Yusuf S, Sleiht P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients: the Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000; 342: 145–53

    PubMed  CAS  Google Scholar 

  27. Heart Outcomes Prevention Evaluation (HOPE) Study Investigators. Effects of ramipril on cardiovascular and microvascular outcomes in people with diabetes mellitus; results of the HOPE study and MICRO-HOPE substudy. Lancet 2000; 355: 253–9

    Google Scholar 

  28. Francis GS. ACE inhibition in cardiovascular disease. N Engl J Med 2000; 342: 201–2

    PubMed  CAS  Google Scholar 

  29. The European trial on Reduction Of cardiac events with Per-indopril on stable coronary Artery disease Investigators. Efficacy of perindopril in reduction of cardiovascular events among patients with stable coronary artery disease: randomised, double-blind, placebo controlled, multicentre trial (the EUROPA study). Lancet 2003; 362: 782–7

    Google Scholar 

  30. Lee VC, Rhew DC, Dylan M, et al. Meta-analysis: angiotensin-receptor blockers in chronic heart failure and high-risk acute myocardial infarction. Ann Intern Med 2004; 141: 693–704

    PubMed  CAS  Google Scholar 

  31. Dahlof B, Devereux R, Kjieldsen S, et al. Cardiovascular morbidity and mortality in the Losartan Intervention For Endpoint reduction in hypertension study (LIFE): a randomised trial against atenolol. Lancet 2002; 359: 995–1003

    PubMed  CAS  Google Scholar 

  32. Julius S, Kjieldsen SE, Brunner H, et al. VALUE trial: long-term blood pressure trends in 13,449 patients with hypertension and high cardiovascular risk. Am J Hyper 2003; 16: 544–8

    Google Scholar 

  33. Pitt B, Poole-Wilson PA, Segal R, et al. Effect of losartan compared with captopril on mortality in patients with symptomatic heart failure: randomised trial. The Losartan Heart Failure Survival Study ELITE II. Lancet 2000; 355: 1582–7

    CAS  Google Scholar 

  34. Cohn JN, Tognoni G, for the Valsartan Heart Failure Trial Investigators. A randomized trial of the angiotensin-receptor blocker valsartan in chronic heart failure. N Engl J Med 2001; 345: 1667–75

    PubMed  CAS  Google Scholar 

  35. Yusuf S, Pfeffer MA, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and preserved left-ventricular ejection fraction: the CHARM Preserved Trial. Lancet 2003; 362: 777–81

    PubMed  CAS  Google Scholar 

  36. Granger C, McMurray J, Held P, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function intolerant to angiotensin-converting enzyme inhibitors: the CHARM-Alternative trial. Lancet 2003; 362: 772–6

    PubMed  CAS  Google Scholar 

  37. McMurray J, Ostergren J, Swedberg K, et al. Effects of candesartan in patients with chronic heart failure and reduced left-ventricular systolic function taking angiotensin-converting enzyme inhibitors: the CHARM-Added trial. Lancet 2003; 362: 767–71

    PubMed  CAS  Google Scholar 

  38. Pfeffer MA, McMurray JJV, Velazquez EJ, et al. Valsartan, captopril, or both in myocardial infarction complicated by heart failure, left ventricular dysfunction, or both: the Valsartan in Acute Myocardial Infarction Trial Investigators. N Engl J Med 2003; 349: 1893–906

    PubMed  CAS  Google Scholar 

  39. Dickstein K, Kjekshus J, OPTIMAAL Steering committee of the OPTIMAAL Study Group. Effects of losartan and captopril on mortality and morbidity in high-risk patients after acute myocardial infarction: the OPTIMAAL randomised trial. Optimal trial in myocardial infarction with angiotensin antagonist losartan. Lancet 2002; 360: 752–60

    CAS  Google Scholar 

  40. Keane WF, Brenner BM, de Zeeuw D, et al. The risk of developing end-stage renal disease in patients with type 2 diabetes and nephropathy: the RENAAL study. Kidney Int 2003; 63: 1499–507

    PubMed  Google Scholar 

  41. Ohishi M, Ueda M, Rakugi H, et al. Upregulation of angiotensin-converting enzyme during the healing process after injury at the site of percutaneous transluminal coronary angioplasty in humans. Circulation 1997; 96: 3328–37

