Skip to main content
Log in

Desflurane Clinical Pharmacokinetics and Pharmacodynamics

  • Review Article
  • Drug Disposition
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Desflurane is a new volatile anaesthetic agent, with qualitative physiological and pharmacological effects similar to those of previously available drugs of this type. The feature that sets desflurane apart from other halogenated, volatile anaesthetics is its low solubility in blood and body tissues. Therefore, its uptake, distribution and elimination are more rapid than those for similar drugs.

Desflurane undergoes negligible metabolism, and should have a low potential for producing toxic effects. Because it has a high vapour pressure desflurane needs a special delivery system, a heated, pressurised vaporiser. Its low solubility gives it the ability to produce rapid alterations in depth of anaesthesia and rapid emergence and recovery from anaesthesia.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eger II EI. Partition coefficients of I-653 in human blood, saline, and olive oil. Anesth Analg 1987; 66: 971–3

    PubMed  CAS  Google Scholar 

  2. Jones RM. Desflurane and sevoflurane: inhalation anaesthetics for this decade? Br J Anaesth 1990; 65: 527–36

    PubMed  CAS  Google Scholar 

  3. Yasuda N, Targ AG, Eger II EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in human tissues. Anesth Analg 1989; 69: 370–3

    PubMed  CAS  Google Scholar 

  4. Targ AG, Yasuda N, Eger II EI. Solubility of I-653, sevoflurane, isoflurane, and halothane in plastics and rubber composing a conventional anaesthetic circuit. Anesth Analg 1989; 69: 218–25

    PubMed  CAS  Google Scholar 

  5. Yasuda N, Targ AG, Eger II EI, et al. Pharmacokinetics of desflurane, sevoflurane, isoflurane, and halothane in pigs. Anesth Analg 1990; 71: 340–8

    PubMed  CAS  Google Scholar 

  6. Yasuda N, Lockhart SH, Eger II EI, et al. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991; 74: 489–98

    PubMed  CAS  Google Scholar 

  7. Jones RM, Cashman JN, Eger II EI, et al. Kinetics and potency of desflurane (I-653) in volunteers. Anesth Analg 1990; 70: 3–7

    PubMed  CAS  Google Scholar 

  8. Litt L, Lockhart S, Cohen Y, et al. In vivo 19F nuclear magnetic resonance brain studies of halothane, isoflurane, and desflurane. Rapid elimination and no abundant saturable binding. Ann N Y Acad Sci 1991; 625: 707–24

    PubMed  CAS  Google Scholar 

  9. Lockhart SH, Cohen Y, Yasuda N, et al. Cerebral uptake and elimination of desflurane, isoflurane, and halothane from rabbit brain: an in vivo NMR study. Anesthesiology 1991; 74: 575–80

    PubMed  CAS  Google Scholar 

  10. Eger II EI, Larson Jr CP. Anaesthetic solubility in blood and tissues: values and significance. Br J Anaesth 1964; 36: 140–9

    PubMed  Google Scholar 

  11. Koblin DD. Mechanisms of action. In: Miller RD, editor. Anesthesia. New York: Churchill Livingstone, 1990: 51–83

    Google Scholar 

  12. Rampil IJ, Lockhart SH, Zwass MS, et al. Clinical characteristics of desflurane in surgical patients: minimum alveolar concentration. Anesthesiology 1991; 74: 429–33

    PubMed  CAS  Google Scholar 

  13. Kent DW, Halsey MJ, Eger II EI, et al. Isoflurane anesthesia and pressure antagonism in mice. Anesth Analg 1977; 56: 97–101

    PubMed  CAS  Google Scholar 

  14. Kety SS, Harmel MH, Broomell HT, et al. The solubility of nitrous oxide in blood and brain. J Biol Chem 1948; 173: 487–96

    PubMed  CAS  Google Scholar 

  15. Hornbein TF, Eger II EI, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982; 61: 553–6

    PubMed  CAS  Google Scholar 

  16. Katoh T, Ikeda K. The minimum alveolar concentration (MAC) of sevoflurane in humans. Anesthesiology 1987; 66: 301–3

    PubMed  CAS  Google Scholar 

  17. Malviya S, Lerman J. The blood/gas solubilities of sevoflurane, isoflurane, halothane, and serum constituent concentrations in neonates and adults. Anesthesiology 1990; 72: 793–6

