Skip to main content
Log in

Choosing the Right Lipid-Regulating Agent

A Guide to Selection

  • Review Article
  • Published:
Drugs Aims and scope Submit manuscript

Summary

If dietary therapy and other lifestyle changes do not adequately normalise blood lipid levels, lipid-regulating drugs, as single-drug or combination-drug therapy, may be prescribed to supplement lifestyle changes. Evaluation of the individual patient’s health and risk status, determination of the dyslipidaemia, definition of treatment goals and a clear understanding of the mechanisms and effects of lipid-regulating agents are necessary for optimisation of treatment. Although all the available lipid-regulating agents lower low density lipoprotein (LDL) cholesterol, the agents with the greatest LDL cholesterol-lowering effect are the bile acid sequestrants, which up-regulate the LDL receptor by the decrease in intrahepatic cholesterol caused by the interruption of enterohepatic circulation of cholesterol-rich bile acids, and the HMG-CoA reductase inhibitors, which partially inhibit HMG-CoA reductase. The agents with the greatest triglyceride-lowering effect are nicotinic acid, which decreases the production of very low density lipoprotein (VLDL) cholesterol and reduces the availability of free fatty acids in the circulation, and the fibric acid derivatives, which increase lipoprotein lipase activity and may also decrease the release of free fatty acids. Although the safety profile of the available lipid-regulating drugs has been established, patients should be monitored for potential adverse effects and interactions with concomitantly administered agents. When used correctly, lipid-regulating drug therapy is highly effective in the treatment of a variety of dyslipidaemias.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. National Cholesterol Education Program. Second report of the Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel II). Circulation 1994; 89: 1329–445

    Google Scholar 

  2. Farmer JA, Gotto Jr AM. Currently available hypolipidaemic drugs and future therapeutic developments. Baillieres Clin Endocrinol Metab 1995; 9: 825–47

    Article  PubMed  CAS  Google Scholar 

  3. Grundy SM. HMG-CoA reductase inhibitors for treatment of hypercholesterolemia. N Engl J Med 1988; 319: 24–33

    Article  PubMed  CAS  Google Scholar 

  4. Kostner GM, Gavish D, Leopold B, et al. HMG CoA reductase inhibitors lower LDL cholesterol without reducing Lp(a) levels. Circulation 1989; 80: 1313–9

    Article  PubMed  CAS  Google Scholar 

  5. Tsuda Y, Satoh K, Takahashi T, et al. Effect of medication with pravastatin sodium on hemorheological parameters in patients with hyperlipoproteinemia. Int Angiol 1993; 12: 360–4

    PubMed  CAS  Google Scholar 

  6. Ernst E. Plasma fibrinogen—an independent cardiovascular risk factor. J Intern Med 1990; 227: 365–72

    Article  PubMed  CAS  Google Scholar 

  7. Isaacsohn JL, Setaro JF, Nicholas C, et al. Effects of lovastatin therapy on plasminogen activator inhibitor-1 antigen levels. Am J Cardiol 1994; 74: 735–7

    Article  PubMed  CAS  Google Scholar 

  8. Wada H, Mori Y, Kaneko T, et al. Elevated plasma levels of vascular endothelial cell markers in patients with hypercholesterolemia. Am J Hematol 1993; 44: 112–6

    Article  PubMed  CAS  Google Scholar 

  9. Juhan-Vague I, Alessi MC. Plasminogen activator inhibitor 1 and atherothrombosis. Thromb Haemost 1993; 70: 138–43

    PubMed  CAS  Google Scholar 

  10. Scandinavian Simvastatin Survival Study Group. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 1994; 344: 1383–9

    Google Scholar 

  11. Shepherd J, Cobbe SM, Ford I, et al. Prevention of coronary heart disease with pravastatin in men with hypercholesterolemia. N Engl J Med 1995; 333: 1301–7

    Article  PubMed  CAS  Google Scholar 

  12. Byington RP, Jukema JW, Salonen JT, et al. Reduction in cardiovascular events during pravastatin therapy: pooled analysis of clinical events of the pravastatin atherosclerosis intervention program. Circulation 1995; 92: 2419–25

    Article  PubMed  CAS  Google Scholar 

  13. Kirby TJ. Cataracts produced by triparanol. Trans Am Ophthalmol Soc 1967; 65: 493–543

    Google Scholar 

  14. Tobert JA, Shear CL, Chremos AN, et al. Clinical experience with lovastatin. Am J Cardiol 1990; 65: 23F–6F

    Article  PubMed  CAS  Google Scholar 

  15. Pierce LR, Wysowski DK, Gross TP. Myopathy and rhabdomyolysis associated with lovastatin-gemfibrozil combination therapy. JAMA 1990; 264: 71–5

    Article  PubMed  CAS  Google Scholar 

  16. Spach DH, Bauwens JE, Clark CD, et al. Rhabdomyolysis associated with lovastatin and erythromycin use. West J Med 1991; 154: 213–6

    PubMed  CAS  Google Scholar 

  17. Corpier CL, Jones PH, Suki WN, et al. Rhabdomyolysis and renal injury with lovastatin use: report of two cases in cardiac transplant recipients. JAMA 1988; 260: 239–41