    PubMed  CAS  Google Scholar 

  42. Schieffer B, Schieffer E, Hilfiker-Kleiner D, et al. Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: potential implications for inflammation and plaque instability. Circulation 2000; 101: 1372–8

    PubMed  CAS  Google Scholar 

  43. Radomski MW, Palmer RMJ, Moncada S, et al. L-arginine-nitric oxide pathway present in human platelets regulates aggregation. Proc Natl Acad Sci U S A 1990; 87: 5193–7

    PubMed  CAS  Google Scholar 

  44. Kubes P, Suzuki M, Granger DN. Nitric oxide: an endogenous modulator of leukocyte adhesion. Proc Natl Acad Sci U S A 1991; 88: 4651–5

    PubMed  CAS  Google Scholar 

  45. Bonithon-Kopp C, Ducimetiere P, Touboul PJ, et al. Plasma angiotensin-converting enzyme activity and carotid wall thickening. Circulation 1994; 89: 952–4

    PubMed  CAS  Google Scholar 

  46. Ribichini F, Steffenino G, Dellavalle A, et al. Plasma activity and insertion/deletion polymorphism of angiotensin I-converting enzyme: a major risk factor and a marker of risk for coronary stent restenosis. Circulation 1998; 97: 147–54

    PubMed  CAS  Google Scholar 

  47. Rakugi H, Kim DK, Krieger JE, et al. Induction of angiotensin converting enzyme in the neointima after vascular injury: possible role in restenosis. J Clin Invest 1994; 93: 339–46

    PubMed  CAS  Google Scholar 

  48. Powell JS, Clozel JP, Muller RKM, et al. Inhibitors of angiotensin-converting enzyme prevent myointimal proliferation after vascular injury. Science 1989; 245: 186–8

    PubMed  CAS  Google Scholar 

  49. Lonn E, Yusuf S, Dzavik V, et al. Effects of ramipril and vitamin E on atherosclerosis: the study to evaluate carotid ultrasound changes in patients treated with ramipril and vitamin E (SECURE). Circulation 2001; 103: 919–25

    PubMed  CAS  Google Scholar 

  50. Oosterga M, Voors A, Pinto Y, et al. Effects of quinalapril on clinical outcomes after coronary artery by-pass grafting (the QUO VADIS study). Am J Cardiol 2001; 87: 542–6

    PubMed  CAS  Google Scholar 

  51. Kjoller-Hansen L, Steffensen R, Grande P. The Angiotensin-converting enzyme inhibition Post REvascularization Study (APRES). J Am Coll Cardiol 2000; 35: 991–8

    Google Scholar 

  52. Cashin-Hemphill L, Holmvang G, Chan RC, et al. Angiotensin-converting enzyme inhibition as antiatherosclerotic therapy: no answer yet. The QUIET Investigators. Am J Cardiol 1999; 83: 43–7

    CAS  Google Scholar 

  53. Pepine CJ, Rouleau JL, Annis K, et al. Effects of angiotensin-converting enzyme inhibition on transient ischemia: the Quinalapril Anti-ischemia and Symptoms of Angina Reduction (QUASAR) trial. J Am Coll Cardiol 2003; 42: 2049–59

    PubMed  CAS  Google Scholar 

  54. MacMahon S, Sharpe N, Gamble G, et al. Randomised, placebo-controlled trial of the angiotensin-converting enzyme inhibitor, ramipril, in patients with coronary or other occlusive arterial disease: the PART-2 Collaborative Research Group. J Am Coll Cardiol 2000; 36: 438–43

    PubMed  CAS  Google Scholar 

  55. Teo KK, Burton JR, Buller CE, et al. Long-term effects of cholesterol lowering and angiotensin-converting enzyme inhibition on coronary atherosclerosis: the Simvastatin/Enalapril Coronary Atherosclerosis Trial (SCAT). The SCAT Investigators. Circulation 2000; 102: 1748–54

    CAS  Google Scholar 

  56. Heart Protection Study Collaborative Group. MRC/BHF Heart Protection Study of cholesterol lowering with simvastatin in 20536 high-risk individuals: a randomized placebo-controlled trial. Lancet 2002; 360: 7–22

    Google Scholar 

  57. Cannon CP, Braunwald E, McCabe CH, et al. Intensive versus moderate lipid lowering with statins after acute coronary syndromes. N Engl J Med 2004; 350: 1495–504