    PubMed  CAS  Google Scholar 

  18. Wallin RF, Regan BM, Napoli MD, et al. Sevoflurane: a new inhalational anaesthetic agent. Anesth Analg 1975; 54: 758–66

    PubMed  CAS  Google Scholar 

  19. Quasha AL, Eger II EI, Tinker JH. Determination and applications of MAC. Anesthesiology 1980; 53: 315–34

    PubMed  CAS  Google Scholar 

  20. Eger II EI, Shargel R. The solubility of methoxyflurane in human blood and tissue homogenates. Anesthesiology 1963; 24: 625–7

    PubMed  CAS  Google Scholar 

  21. Stevens WC, Dolan WM, Gibbons RT, et al. Minimum alveolar concentrations (MAC) of isoflurane with and without nitrous oxide in patients of various ages. Anesthesiology 1975; 42: 197–200

    PubMed  CAS  Google Scholar 

  22. Sebel PS, Glass PS, Fletcher JE, et al. Reduction of the MAC of desflurane with fentanyl. Anesthesiology 1992; 76: 52–9

    PubMed  CAS  Google Scholar 

  23. Doorley BM, Waters SJ, Terrell RC, et al. MAC of I-653 in beagle dogs and New Zealand white rabbits. Anesthesiology 1988; 69: 89–91

    PubMed  CAS  Google Scholar 

  24. Eger II EI, Johnson BH, Weiskopf RB, et al. Minimum alveolar concentration of I-653 and isoflurane in pigs: definition of a supramaximal stimulus. Anesth Analg 1988; 67: 1174–6

    PubMed  Google Scholar 

  25. Eger II EI, Johnson BH. MAC of I-653 in rats, including a test of the effect of body temperature and anaesthetic duration. Anesth Analg 1987; 66: 974–6

    PubMed  CAS  Google Scholar 

  26. Franks NP, Lieb WR. What is the molecular nature of general anaesthetic target sites? Trends Pharmacol Sci 1987; 8: 169–74

    CAS  Google Scholar 

  27. Franks NP, Lieb WR. Stereospecific effects of inhalational general anaesthetic optical isomers on nerve ion channels. Science 1991; 254: 427–30

    PubMed  CAS  Google Scholar 

  28. Franks NP, Lieb WR. Selective effects of volatile general anesthetics on identified neurons. Ann N Y Acad Sci 1991; 625: 54–70

    PubMed  CAS  Google Scholar 

  29. Franks NP, Lieb WR. Volatile general anaesthetics activate a novel neuronal K+ current. Nature 1988; 333: 662–4

    PubMed  CAS  Google Scholar 

  30. Tas PW, Kress HG, Koschel K. Volatile anesthetics inhibit the ion flux through Ca2+-activated K+ channels of rat glioma C6 cells. Biochim Biophys Acta 1989; 983: 264–8

    PubMed  CAS  Google Scholar 

  31. Nahrwold ML, Lust WD, Passonneau JV. Halothane-induced alterations of cyclic nucleotide concentrations in three regions of the mouse nervous system. Anesthesiology 1977; 47: 423–7

    PubMed  CAS  Google Scholar 

  32. Bazil CW, Minneman KP. Effects of clinically effective concentrations of halothane on adrenergic and cholinergic synapses in rat brain in vitro. J Pharmacol Exp Ther 1989; 248: 143–8

    PubMed  CAS  Google Scholar 

  33. Lin LH, Chen LL, Zirrolli JA, et al. General anesthetics potentiate gamma-aminobutyric acid actions on gamma-aminobutyric acid-A receptors expressed by Xenopus oocytes: lack of involvement of intracellular calcium. J Pharmacol Exp Ther 1992; 263: 569–78

    PubMed  CAS  Google Scholar 

  34. Kosk-Kosicka D, Roszczynska G. Inhibition of plasma membrane Ca2+-ATPase activity by volatile anesthetics. Anesthesiology 1993; 79: 774–80

    PubMed  CAS  Google Scholar 

  35. Franks NP, Lieb WR. Selective actions of volatile general anaesthetics at molecular and cellular levels. Br J Anaesth 1993; 71: 65–76

    PubMed  CAS  Google Scholar 

  36. Stern RC, Herrington J, Lingle CJ, et al. The action of halothane on stimulus-secretion coupling in clonal (GH3) pituitary cells. J Neurosci 1991; 11: 2217–25

