Skip to main content
Log in

General Anaesthesia

Practical Recommendations and Recent Advances

  • Disease Management
  • Published:
Drugs Aims and scope Submit manuscript

Abstract

General anaesthesia has become, thanks to recently developed drugs, monitoring devices and delivery systems, a very well tolerated method of making the great surgical opportunities of the last few years available to all ages of patient. With a balanced and rational use of drug profiles, general anaesthesia allows even frail and very ill patients a margin of tolerability inconceivable just a few years ago. For the vast majority of patients, the risk from the general anaesthetic technique is so small it can be considered negligible.

However, the majority of general anaesthetic drugs are both highly potent and very toxic, with many of the volatile agents still having a therapeutic ratio of about 4: 1. The anaesthetic staff have to continually upgrade their skills and knowledge to ensure that harm does not result. It is, however, reasonable to offer some practical guidelines from the current literature on when to choose a general anaesthetic technique, either alone or with a regional local anaesthetic method, and when to avoid loss of consciousness.

The complications expected from the use of general anaesthesia are reviewed, and the basis for these complications investigated. The currently available drugs and their place in anaesthetic practice are also assessed.

Recent developments in the area of total intravenous anaesthesia and monitoring for potential awareness using bispectral analysis suggest that this technique should now be included in the choice of anaesthetic. Recommendations are made on both the selection of the technique, and the appropriate agents for a given group of patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Sear JW. Practical treatment recommendations for the safe use of anaesthetics. Drugs 1992; 43: 54–68

    Article  PubMed  CAS  Google Scholar 

  2. Dodds C, Allison J. Postoperative cognitive deficit in the elderly surgical patient. Br J Anaesth 1998; 81: 449–62

    Article  PubMed  CAS  Google Scholar 

  3. Dartigues JF, Commenges D, Letenneur D, et al. Cognitive predictors of dementia in elderly community residents. Neuroepidemiology 1997; 16: 29–39

    Article  PubMed  CAS  Google Scholar 

  4. Moller JT, Cluitmans P, Houx P, et al. Prolonged postoperative cognitive dysfunction in the elderly. Lancet 1998; 351: 857–61

    Article  PubMed  CAS  Google Scholar 

  5. Bovill JG. Mechanisms of actions of anaesthetic drugs. Curr Opin Anaesthesiol 1997; 10: 261–6

    Article  Google Scholar 

  6. Serfas KD, Bose D, Patel L, et al. Comparison of the segregation of the RYR1 C1840T mutation with segregation of the caffeine/halothane contracture test results for malignant hyperthermia susceptibility in a large Manitoba Mennonite family. Anesthesiology 1996; 84: 322–9

    Article  PubMed  CAS  Google Scholar 

  7. Touloukian J, Kaplowitz N. Halothane-induced hepatic disease. Semin Liver Dis 1981; 1(2): 134–42

    Article  PubMed  CAS  Google Scholar 

  8. Bottiger LE, Dalen E, Hallen B. Halothane-induced liver damage: an analysis of the material reported to the Swedish Adverse Drug Reaction Committee, 1966–1973. Acta Anaesthesiol Scand 1976; 20(1): 40–6

    Article  PubMed  CAS  Google Scholar 

  9. Kenna JG, Satoh H, Christ DD, et al. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 1988; 245(3): 1103–9

    PubMed  CAS  Google Scholar 

  10. Beemer GH, Bjorksten AR, Dawson PT, et al. Determinants of the reversal time of competitive neuromuscular block by anticholinesterases. Br J Anaesth 1991; 66: 469–75

    Article  PubMed  CAS  Google Scholar 

  11. Bedford PD. Adverse effects of anaesthesia on old people. Lancet 1955; II: 259–63

    Article  Google Scholar 

  12. Mclaren AD, Stockwell MC, Reid VT. Anaesthetic techniques for surgical correction of fractured neck of femur: a comparative study of spinal and general anaesthesia in the elderly. Anaesthesia 1978; 33: 10–4

    Article  PubMed  CAS  Google Scholar 

  13. McKenzie PJ, Wishart HY, Smith G. Long-term outcome after repair of fractured neck of femur: comparison of subarachnoid and general anaesthesia. Br J Anaesth 1984; 56(6): 581–5

    Article  PubMed  CAS  Google Scholar 

  14. Palmberg S, Hirsjarvi E. Mortality in geriatric surgery: with special reference to the type of surgery, anaesthesia, complicating diseases, and prophylaxis of thrombosis. Gerontology 1979; 25(2): 103–12

    Article  PubMed  CAS  Google Scholar 

  15. Morgan B, Cooper GM. Mother’s demand for general anaesthesia for caesarean section indicates anaesthetic inadequacy. Int J Obstet Anaesth 1996: 5: 64–7

    Article  CAS  Google Scholar 

  16. Tsai SK, Lee C, Kwan W-F, et al. Recovery of cognitive functions after anaesthesia with desflurane or isoflurane and nitrous oxide. Br J Anaesth 1992; 69: 255–8

    Article  PubMed  CAS  Google Scholar 

  17. Weiskopf RB, Eger EI, Daniel M, et al. Cardiovascular stimulation induced by rapid increases in desflurane concentration in humans results from activation of tracheopulmonary and systemic receptors. Anaesthesiology 1995; 83: 1173–8

    Article  CAS  Google Scholar 

  18. Coriat P. Circulatory effects of desflurane. Anaesthesia 1995; 50: S18–21

    Article  Google Scholar 

  19. Frink Jr EJ, Nogami WM, Morgan SE, et al. High carboxyhemoglobin concentrations occur in swine during desflurane anesthesia in the presence of partially dried carbon dioxide absorbents [see comments]. Anesthesiology 1988; 68: 213–6