    PubMed  CAS  Google Scholar 

  58. Serruys PW, de Feyter P, Macaya C, et al. Fluvastatin for prevention of cardiac events following successful first percutaneous coronary intervention: a randomized controlled trial. JAMA 2002; 287: 3215–22

    PubMed  CAS  Google Scholar 

  59. Nissen SE, Tuzcu EM, Schoenhagen P, et al. Effect of intensive compared with moderate lipid-lowering therapy on progression of coronary atherosclerosis: a randomized controlled trial. JAMA 2004; 291: 1071–80

    PubMed  CAS  Google Scholar 

  60. Borland JA, Chester AH, Crabbe S, et al. Differential action of angiotensin II and activity of angiotensin-converting enzyme in human bypass graft. J Thorac Cardiovasc Surg 1998; 116: 206–12

    PubMed  CAS  Google Scholar 

  61. Yang Z, Oemar BS, Carrel T, et al. Different proliferative properties of smooth muscle cells of human arterial and venous bypass vessels. Circulation 1998; 97: 181–7

    PubMed  CAS  Google Scholar 

  62. The Writing Committee for the Prevention of Events with Angiotensin Converting Enzyme inhibition (PEACE) Trial. Angiotensin-converting-enzyme inhibition in stable coronary artery disease: the PEACE Trial Investigators. N Engl J Med 2004; 351: 2058–68

    Google Scholar 

  63. Massie BM, Teerlink JR. Interaction between aspirin and angiotensin-converting enzyme inhibitors: real or imagined. Am J Med 2000; 109: 431–3

    PubMed  CAS  Google Scholar 

  64. Cleland JGF, Hendersson E, McLenachan J, et al. Effects of captopril, an angiotensin-converting enzyme inhibitor in patients with angina pectoris and heart failure. J Am Coll Cardiol 1991; 17: 733–9

    PubMed  CAS  Google Scholar 

  65. Gibbs JSR, Crean PA, Mockus P, et al. The variable effects of angiotensin converting enzyme inhibition on myocardial ischaemia in chronic stable angina. Br Heart J 1989; 62: 112–7

    PubMed  Google Scholar 

  66. Steffensen R, Grande P, Kyst Madsen J, et al. Short-term effects of captopril on exercise tolerance in patients with chronic stable angina pectoris and normal left ventricular function. Cardiology 1995; 86: 445–50

    PubMed  CAS  Google Scholar 

  67. Vogt M, Motz W, Strauer BE. ACE-inhibitors in coronary artery disease? Basic Res Cardiol 1993; 88 Suppl. 1: 43–6

    PubMed  Google Scholar 

  68. Nguyen KN, Aursen I, Kjekshus J. Interaction between enalapril and aspirin on mortality after acute myocardial infarction: subgroup analysis of the Cooperative New Scandinavian Enalapril Survival Study II (CONSENSUS II). Am J Cardiol 1997; 79: 115–9

    PubMed  CAS  Google Scholar 

  69. Al-Khadra AS, Salem DN, Rand WM, et al. Antiplatelet agents and survival: a cohort analysis from the Studies Of Left Ventricular Dysfunction (SOLVD) trial. J Am Coll Cardiol 1998; 31: 419–25

    PubMed  CAS  Google Scholar 

  70. Vane JR. Inhibition of prostaglandin synthesis as a mechanism of action for aspirin-like drugs. Nature 1971; 231: 232–5

    CAS  Google Scholar 

  71. Hall D, Zeitler H, Rudolph W. Counteraction of the vasodilator effects of enalapril by aspirin in severe heart failure. J Am Coll Cardiol 1992; 20: 1549–55

    PubMed  CAS  Google Scholar 

  72. Spaulding C, Charbonnie B, Cohen-Solal A. Acute hemodynamic interaction of aspirin and ticlopidine with enalapril. Circulation 1998; 98: 757–65

    PubMed  CAS  Google Scholar 

  73. Leor J, Reicher-Reiss H, Goldbourt U, et al. Aspirin and mortality in patients treated with angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 1999; 33: 1920–5

    PubMed  CAS  Google Scholar 

  74. Teo KK, Yusuf S, Pfeffer M, et al. Effects of long-term treatment with angiotensin-converting-enzyme inhibitors in the presence or absence of aspirin: a systematic review. Lancet 2002; 360: 1037–43