    PubMed  CAS  Google Scholar 

  37. Halsey MJ, Smith EB, Wood TE. Effects of general anesthetics on Na+ transport in human red cells. Nature (London) 1970; 225: 1151–2

    CAS  Google Scholar 

  38. Eger EI II. Effect of inspired anaesthetic concentration on the rate of rise of alveolar concentration. Anesthesiology 1963; 24: 153–7

    Google Scholar 

  39. Carpenter RL, Eger II EI, Johnson BH, et al. Pharmacokinetics of inhaled anesthetics in humans: measurements during and after the simultaneous administration of enflurane, halothane, isoflurane, methoxyflurane, and nitrous oxide. Anesth Analg 1986; 65: 575–82

    PubMed  CAS  Google Scholar 

  40. Fassoulaki A, Lockhart SH, Freire BA, et al. Percutaneous loss of desflurane, isoflurane, and halothane in humans. Anesthesiology 1991; 74: 479–83

    PubMed  CAS  Google Scholar 

  41. Laster MJ, Taheri S, Eger II EI, et al. Visceral losses of desflurane, isoflurane, and halothane in swine. Anesth Analg 1991; 73: 209–12

    PubMed  CAS  Google Scholar 

  42. Eger II EI. Desflurane animal and human pharmacology: aspects of kinetics, safety, and MAC. Anesth Analg 1992; 75(45): S3–S7

    PubMed  CAS  Google Scholar 

  43. Eger II EI, Strum DP. The absorption and degradation of isoflurane and I-653 by dry soda lime at various temperatures. Anesth Analg 1987; 66: 1312–5

    PubMed  CAS  Google Scholar 

  44. van Poznak A, Artusio Jr JF. Anaesthetic properties of a series of fluorinated compounds. I: fluorinated hydrocarbons. Toxicol Appl Pharmacol 1960; 2: 363–73

    Google Scholar 

  45. Eger II EI. Stability of I-653 in soda lime. Anesth Analg 1987; 66: 983–5

    PubMed  CAS  Google Scholar 

  46. Ghantous HN, Fernando J, Gandolfi AJ, et al. Minimal biotransformation and toxicity of desflurane in guinea pig liver slices. Anesth Analg 1991; 72: 796–800

    PubMed  CAS  Google Scholar 

  47. Koblin DD, Eger II EI, Johnson BH, et al. I-653 resists degradation in rats. Anesth Analg 1988; 67: 534–8

    PubMed  CAS  Google Scholar 

  48. Koblin DD, Weiskopf RB, Holmes MA, et al. Metabolism of I-653 and isoflurane in swine. Anesth Analg 1989; 68: 147–9

    PubMed  CAS  Google Scholar 

  49. Eger II EI, Johnson BH, Strum DP, et al. Studies of the toxicity of I-653, halothane, and isoflurane in enzyme-induced, hypoxic rats. Anesth Analg 1987; 66: 1227–9

    PubMed  CAS  Google Scholar 

  50. Eger II EI, Johnson BH, Ferrell LD. Comparison of the toxicity of I-653 and isoflurane in rats: a test of the effect of repeated anesthesia and use of dry soda lime. Anesth Analg 1987; 66: 1230–3

    PubMed  CAS  Google Scholar 

  51. Holmes MA, Weiskopf RB, Eger II EI, et al. Hepatocellular integrity in swine after prolonged desflurane (I-653) and isoflurane anesthesia: evaluation of plasma alanine aminotransferase activity. Anesth Analg 1990; 71: 249–53

    PubMed  CAS  Google Scholar 

  52. Smiley RM, Ornstein E, Pantuck EJ, et al. Metabolism of desflurane and isoflurane to fluoride ion in surgical patients. Can J Anaesth 1991; 38: 965–8

    PubMed  CAS  Google Scholar 

  53. Sutton TS, Koblin DD, Gruenke LD, et al. Fluoride metabolites after prolonged exposure of volunteers and patients to desflurane. Anesth Analg 1991; 73: 180–5

    PubMed  CAS  Google Scholar 

  54. Jones RM, Koblin DD, Cashman JN, et al. Biotransformation and hepato-renal function in volunteers after exposure to desflurane (I-653). Br J Anaesth 1990; 64: 482–7

    PubMed  CAS  Google Scholar 

  55. Weiskopf RB, Eger II EI, Ionescu P, et al. Desflurane does not produce hepatic or renal injury in human volunteers. Anesth Analg 1992; 74: 570–4

