Skip to main content
Log in

Do Drug Metabolism and Pharmacokinetic Departments Make Any Contribution to Drug Discovery?

  • Current Opinion
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Abstract

The alignment of drug metabolism and pharmacokinetic departments with drug discovery has not produced a radical improvement in the pharmacokinetic properties of new chemical entities. The reason for this is complex, reflecting in part the difficulty of combining potency, selectivity, water solubility, metabolic stability and membrane permeability into a single molecule. This combination becomes increasingly problematic as the drug targets become more distant from aminergic seven-transmembrane-spanning receptors (7-TMs). The leads available for aminergic 7-TMs, like the natural agonists, are invariably small molecular weight, water soluble and potent. Even moving to 7-TMs for which the agonist is a peptide invariably produces lead matter that is less drug-like (higher molecular weight and lipophilic). The role of drug metabolism departments, therefore, has been to guide chemistry to obtaining adequate, rather than optimal, pharmacokinetic properties for these ‘difficult’ drug targets.

A consistent belief of many researchers is that a high value is placed on optimal, rather than adequate, pharmacokinetic properties. One measure of value is market sales, and when these are examined no clear pattern emerges. Part of the success of amlodipine in the calcium channel antagonist sector must be due to its excellent pharmacokinetic profile, but the best-selling drugs among the angiotensin antagonists and β-blockers have a much greater market share than other agents with better pharmacokinetic properties. Clearly, many other factors are important in the successful launch of a medicine, some reflected in the manner the compound is developed and the subsequent structure of the labelling.

Overall, therefore the presence of drug metabolism in drug discovery has probably contributed most by allowing ‘difficult’ drug targets to be prosecuted, rather than by guiding medicinal chemists to optimal pharmacokinetics. These ‘difficult’ target candidates become successful drugs when skilfully developed. There is no doubt that skilful development relies heavily on drug metabolism and pharmacokinetic departments, in this case those with a clinical rather than a preclinical orientation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Table II
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Prentis RA, Lis Y, Walker SR. Pharmaceutical innovation by seven UK-owned pharmaceutical companies (1964–1985). Br J Clin Pharmacol 1988; 25: 387–91

    Article  PubMed  CAS  Google Scholar 

  2. Pinto DJ, Orwat MJ, Wang S, et al. Discovery of l-[3-(aminomethyl)phenyl]-N-[3-fluoro-2′-(methylsulfonyl)-[1,1′-biphenyl]-4-yl]-3-(trifluoromethyl)-1H-pyrazole-5-carbox amide (DPC423), a highly potent, selective, and orally bio-available inhibitor of blood coagulation factor Xa. J Med Chem 2001; 44: 566–78

    Article  PubMed  CAS  Google Scholar 

  3. Lin JH. Role of pharmacokinetics in the discovery and development of indinavir. Adv Drug Deliv Rev 1999; 39: 33–49

    Article  PubMed  CAS  Google Scholar 

  4. Chiba M. P450 interaction with HIV protease inhibitors: relationship between metabolic stability, inhibitory potency, and P450 binding spectra. Drug Metab Dispos 2001; 29: 1–3

    PubMed  CAS  Google Scholar 

  5. Physician’s desk reference. 55th ed. Montvale (NJ): Medical Economics Company, Inc., 2000: 1202–7

  6. Smith DA, Jones B. Variability in drug response as a factor in drug design. Curr Opin Drug Disc Dev 1999; 2: 33–41

    CAS  Google Scholar 

  7. Van de Waterbeemd H, Smith DA, Jones B. Lipophilicity in PK design: methyl, ethyl, futile. J Comput Aided Mol Des 2001; 15: 273–86

    Article  PubMed  Google Scholar 

  8. Israili ZH. Clinical pharmacokinetics of angiotensin II (AT1) receptor blockers in hypertension. J Hum Hypertens 2000; 14 Suppl. 1:S73–86

    Article  CAS  Google Scholar 

  9. Belz GG, Butzer R, Kober S, et al. Time course and extent of angiotensin II antagonism after irbesartan, losartan, and valsartan in humans, assessed by angiotensin II dose response and radioligand receptor assay. Clin Pharmacol Ther 1999; 66: 367–73

    Article  PubMed  CAS  Google Scholar 

  10. Zusman RM. Are there differences among angiotensin receptor blockers? Am J Hypertens 1999; 12: 231S–5S

    Article  PubMed  CAS  Google Scholar 

  11. Bernhart CA, Perreaut PM, Ferrari BP, et al. A new series of imidazolones: highly specific and potent nonpeptide AT1 angiotensin II receptor antagonists. J Med Chem 1993; 36: 3371–80

    Article  PubMed  CAS  Google Scholar 

  12. Iwatsubo T, Hirota N, Ooie T, et al. Prediction of in vivo drug metabolism in the human liver from in vitro metabolism data. Pharmacol Ther 1997; 73: 147–71

    Article  PubMed  CAS  Google Scholar 

  13. Davit B, Reynolds K, Yuan R, et al. FDA evaluations using in vitro metabolism to predict and interpret in vivo metabolic drug-drug interactions: impact on labeling. J Clin Pharmacol 1999; 39(9): 899–910

    Article  PubMed  CAS  Google Scholar 

  14. De Groot MJ, Ackland MJ, Home VA, et al. A novel approach to predicting P450 mediated drug metabolism. CYP2D6 catalyzed N-dealkylation reactions and qualitative metabolite predictions using a combined protein and pharmacophore model for CYP2D6. J Med Chem 1999; 42: 4062–70

    Article  PubMed  Google Scholar 

  15. Afzelius L, Zamora I, Ridderstrom M, et al. Competitive CYP2C9 inhibitors: enzyme inhibition studies, protein homology modeling, and three-dimensional quantitative structure-activity relationship analysis. Mol Pharmacol 2001; 59: 909–19

    PubMed  CAS  Google Scholar 

  16. Williams PA, Cosme J, Sridhar V, et al. Mammalian micro-somal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 2000; 5: 121–31

    Article  PubMed  CAS  Google Scholar 

  17. Raag R, Poulos TL. Crystal structures of cytochrome P-450CAM complexed with camphane, thiocamphor, and ad-amantane: factors controlling P-450 substrate hydroxylation. Biochemistry 1991; 30(10): 2674–84

    Article  PubMed  CAS  Google Scholar 

  18. Gardner IB, Walker DK, Lennard MS, et al. Comparison of the disposition of two novel combined thromboxane synthase inhibitors/thromboxane A2 receptor antagonists in the isolated perfused rat liver. Xenobiotica 1995; 25: 185–97

    Article  PubMed  CAS  Google Scholar 

  19. Yoshida F, Topliss JG. QSAR model for drug human oral bio-availability. J Med Chem 2000; 43: 2575–85

    Article  PubMed  CAS  Google Scholar 

  20. Lipinski CA, Lombardo F, Dominy BW, et al. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 1997; 23: 3–25

    Article  CAS  Google Scholar 

  21. Lipinski CA. Drug-like properties and the causes of poor solubility and poor permeability. J Pharmacol Toxicol Methods 2000; 44(1): 235–49

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank their many colleagues who have asked the question posed in the title on many occasions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dennis Smith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Smith, D., Schmid, E. & Jones, B. Do Drug Metabolism and Pharmacokinetic Departments Make Any Contribution to Drug Discovery?. Clin Pharmacokinet 41, 1005–1019 (2002). https://doi.org/10.2165/00003088-200241130-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-200241130-00001

Keywords

Navigation