    PubMed  CAS  Google Scholar 

  75. Multicenter European Research trial with Cilazapril after Angioplasty to prevent Transluminal coronary Obstruction and Restenosis (MERCATOR) Study Group. Does the new angiotensin converting enzyme inhibitor cilazapril prevent restenosis after percutaneous transluminal coronary angioplasty? Results of the MERCATOR study: a multicenter, randomised, double blind placebo-controlled trial. Circulation 1992; 86: 100–10

    Google Scholar 

  76. Faxon DP,the Multicenter American Research trial with Cilazapril after Angioplasty to Prevent Transluminal Coronary Obstruction and Restenosis (MARCATOR) Study Group. Effect of high dose angiotensin-converting enzyme inhibition on restenosis: final results of the MARCATOR study, a multicenter, double-blind, placebo-controlled trial of cilazapril. J Am Coll Cardiol 1995; 25: 362–9

    Google Scholar 

  77. Prat RE, Dzau VJ. Pharmacological strategies to prevent restenosis: lessons learned from blockade of the renin-angiotensin system. Circulation 1996; 93: 848–52

    Google Scholar 

  78. Dzau VJ, Re R. Tissue angiotensin system in cardiovascular medicine: a paradigm shift. Circulation 1994; 89: 493–8

    PubMed  CAS  Google Scholar 

  79. Currier JW, Faxon DP. Restenosis after percutaneous transluminal coronary angioplasty: have we been aiming at the wrong target? J Am Coll Cardiol 1995; 25: 516–20

    PubMed  CAS  Google Scholar 

  80. Faxon DP. Systemic drug therapy for restenosis: ‘deja vu all over again’. Circulation 2002; 106: 2296–8

    PubMed  Google Scholar 

  81. Mintz GS, Popma JJ, Hong MK, et al. Intravascular ultrasound to discern device-specific effects and mechanism of restenosis. Am J Cardiol 1996; 78 Suppl. 3A: 18–22

    PubMed  CAS  Google Scholar 

  82. Hoffmann R, Mintz GS, Dussaillant GR, et al. Patterns and mechanism of in-stent restenosis. a serial intravascular ultrasound study. Circulation 1996; 94: 1247–54

    CAS  Google Scholar 

  83. Mintz GS, Popma JJ, Pichard A, et al. Arterial remodeling after coronary angioplasty: a serial intravascular ultrasound study. Circulation 1996; 94: 35–43

    PubMed  CAS  Google Scholar 

  84. Painter JA, Mintz GS, Wong SC, et al. Serial intravascular ultrasound studies fail to show evidence of chronic Palmaz Schatz stent recoil. Am J Cardiol 1995; 75: 398–400

    PubMed  CAS  Google Scholar 

  85. Farb A, Sangiorgi G, Carter A, et al. Pathology of acute and chronic coronary stenting in humans. Circulation 1999; 99: 44–52

    PubMed  CAS  Google Scholar 

  86. Farb A, Weber DK, Kolodgie FD, et al. Morphological predictors of restenosis after coronary stenting in humans. Circulation 2002; 105: 2974–80

    PubMed  Google Scholar 

  87. Farb A, Burke AP, Kolodgie FD, et al. Pathological mechanisms of fatal late coronary stent thrombosis in humans. Circulation 2003; 108: 1701–6

    PubMed  Google Scholar 

  88. Ribichini F. Current perspective: in-stent restenosis. Ital Heart J 2001: 2; 728–735

    PubMed  CAS  Google Scholar 

  89. Ferrero V, Ribichini F, Matullo G, et al. Estrogen Receptor alpha polymorphisms and angiographic outcome after coronary artery stenting. Arterioscler Thromb Vasc Biol 2003; 23: 2223–8

    PubMed  CAS  Google Scholar 

  90. Ribichini F, Pugno F, Ferrero V, et al. Angiotensin-converting enzyme tissue activity in the diffuse in-stent restenotic plaque. Circulation 2000; 101: e33–5

    PubMed  CAS  Google Scholar 

  91. Ribichini F, Matullo G, Piazza A, et al. Relationship between plasma ACE activity and the proliferative healing process in coronary vessel injury after coronary stenting. Atherosclerosis 2000; 152: 261–3

    PubMed  CAS  Google Scholar 

  92. Ribichini F, Ferrero V, Matullo G, et al. Association study of the i/d polymorphism and plasma angiotensin-converting enzyme (ACE) as risk factors for stent restenosis. Clin Sci 2004; 107(4): 381–9