    PubMed  CAS  Google Scholar 

  56. Wrigley SR, Fairfield JE, Jones RM, et al. Induction and recovery characteristics of desflurane in day case patients: a comparison with propofol. Anaesthesia 1991; 46: 615–22

    PubMed  CAS  Google Scholar 

  57. Zaleski L, Abello D, Gold MI. Desflurane versus isoflurane in patients with chronic hepatic and renal disease. Anesth Analg 1993; 76: 353–6

    PubMed  CAS  Google Scholar 

  58. Taylor RH, Lerman J. Minimum alveolar concentration of desflurane and hemodynamic responses in neonates, infants, and children. Anesthesiology 1991; 75: 975–9

    PubMed  CAS  Google Scholar 

  59. Gold MI, Abello D, Herrington C. Minimum alveolar concentration of desflurane in patients older than 65 yr. Anesthesiology 1993; 79: 710–4

    PubMed  CAS  Google Scholar 

  60. Strum DP, Eger II EI, Unadkat JD, et al. Age affects the pharmacokinetics of inhaled anesthetics in humans. Anesth Analg 1991; 73: 310–8

    PubMed  CAS  Google Scholar 

  61. Lutz LJ, Milde JH, Milde LN. The cerebral functional, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 1990; 73: 125–31

    PubMed  CAS  Google Scholar 

  62. Lutz LJ, Milde JH, Milde LN. The response of the canine cerebral circulation to hyperventilation during anesthesia with desflurane. Anesthesiology 1991; 74: 504–7

    PubMed  CAS  Google Scholar 

  63. Milde LN, Milde JH. The cerebral and systemic hemodynamic and metabolic effects of desflurane-induced hypotension in dogs. Anesthesiology 1991; 74: 513–8

    PubMed  CAS  Google Scholar 

  64. Rampil IJ, Lockhart SH, Eger II EI, et al. The electroencephalographic effects of desflurane in humans. Anesthesiology 1991; 74: 434–9

    PubMed  CAS  Google Scholar 

  65. Muzzi DA, Losasso TJ, Dietz NM, et al. The effect of desflurane and isoflurane on cerebrospinal fluid pressure in humans with supratentorial mass lesions. Anesthesiology 1992; 76: 720–4

    PubMed  CAS  Google Scholar 

  66. Muzzi D, Daltner C, Losasso T, et al. The effect of desflurane and isoflurane with N2O on cerebrospinal fluid pressure in patients with supratentorial mass lesions [abstract]. Anesthesiology 1991; 75: A167

    Google Scholar 

  67. Ornstein E, Young WL, Fleisher LH, Ostapkovich N. Desflurane and isoflurane have similar effects on cerebral blood flow in patients with intracranial mass lesions. Anesthesiology 1993; 79: 498–502

    PubMed  CAS  Google Scholar 

  68. Weiskopf RB, Holmes MA, Eger II EI, et al. Cardiovascular effects of I653 in swine. Anesthesiology 1988; 69: 303–9

    PubMed  CAS  Google Scholar 

  69. Weiskopf RB, Holmes MA, Rampil IJ, et al. Cardiovascular safety and actions of high concentrations of I-653 and isoflurane in swine. Anesthesiology 1989; 70: 793–8

    PubMed  CAS  Google Scholar 

  70. Pagel PS, Kampine JP, Schmeling WT, et al. Comparison of the systemic and coronary hemodynamic actions of desflurane, isoflurane, halothane, and enflurane in the chronically instrumented dog. Anesthesiology 1991; 74: 539–51

    PubMed  CAS  Google Scholar 

  71. Hartman JC, Pagel PS, Proctor LT, et al. Influence of desflurane, isoflurane and halothane on regional tissue perfusion in dogs. Can J Anaesth 1992; 39: 877–87

    PubMed  CAS  Google Scholar 

  72. Merin RG, Bernard JM, Doursout MF, et al. Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 1991; 74: 568–74

    PubMed  CAS  Google Scholar 

  73. Hartman JC, Pagel PS, Kampine JP, et al. Influence of desflurane on regional distribution of coronary blood flow in a chronically instrumented canine model of multivessel coronary artery obstruction. Anesth Analg 1991; 72: 289–99