    Article  PubMed  CAS  Google Scholar 

  18. Ast M, Frishman WH. Bile acid sequestrants. J Clin Pharmacol 1990; 30: 99–106

    PubMed  CAS  Google Scholar 

  19. Moore RB, Crane CA, Frantz Jr ID. Effect of cholestyramine on the fecal excretion of intravenously administered cholesterol-4-14C and its degradation products in a hypercholesterolemic patient. J Clin Invest 1968; 47: 1664–71

    Article  PubMed  CAS  Google Scholar 

  20. Lipid Research Clinics Program. The Lipid Research Clinics Coronary Primary Prevention Trial results: I. Reduction in incidence of coronary heart disease. JAMA 1984; 251: 351–64

    Article  Google Scholar 

  21. Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med 1990; 323: 1289–98

    Article  PubMed  CAS  Google Scholar 

  22. Gallo DG, Bailey KR, Sheffner AL. The interaction between cholestyramine and drugs. Proc Soc Exp Biol Med 1965; 120: 60–5

    PubMed  CAS  Google Scholar 

  23. Bazzano G, Bazzano GS. Digitalis intoxication: treatment with a new steroid-binding resin. JAMA 1972; 220: 828–30

    Article  PubMed  CAS  Google Scholar 

  24. Northcutt RC, Stiel JN, Hollifield JW, et al. The influence of cholestyramine on thyroxine absorption. JAMA 1969; 208: 1857–61

    Article  PubMed  CAS  Google Scholar 

  25. Knodel LC, Talbert RL. Adverse effects of hypolipidaemic drugs. Med Toxicol 1987; 2: 10–32

    Article  PubMed  CAS  Google Scholar 

  26. Hunninghake DB, King S, LaCroix K. The effect of cholestyramine and colestipol on the absorption of hydrochlorothiazide. Int J Clin Pharmacol Ther Toxicol 1982; 20: 151–4

    PubMed  CAS  Google Scholar 

  27. Shepherd J, Packard CJ, Patsch JR, et al. Effects of nicotinic acid therapy on plasma high density lipoprotein subfraction distribution and composition and on apolipoprotein A metabolism. J Clin Invest 1979; 63: 858–67

    Article  PubMed  CAS  Google Scholar 

  28. Carlson LA, Hamsten A, Asplund A. Pronounced lowering of serum levels of lipoprotein Lp(a) in hyperlipidaemic subjects treated with nicotinic acid. J Intern Med 1989; 226: 271–6

    Article  PubMed  CAS  Google Scholar 

  29. Coronary Drug Project Research Group. Clofibrate and niacin in coronary heart disease. JAMA 1975; 231: 360–81

    Article  Google Scholar 

  30. Canner PL, Berge KG, Wenger NK, et al. Fifteen year mortality in Coronary Drug Project patients: long-term benefit with niacin. J Am Coll Cardiol 1986; 8: 1245–55

    Article  PubMed  CAS  Google Scholar 

  31. Carlson LA, Rosenhamer G. Reduction of mortality in the Stockholm Ischaemic Heart Disease Secondary Prevention Study by combined treatment with clofibrate and nicotinic acid. Acta Med Scand 1988; 223: 405–18

    Article  PubMed  CAS  Google Scholar 

  32. Mullin GE, Greenson JK, Mitchell MC. Fulminant hepatic failure after ingestion of sustained-release nicotinic acid. Ann Intern Med 1989; 111: 253–5

    PubMed  CAS  Google Scholar 

  33. Litin SC, Anderson CF. Nicotinic acid-associated myopathy: a report of three cases. Am J Med 1989; 86: 481–3

    Article  PubMed  CAS  Google Scholar 

  34. Reaven P, Witztum JL. Lovastatin, nicotinic acid, and rhabdomyolysis [letter]. Ann Intern Med 1988; 109: 597–8

    PubMed  CAS  Google Scholar 

  35. Brown WV, Howard WJ, Field L. Nicotinic acid and its derivatives. In: Rifkind BM, editor. Drug treatment of hyperlipidemia. New York: Marcel Dekker, 1991: 189–213

    Google Scholar 

  36. Rader JI, Calvert RJ, Hathcock JN. Hepatic toxicity of unmodified and time-release preparations of niacin. Am J Med 1992; 92: 77–81

    Article  PubMed  CAS  Google Scholar 

  37. Nikkila EA, Huttunen JK, Ehnholm C. Effect of clofibrate on postheparin plasma triglyceride lipase activities in patients with hypertriglyceridemia. Metabolism 1977; 26: 179–86

    Article  PubMed  CAS  Google Scholar 

  38. Levy RI, Morganroth J, Rifkind BM. Treatment of hyperlipidemia. N Engl J Med 1976; 290: 1295–301

    Article  Google Scholar 

  39. Davignon J. Fibrates: a review of important issues and recent findings. Can J Cardiol 1994; 10 Suppl.B: 61B–71B

    Google Scholar 

  40. Austin MA, Breslow JL, Hennekens CH, et al. Low-density lipoprotein subclass patterns and risk of myocardial infarction. JAMA 1988; 260: 1917–21