    PubMed  CAS  Google Scholar 

  93. Hahn AW, Jonas U, Buhler FR, et al. Activation of human peripheral monocytes by angiotensin II. FEBS Lett 1994; 347: 178–80

    PubMed  CAS  Google Scholar 

  94. Naftilan AJ, Ryan TJ, Pratt RE, et al. Location and differential regulation of angiotensinogen mRNA expression in the vessel wall. J Clin Invest 1991; 87: 1300–11

    PubMed  CAS  Google Scholar 

  95. Rakugi H, Jacob HJ, Krieger JE, et al. Vascular injury induces angiotensinogen gene expression in the media and the neointima. Circulation 1993; 87: 283–90

    PubMed  CAS  Google Scholar 

  96. Ribichini F, Pugno F, Ferrero V, et al. Histologie and immunocytochemical analysis of de novo coronary atherosclerotic plaques of diabetic and non-diabetic patients [abstract]. Circulation 2000; 102: 3117

    Google Scholar 

  97. Ribichini F, Pugno F, Ferrero V, et al. Angiotensin-converting enzyme immunoreactivity is associated with macrophage-infiltration and cell proliferation in ‘de novo’ coronary plaques [abstract]. Eur Heart J 2002; 23: P1230

    Google Scholar 

  98. Depres C, Ribichini F, Wijns W. Pathophysiological insights from studies on retrieved tissue. Semin Interv Cardiol 2000; 5: 175–84

    Google Scholar 

  99. Hoshida S, Kato J, Nishino M, et al. Increased angiotensin-converting enzyme activity in coronary artery specimens from patients with acute coronary syndrome. Circulation 2001; 103: 630–3

    PubMed  CAS  Google Scholar 

  100. Diet F, Pratt RE, Berry GJ, et al. Increased accumulation of tissue ACE in human atherosclerotic coronary artery disease. Circulation 1996; 94: 2756–69

    PubMed  CAS  Google Scholar 

  101. Yu CM, Tipoe GL, Wing-Hon La K, et al. Effects of combination of angiotensin-converting enzyme inhibitor and angiotensin receptor antagonist on inflammatory cellular infiltration and myocardial interstitial fibrosis after acute myocardial infarction. J Am Coll Cardiol 2001; 38: 1207–15

    PubMed  CAS  Google Scholar 

  102. Soejima H, Ogawa H, Yasue H, et al. Angiotensin-converting enzyme inhibition reduces monocyte chemoattractant protein-1 and tissue factor levels in patients with myocardial infarction. J Am Coll Cardiol 1999; 34: 983–8

    PubMed  CAS  Google Scholar 

  103. Neri Serneri GG, Boddi M, Modesti PA, et al. Cardiac angiotensin II participates in coronary microvessel inflammation of unstable angina and strengthens the immunomediated component. Circ Res 2004; 94: 1630–7

    PubMed  CAS  Google Scholar 

  104. Laporte S, Perodin J, Bourgeoise R, et al. What can angiotensin antagonists do that converting-enzyme inhibition can’t: the case of post-angioplastic restenosis. Can J Physiol Pharmacol 1996; 74: 867–77

    PubMed  Google Scholar 

  105. O’Keefe JH, Wetzel M, Moe RR, et al. Should an angiotensin-converting enzyme inhibitor be standard therapy for patients with atherosclerotic disease? J Am Coll Cardiol 2001; 37: 1–8

    PubMed  Google Scholar 

  106. Wilensky RL. Angiotensin-receptor blockers: revival of the systemic prevention of restenosis? Cardiovasc Drug Ther 2003; 17: 63–73

    CAS  Google Scholar 

  107. Meurice T, Bauters C, Hermant X, et al. Effect of ACE inhibitors on angiographic restenosis after coronary stenting (PARIS): a randomised, double-blind, placebo-controlled trial. Lancet 2001; 357: 1321–4

    PubMed  CAS  Google Scholar 

  108. Rigat B, Hubert C, Alhenc-Gelas F, et al. An insertion/deletion polymorphism in the angiotensin I-converting enzyme gene accounting for half the variance of serum enzyme levels. J Clin Invest 1990; 86: 1343–6

    PubMed  CAS  Google Scholar 

  109. Cambien F, Poirier O, Lecerf L, et al. Deletion polymorphism in the gene for angiotensin-converting enzyme is a potent risk factor for myocardial infarction. Nature 1992; 359: 641–4