    PubMed  CAS  Google Scholar 

  74. Pagel PS, Kampine JP, Schmeling WT, et al. Alteration of left ventricular diastolic function by desflurane, isoflurane, and halothane in the chronically instrumented dog with autonomic nervous system blockade. Anesthesiology 1991; 74: 1103–14

    PubMed  CAS  Google Scholar 

  75. Pagel PS, Kampine JP, Schmeling WT, et al. Influence of volatile anesthetics on myocardial contractility in vivo: desflurane versus isoflurane. Anesthesiology 1991; 74: 900–7

    PubMed  CAS  Google Scholar 

  76. Cahalan MK, Weiskopf RB, Eger II EI, et al. Hemodynamic effects of desflurane/nitrous oxide anesthesia in volunteers. Anesth Analg 1991; 73: 157–64

    PubMed  CAS  Google Scholar 

  77. Weiskopf RB, Cahalan MK, Eger II EI, et al. Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 1991; 73: 143–56

    PubMed  CAS  Google Scholar 

  78. Thomson IR, Bowering JB, Hudson RJ, et al. A comparison of desflurane and isoflurane in patients undergoing coronary artery surgery. Anesthesiology 1991; 75: 776–81

    PubMed  CAS  Google Scholar 

  79. Helman JD, Leung JM, Bellows WH, et al. The risk of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia for coronary artery bypass graft surgery. The S.P.I. Research Group. Anesthesiology 1992; 77: 47–62

    PubMed  CAS  Google Scholar 

  80. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. Anesthesiology 1993; 79: 444–53

    PubMed  CAS  Google Scholar 

  81. Moore MA, Weiskopf RB, Eger EI, et al. Arrhythmogenic doses of epinephrine are similar desflurane or isoflurane anesthesia in humans. Anesthesiology 1993; 79: 943–7

    PubMed  CAS  Google Scholar 

  82. Lockhart SH, Rampil IJ, Yasuda N, et al. Depression of ventilation by desflurane in humans. Anesthesiology 1991; 74: 484–8

    PubMed  CAS  Google Scholar 

  83. Warltier DC, Pagel PS. Cardiovascular and respiratory actions of desflurane: is desflurane different from isoflurane? Anesth Analg 1992; 75: S17–S29

    PubMed  CAS  Google Scholar 

  84. Van Hemelrijck J, Smith I, White PF. Use of desflurane for outpatient anesthesia. A comparison with propofol and nitrous oxide. Anesthesiology 1991; 75: 197–203

    PubMed  Google Scholar 

  85. Caldwell JE, Laster MJ, Magorian T, et al. The neuromuscular effects of desflurane, alone and combined with pancuronium or succinylcholine in humans. Anesthesiology 1991; 74: 412–8

    PubMed  CAS  Google Scholar 

  86. Kelly RE, Lien CA, Savarese JJ, et al. Depression of neuromuscular function in a patient during desflurane anesthesia. Anesth Analg 1993; 76: 868–71

    PubMed  CAS  Google Scholar 

  87. Wedel DJ, Iaizzo PA, Milde JH. Desflurane is a trigger of malignant hyperthermia in susceptible swine. Anesthesiology 1991; 74: 508–12

    PubMed  CAS  Google Scholar 

  88. Wedel DJ, Gammel SA, Milde JH, et al. Delayed onset of malignant hyperthermia induced by isoflurane and desflurane compared with halothane in susceptible swine. Anesthesiology 1993; 78: 1138–44

    PubMed  CAS  Google Scholar 

  89. Fisher DM, Zwass MS. MAC of desflurane in 60% nitrous oxide in infants and children. Anesthesiology 1992; 76: 354–6

    PubMed  CAS  Google Scholar 

  90. Ghouri AF, White PF. Effect of fentanyl and nitrous oxide on the desflurane anaesthetic requirement. Anesth Analg 1991; 72: 377–81

    PubMed  CAS  Google Scholar 

  91. Miller RD, Savarese JJ. Pharmacology of muscle relaxants and their antagonists. In: Miller RD, editor. Anesthesia. New York: Churchill Livingstone, 1990: 389–435

    Google Scholar 

  92. Ghouri AF, White PF. Comparative effects of desflurane and isoflurane on vecuronium-induced neuromuscular blockade. J Clin Anesth 1992; 4: 34–8