    Article  PubMed  CAS  Google Scholar 

  41. Tsai MY, Yuan J, Hunninghake DB. Effect of gemfibrozil on composition of lipoproteins and distribution of LDL subspecies. Atherosclerosis 1992; 95: 35–42

    Article  PubMed  CAS  Google Scholar 

  42. Eisenberg S, Gavish D, Oschry Y, et al. Abnormalities in very low, low, and high density lipoproteins in hypertriglyceridemia: reversal toward normal with bezafibrate treatment. J Clin Invest 1984; 74: 470–82

    Article  PubMed  CAS  Google Scholar 

  43. Bo M, Bonino F, Neirotti M, et al. Hemorrheologic and coagulative pattern in hypercholesterolemic subjects treated with lipid-lowering drugs. Angiology 1991; 42: 106–13

    Article  PubMed  CAS  Google Scholar 

  44. Andersen P, Smith P, Seljeflot I, et al. Effects of gemfibrozil on lipids and haemostasis after myocardial infarction. Thromb Haemost 1990; 63: 174–7

    PubMed  CAS  Google Scholar 

  45. Frick MH, Elo O, Haapa K, et al. Helsinki Heart Study: primary-prevention trial with gemfibrozil in middle-aged men with dyslipidemia. Safety of treatment, changes in risk factors, and incidence of coronary heart disease. N Engl J Med 1987; 317: 1237–45

    Article  PubMed  CAS  Google Scholar 

  46. Manninen V, Tenkanen L, Koskinen P, et al. Joint effects of serum triglyceride and LDL cholesterol and HDL cholesterol concentrations on coronary heart disease risk in the Helsinki Heart Study: implications for treatment. Circulation 1992; 85: 37–45

    Article  PubMed  CAS  Google Scholar 

  47. Committee of Principal Investigators. A co-operative trial in the primary prevention of ischaemic heart disease using clofibrate. Br Heart J 1978; 40: 1069–118

    Article  Google Scholar 

  48. Illingworth DR. Fibric acid derivatives. In: Rifkind BM, editor. Drug treatment of hyperlipidemia. New York: Marcel Dekker, 1991: 103–38

    Google Scholar 

  49. Sirtori CR, Calabresi L, Werba JP, et al. Tolerability of fibric acids. Comparative data and biochemical bases. Pharmacol Res 1992; 26: 243–60

    Article  PubMed  CAS  Google Scholar 

  50. Langer T, Levy RI. Acute muscular syndrome associated with administration of clofibrate. N Engl J Med 1968; 279: 856–8

    Article  PubMed  CAS  Google Scholar 

  51. Baker SG, Joffe BI, Mendelsohn D, et al. Treatment of homozygous familial hypercholesterolemia with probucol. S Afr Med J 1982; 62: 7–11

    PubMed  CAS  Google Scholar 

  52. Yamamoto A, Matsuzawa Y, Yokoyama S, et al. Effects of probucol on xanthomata regression in familial hypercholesterolemia. Am J Cardiol 1986; 57: 29H–35H

    Article  PubMed  CAS  Google Scholar 

  53. Schmidt EB, Illingworth DR, Bacon S, et al. Hypolipidemic effects of nicotinic acid in patients with familial defective apolipoprotein B-100. Metabolism 1993; 42: 137–9

    Article  PubMed  CAS  Google Scholar 

  54. Grundy SM. Multifactorial etiology of hypercholesterolemia: implications for prevention of coronary heart disease. Arterioscler Thromb 1991; 11: 1619–35

    Article  PubMed  CAS  Google Scholar 

  55. American Diabetes Association. Detection and management of lipid disorders in diabetes. Diabetes Care 1993; 16 Suppl. 2: 106–12

    Google Scholar 

  56. Juhan-Vague I, Roui C, Alessi M, et al. Increased plasminogen activator inhibitor activity in non insulin dependent diabetic patients: relationship with plasma insulin. Thromb Haemost 1989; 61: 370–3

    PubMed  CAS  Google Scholar 

  57. Prata MM, Nogueira AC, Pinto JR, et al. Long-term effect of lovastatin on lipoprotein profile in patients with primary nephrotic syndrome. Clin Nephrol 1994; 41: 277–83

    PubMed  CAS  Google Scholar 

  58. Knight RJ, Vathsala A, Schoenberg L, et al. Treatment of hyperlipidemia in renal transplant patients with gemfibrozil and dietary modification. Transplantation 1992; 53: 224–5

    PubMed  CAS  Google Scholar 

  59. Kobashigawa JA, Katznelson S, Laks H, et al. Effect of pravastatin on outcomes after cardiac transplantation. N Engl J Med 1995; 333: 621–7

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Farmer, J.A., Gotto, A.M. Choosing the Right Lipid-Regulating Agent. Drugs 52, 649–661 (1996). https://doi.org/10.2165/00003495-199652050-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003495-199652050-00003

Keywords

Navigation