    PubMed  CAS  Google Scholar 

  110. Raynolds MV, Bristow MR, Bush EW, et al. Angiotensin-converting enzyme DD genotype in patients with ischaemic or idiopathic dilated cardiomyopathy. Lancet 1993; 342: 1073–5

    PubMed  CAS  Google Scholar 

  111. Montgomery HE, Clarkson P, Dollery CM, et al. Association of angiotensin-converting enzyme gene I/D polymorphism with change in left ventricular mass in response to physical training. Circulation 1997; 96: 741–7

    PubMed  CAS  Google Scholar 

  112. Okumura K, Sone T, Kondo J, et al. Quinalapril prevents restenosis after coronary stenting in patients with angiotensin-converting enzyme D allele. Circ J 2002; 66: 311–6

    PubMed  CAS  Google Scholar 

  113. Kondo J, Sone T, Tsuboi H, et al. Effect of quinapril on intimai hyperplasia after coronary stenting as assessed by intravascular ultrasound. Am J Cardiol 2001; 87: 443–5

    PubMed  CAS  Google Scholar 

  114. Toyofyuku M, Imazu K, Yamamoto H, et al. Influence of angiotensinogen M253T gene polymorphism and an angiotensin converting enzyme inhibitor on restenosis after percutaneous coronary intervention. Atherosclerosis 2002; 160: 339–44

    PubMed  CAS  Google Scholar 

  115. Okimoto T, Imazu M, Hayashi Y, et al. Quinalapril with high affinity to tissue angiotensin-converting enzyme reduces restenosis after percutaneous transcatheter coronary intervention. Cardiovasc Drugs Ther 2001; 15: 323–9

    PubMed  CAS  Google Scholar 

  116. Jorgensen E, Kelbaek H, Helqvist S, et al. Predictors of coronary in-stent restenosis: importance of angiotensin-converting enzyme gene polymorphism and treatment with angiotensin-converting enzyme inhibitors. J Am Coll Cardiol 2001; 38: 1434–9

    PubMed  CAS  Google Scholar 

  117. Ribichini F, Wijns W, Ferrero V, et al. Effect of angiotensin-converting enzyme inhibition on restenosis after coronary stenting. Am J Cardiol 2003; 91: 154–8

    PubMed  CAS  Google Scholar 

  118. Koch W, Mehilli J, von Beckerath N, et al. Angiotensin I-converting enzyme inhibitors and restenosis after coronary artery stenting in patients with the DD genotype of the ACE gene. J Am Coll Cardiol 2003; 41: 1957–61

    PubMed  CAS  Google Scholar 

  119. Ellis SG, Lincoff AM, Whitlow PL, et al. Evidence that angiotensin-converting enzyme inhibitor use diminishes the need for coronary revascularization after stenting. Am J Cardiol 2002; 89: 937–40

    PubMed  CAS  Google Scholar 

  120. Kastrati A, Mehilli J, Dirschinger J, et al.Restenosis after coronary placement of various stent types. Am J Cardiol 2001; 87: 34–9

    PubMed  CAS  Google Scholar 

  121. Miyauchi K, Kawai S, Okada R, et al. Limitations of angiotensin-converting enzyme inhibitor in restenosis of a deep arterial injury model. Circ J 1998; 62: 53–60

    CAS  Google Scholar 

  122. Kalinowski M, Tepe G, Schieber A, et al. Local administration of ramiprilat is less effective than oral ramipril in preventing restenosis after balloon angioplasty in an animal model. J Vasc Interv Radiol 1999; 10(10): 1397–404

    PubMed  CAS  Google Scholar 

  123. Li J, Wanchun C. Benazepril on tissue angiotensin-converting enzyme and cellular proliferation in restenosis after experimental angioplasty. J Cardiovasc Pharm 1997; 30: 790–7

    CAS  Google Scholar 

  124. Huckle WR, Drag MD, Acker WR, et al. Effects of subtype-selective and balanced angiotensin II receptor antagonists in a porcine coronary artery model of vascular restenosis. Circulation 1996; 93: 1009–19

    PubMed  CAS  Google Scholar 

  125. Virmani R, Kolodgie F, Farb A, et al. Drug eluting stents: are human and animal studies comparable? Heart 2003; 89: 133–8