    PubMed  CAS  Google Scholar 

  93. Lee C, Tsai SK, Kwan WF, et al. Desflurane potentiates atracurium in humans: a comparative study with isoflurane. J Clin Anesth 1992; 4: 448–54

    PubMed  CAS  Google Scholar 

  94. Weiskopf RB, Eger II EI, Holmes MA, et al. Epinephrine-induced premature ventricular contractions and changes in arterial blood pressure and heart rate during I-653, isoflurane, and halothane anesthesia in swine. Anesthesiology 1989; 70: 293–8

    PubMed  CAS  Google Scholar 

  95. Weiskopf RB, Eger II EI, Holmes MA, et al. Cardiovascular actions of common anaesthetic adjuvants during desflurane (I-653) and isoflurane anesthesia in swine. Anesth Analg 1990; 71: 144–8

    PubMed  CAS  Google Scholar 

  96. Dale O, Frink EJ, Thommesen L, et al. Hepatic elimination of diazepam: interactions with albumin, desflurane and sevoflurane. Br J Anaesth 1993; 70: 454–5

    PubMed  CAS  Google Scholar 

  97. Andrews JJ, Johnston RJ. The new Tec6 desflurane vaporizer. Anesth Analg 1993; 76: 1338–41

    PubMed  CAS  Google Scholar 

  98. Ohmeda Inc. Tec 6 Vaporizer. Operation and maintenance manual. Steeton: The BOC Group, 1992

    Google Scholar 

  99. Andrews JJ, Johnston RJ, Kramer GC. Consequences of misfilling contemporary vaporizers with desflurane. Can J Anaesth 1993; 40: 71–6

    PubMed  CAS  Google Scholar 

  100. Young WL. Effects of desflurane on the central nervous system. Anesth Analg 1992; 75(45): S32–7

    PubMed  CAS  Google Scholar 

  101. Smiley RM. An overview of induction and emergence characteristics of desflurane in pediatric, adult, and geriatric patients. Anesth Analg 1992; 75(45): S38–44

    PubMed  CAS  Google Scholar 

  102. Zwass MS, Fisher DM, Welborn LG, et al. Induction and maintenance characteristics of anesthesia with desflurane and nitrous oxide in infants and children. Anesthesiology 1992; 76: 373–8

    PubMed  CAS  Google Scholar 

  103. Bennett JA, Lingaraju N, Horrow JC, et al. Elderly patients recover more rapidly from desflurane than from isoflurane anesthesia. J Clin Anesth 1992; 4: 378–81

    PubMed  CAS  Google Scholar 

  104. Tsai SK, Lee C, Kwan WF, et al. Recovery of cognitive functions after anaesthesia with desflurane or isoflurane and nitrous oxide. Br J Anaesth 1992; 69: 255–8

    PubMed  CAS  Google Scholar 

  105. Fletcher JE, Sebel PS, Murphy MR, et al. Psychomotor performance after desflurane anesthesia: a comparison with isoflurane. Anesth Analg 1991; 73: 260–5

    PubMed  CAS  Google Scholar 

  106. Ghouri AF, Bodner M, White PF. Recovery profile after desflurane-nitrous oxide versus isoflurane-nitrous oxide in outpatients. Anesthesiology 1991; 74: 419–24

    PubMed  CAS  Google Scholar 

  107. Smiley RM, Ornstein E, Matteo RS, et al. Desflurane and isoflurane in surgical patients: comparison of emergence time. Anesthesiology 1991; 74: 425–8

    PubMed  CAS  Google Scholar 

  108. Azad SS, Bartkowski RR, Witkowski TA, et al. A comparison of desflurane and isoflurane in prolonged surgery. J Clin Anesth 1993; 5: 122–8

    PubMed  CAS  Google Scholar 

  109. Rapp SE, Conahan TJ, Pavlin DJ, et al. Comparison of desflurane with propofol in outpatients undergoing peripheral orthopedic surgery. Anesth Analg 1992; 75: 572–9

    PubMed  CAS  Google Scholar 

  110. Lebenbom-Mansour MH, Pandit SK, Kothary SP, et al. Desflurane versus propofol anesthesia: a comparative analysis in outpatients. Anesth Analg 1993; 76: 936–41

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caldwell, J.E. Desflurane Clinical Pharmacokinetics and Pharmacodynamics. Clin. Pharmacokinet. 27, 6–18 (1994). https://doi.org/10.2165/00003088-199427010-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199427010-00002

Keywords

Navigation