    Article  Google Scholar 

  20. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism: intrarenal fluoride production as a possible mechanism of methoxyflurane nephrotoxicity. Anesthesiology 1995; 82: 689–99

    Article  PubMed  CAS  Google Scholar 

  21. Levine MF, Sarner J, Lerman J, et al. Plasma inorganic fluoride concentrations after sevoflurane anesthesia in children. Anesthesiology 1996; 84: 348–53

    Article  PubMed  CAS  Google Scholar 

  22. Bito H, Ikeda K. Long-duration, low-flow sevoflurane anesthesia using two carbon dioxide absorbents: quantification of degradation products in the circuit. Anesthesiology 1994; 81: 340–5

    Article  PubMed  CAS  Google Scholar 

  23. Royston BD, Nunn JF, Weinbren HK, et al. Rate of inactivation of human and rodent hepatic methionine synthase by nitrous oxide. Anesthesiology 1988; 68: 213–16

    Article  PubMed  CAS  Google Scholar 

  24. Hughes MA, Glass PSA, Jacobs JR. Context-sensitive half-time in multicompartment pharmacokinetic models for intravenous anesthetic drugs. Anesthesiology 1992; 76: 334–41

    Article  PubMed  CAS  Google Scholar 

  25. Dundee JW, Robinson FP, Collum JSC, et al. Sensitivity to propofol in the elderly. Anaesthesia 1986; 41: 482–5

    Article  PubMed  CAS  Google Scholar 

  26. Claeys MA, Gepts G, Camu F. Haemodynamic changes during anaesthesia induced and maintained with propofol. Br J Anaesth 1988; 60: 3–9

    Article  PubMed  CAS  Google Scholar 

  27. Blouin RT, Seifert HA, Babenco HD, et al. Propofol depresses the hypoxic ventilatory response during conscious sedation and isohypercapnia. Anesthesiology 1993; 79: 1177–82

    Article  PubMed  CAS  Google Scholar 

  28. Goodman NW, Black AMS, Carter JA. Some ventilatory effects of propofol as sole anaesthetic agent. Br J Anaesth 1987; 59: 1497–503

    Article  PubMed  CAS  Google Scholar 

  29. Dyck JB, Maze M, Haack C, et al. The pharmacokinetics and hemodynamic effects of intravenous and intramuscular dexmedetomidine hydrochloride in adult human volunteers. Anesthesiology 1993; 78: 813–20

    Article  PubMed  CAS  Google Scholar 

  30. Hayashi Y, Maze M. Alpha2 adrenoceptor agonists and anesthesia. Br J Anaesth 1993; 71: 108–18

    Article  PubMed  CAS  Google Scholar 

  31. Geisslinger G, Hering W, Thomann P, et al. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 1995; 70: 666–71

    Article  Google Scholar 

  32. Sear JW, Jewkes C, Wanigasekera V. Haemodynamic effects during induction, laryngoscopy and intubation with eltanolone (5β-pregnanolone) or propofol. J Clin Anesth 1995; 7: 126–31

    Article  PubMed  CAS  Google Scholar 

  33. Kaukinen S, Pyykko K. The potentiation of halothane anesthesia by clonidine. Acta Anaesthesiol Scand 1979; 23: 107–11

    Article  PubMed  CAS  Google Scholar 

  34. Scheinin H, Jaakola ML, Sjovall S, et al. Intramuscular dexmedetomidine as premedication for general anesthesia: a comparative multicenter study. Anesthesiology 1993; 78: 1065–75

    Article  PubMed  CAS  Google Scholar 

  35. Welch RM, Brown A, Ravitch J, et al. The in-vitro degradation of cisatracurium, the R, cis-R’-isomer of atracurium, in human and rat plasma. J Clin Pharmacol Ther 1995; 58: 132–42

    Article  CAS  Google Scholar 

  36. Egan TD, Lemmens HJM, Fiset P, et al. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology 1993; 79: 881–92

    Article  PubMed  CAS  Google Scholar 

  37. Data on file, Glaxo Wellcome. Interaction of remifentanil and propofol during intubation and skin incision/arthroscope insertion for outpatient orthopedic surgery [protocol USA-226], 1995

  38. Roberts FL, Dixon J, Lewis GT, et al. Induction and maintenance of propofol anaesthesia: a manual infusion scheme. Anaesthesia 1988; 43 Suppl.: 14–7

    Article  PubMed  Google Scholar 

  39. Coetzee JF, Glen JB, Wium CA, et al. Pharmocokinetic model selection for target controlled infusions of propofol; assessment of three parameter sets. Anaesthesiology 1995; 82: 1328–45

    Article  CAS  Google Scholar 

  40. Russell D, Wilkes MP, Hunter SC, et al. Manual compared with target-controlled infusion of propofol. Br J Anaesth 1995; 75: 562–6

    Article  PubMed  CAS  Google Scholar 

  41. Varvel JR, Donoho DL, Shafer SL. Measuring the predictive performance of computer-controlled infusion pumps. J Pharmacokinet Biopharm 1992 Feb; 20(1): 63–94

    PubMed  CAS  Google Scholar 

  42. Weiskopf RB, Eger II EL Comparing the costs of inhaled anesthetics. Anesthesiology 1993; 79: 1413–8

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris Dodds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dodds, C. General Anaesthesia. Drugs 58, 453–467 (1999). https://doi.org/10.2165/00003495-199958030-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199958030-00006

Keywords

Navigation