    PubMed  CAS  Google Scholar 

  126. Morice MC, Serruys PW, Sousa JE, et al. A randomized comparison of a sirolimus-eluting stent with a standard stent for coronary revascularization. N Engl J Med 2002; 346: 1773–80

    PubMed  CAS  Google Scholar 

  127. Moses JW, Leon MB, Popma JJ, et al. Sirolimus-eluting stents versus standard stents in patients with stenosis in native coronary arteries: the SIRIUS Investigators. N Engl J Med 2003; 349: 1315–23

    PubMed  CAS  Google Scholar 

  128. Schofer J, Schlüter M, Gershilck AH, et al. Sirolimus-eluting stents for the treatment of patients with long atherosclerotic lesions in small coronary arteries: a double-blind, randomised controlled trial (E-SIRIUS). The E-SIRIUS Investigators. Lancet 2003; 362: 1093–9

    CAS  Google Scholar 

  129. Stone GW, Ellis SG, Cox DA, et al. A polymer-based, paclitaxel-eluting stent in patients with coronary artery disease: the TAXUS-IV Investigators. N Engl J Med 2004; 350: 221–31

    PubMed  CAS  Google Scholar 

  130. Schampaert E, Cohen EA, Schlüter M, et al. The Canadian study of the sirolimus-eluting stent in the treatment of patients with long de-novo lesions in small native coronary arteries (C-SIRIUS). J Am Coll Cardiol 2004; 43: 1110–5

    PubMed  CAS  Google Scholar 

  131. Abizaid A, Albertal M, Costa MA, et al. First human experience with the 17-beta-estradio-eluting stent: the Estrogen And Stents To Eliminate Restenosis (EASTER) trial. J Am Coll Cardiol 2004; 43: 1118–21

    PubMed  CAS  Google Scholar 

  132. Van Beusekom HMM, Ferrero V, Harteveld MS, et al. Quinaprilat coated stents do not attenuate intimai thickening in a porcine coronary model [abstract]. Eur Heart J 2003; 23: 3575

    Google Scholar 

  133. Peters S, Gotting B, Trummel M, et al. Valsartan for prevention of restenosis after stenting of type B2/C lesions: the VAL-PREST trial. J Invasive Cardiol 2001; 13: 93–7

    PubMed  CAS  Google Scholar 

  134. Zhuo JL, Mendelsohn FA, Ohishi M. Perindopril alters vascular angiotensin-converting enzyme, AT(1) receptor, and nitric oxide synthase expression in patients with coronary heart disease. Hypertension 2002; 39: 634–8

    PubMed  CAS  Google Scholar 

  135. Ribichini F, Ferrero V, Wijns W, et al. Can ACE inhibitors promote detrimental vascular effects after percutaneous injury? Hypertension 2002; 40: e5–6

    PubMed  CAS  Google Scholar 

  136. Hall JM. Bradykinin receptors: pharmacological properties and biological roles. Pharmacol Ther 1992; 56: 131–90

    PubMed  CAS  Google Scholar 

  137. Braun A, Kammerer S, Maier E, et al. Polymorphisms in the gene for the human B2-bradykinin receptor: new tools in assessing a genetic risk for bradykinin-associated diseases. Immunopharmacology 1996; 33: 32–5

    PubMed  CAS  Google Scholar 

  138. Dhamrait SS, Payne JR, Li P, et al. Variation in bradykinin receptor genes increases the cardiovascular risk associated with hypertension. Eur Heart J 2003; 24: 1672–80

    PubMed  CAS  Google Scholar 

  139. Hallberg P, Lind L, Michaelsson K, et al. B2 bradykinin (B2BKR) polymorphism and change in left ventricular mass in response to antihypertensive treatment: results from the Swedish Irbesartan Left Ventricular Hypertrophy Investigation versus Atenolol (SILVHIA) trial. J Hypertens 2003; 21: 621–4

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Professor Gianni Bussolati, from the Dipartimento di Scienze Biomediche, Università di Torino, Torino, Italy, for his valuable contribution in performing the immunochemical studies.

The authors have no conflict of interest regarding the opinions expressed in this manuscript and did not receive grants or financial support from industry or from any other source to prepare this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio Ribichini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ribichini, F., Ferrero, V., Rognoni, A. et al. Angiotensin Antagonism in Coronary Artery Disease. Drugs 65, 1073–1096 (2005). https://doi.org/10.2165/00003495-200565080-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-200565080-00004

Keywords

Navigation