Skip to main content
Log in

Bayesian Parameter Estimation and Population Pharmacokinetics

  • Review Article
  • Clinical Pharmacokinetic Concepts
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

The widespread application of Bayesian parameter estimation in the area of therapeutic drug monitoring (TDM) has prompted the need for well conducted population studies to obtain relevant prior pharmacokinetic parameter estimates. In many cases the population has consisted of a relatively small number of subjects. This may be unavoidable for drugs used in cancer chemotherapy or in small, specific populations of patients. In contrast, information about drugs which are used extensively, such as the aminoglycosides, can be obtained by population studies which involve a large number of individuals. Indeed, this technique has proved particularly useful for determining parameter estimates which can be employed in neonatal TDM.

Bayesian parameter estimation has been most frequently used for drugs with narrow therapeutic ranges such as the aminoglycosides, cyclosporin, digoxin, anticonvulsants (especially phenytoin), lithium and theophylline. However, the technique has now been extended to cytotoxic drugs, Factor VIII and warfarin. Bayesian methods have also been used to limit the number of samples required in more conventional pharmacokinetic studies with new drugs. Further advances in the use of these methods are likely to include measures of drug response and toxicity requiring population studies which also include relevant pharmacodynamic information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abbott Pharmacokinetics Systems Theophylline Dosing Program. Operations Manual, vl.0, Abbott Laboratories, 1986

  • Abbott Pharmacokinetics Systems Aminoglycoside Dosing Program. Operations Manual, v1.0, Abbott Laboratories, 1986

  • Al-Banna MK, Kelman AW, Whiting B. Experimental design and efficient parameter estimation in population pharmacokinetics. Journal of Pharmacokinetics and Biopharmaceutics 18: 347–360, 1990

    PubMed  CAS  Google Scholar 

  • Aranda JV, Sitar DS, Parsons W, Loughnan P, Niems A. Pharmacokinetic aspects of theophylline in premature newborns. New England Journal of Medicine 295: 413–416, 1976

    Article  PubMed  CAS  Google Scholar 

  • Ausems ME, Hug Jr CC. Plasma concentrations of alfentanil required to supplement nitrous oxide anaesthesia for lower abdominal surgery. British Journal of Anaesthesia 55: 191S–197S, 1983

    Article  PubMed  Google Scholar 

  • Ausems ME, Hug Jr CC, Stanski DR, Burm AGL. Plasma concentrations of alfentanil required to supplement nitrous oxide anaesthesia for general surgery. Anesthesiology 65: 362–373, 1986

    Article  PubMed  CAS  Google Scholar 

  • Bachmann K, Sullivan TJ, Schwartz J, Jauregui L. A new approach to establishing individualized maintenance doses of phenytoin. Therapeutic Drug Monitoring 7: 391–400, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bauer LA, Blouin RA. Age and phenytoin kinetics in adult epileptics. Clinical Pharmacology and Therapeutics 31: 301–304, 1982

    Article  PubMed  CAS  Google Scholar 

  • Bauer LA, Blouin RA. Phenytoin Michaelis-Menten pharmacokinetics in Caucasian paediatric patients. Clinical Pharmacokinetics 8: 545–549, 1983

    Article  PubMed  CAS  Google Scholar 

  • Beach CL, Farringer JA, Peck CC, Crawford MH, Ludden TM, et al. Clinical assessment of a two-compartment Bayesian forecasting method for lidocaine. Therapeutic Drug Monitoring 10: 74–79, 1988

    PubMed  CAS  Google Scholar 

  • Beal SL. Computation of the explicit solution to the Michaelis-Menten equation. Journal of Pharmacokinetics and Biopharmaceutics 11: 641–657, 1983

    PubMed  CAS  Google Scholar 

  • Beal SL, Sheiner LB. NONMEM User’s Guide. Technical Report, Division of Clinical Pharmacology, University of California, San Francisco (1979–1989)

    Google Scholar 

  • Benet LZ, Sheiner LB. Design and optimization of dosage regimens: pharmacokinetic data. In Gilman et al. (Eds) Goodman and Gilman’s The pharmacological basis of therapeutics, 7th ed., pp. 1663–1733, Macmillan, New York, 1985

    Google Scholar 

  • Bertilsson L, Tomson T. Clinical pharmacokinetics and pharmacological effects of carbamazepine and carbamazepine 10,11-epoxide: an update. Clinical Pharmacokinetics 11: 177–198, 1986

    Article  PubMed  CAS  Google Scholar 

  • Botha J, Bobat RA, Moosa A, Miller R. Therapeutic drug monitoring in a paediatric epilepsy clinic. South African Medical Journal 77: 511–514, 1990

    PubMed  CAS  Google Scholar 

  • BØttger H-C, Oellerich M, Sybrecht GW. Use of aminoglycosides in critically ill patients: individualisation of dosage using Bayesian statistics and pharmacokinetic principles. Therapeutic Drug Monitoring 10: 280–286, 1988

    Article  PubMed  Google Scholar 

  • Boucher BA, Rodman JH, Fabain TC, Cupit GC, Ludden TM, et al. Disposition of phenytoin in critically ill trauma patients. Clinical Pharmacy 6: 881–887, 1987

    PubMed  CAS  Google Scholar 

  • Boucher BA, Rodman JH, Jaresko GS, Rasmussen SN, Watridge CB, et al. Phenytoin pharmacokinetics in critically ill trauma patients. Clinical Pharmacology and Therapeutics 44: 675–683, 1988

    Article  PubMed  CAS  Google Scholar 

  • Boyle DA, Ludden TM, Carter BL, Becker AJ, Taylor JW. Evaluation of a Bayesian regression program for predicting warfarin response. Therapeutic Drug Monitoring 11: 276–284, 1989

    Article  PubMed  CAS  Google Scholar 

  • Brater DC. Handbook of drug use in patients with renal disease, p. 62, Improved Therapeutics Inc, Lancaster, 1985

    Google Scholar 

  • Brater DC, Day RB. Theophylline dosing program version 3.1, Indiana/Purdue Universities at Indianapolis, Indianapolis, 1987

    Google Scholar 

  • Bruno R, Iliadis A, Favre R, Lena N, Imbert AM, et al. Dosage predictions in high-dose methotrexate infusions II: Bayesian estimation of methotrexate clearance. Cancer Drug Delivery 2: 277–283, 1985

    Article  PubMed  CAS  Google Scholar 

  • Bryson SM, Al-Lanqawi Y, Kelman AW, Whiting B. Comparison of a Bayesian forecasting technique with a new method for estimating phenytoin dose requirements. Therapeutic Drug Monitoring 10: 80–84, 1988

    PubMed  CAS  Google Scholar 

  • Burton ME, Ash CL, Hill DP, Handy T, Shepard MD, et al. A controlled trial of the cost benefit of computerized Bayesian aminoglycoside administration. Clinical Pharmacology and Therapeutics 49: 685–694, 1991

    Article  PubMed  CAS  Google Scholar 

  • Burton ME, Brater DC, Chen PS, Day RB, Huber PJ, et al. A Bayesian feedback method of aminoglycoside dosing. Clinical Pharmacology and Therapeutics 37: 349–357, 1985

    Article  PubMed  CAS  Google Scholar 

  • Burton ME, Gentle DL, Vasko MR. Evaluation of a Bayesian method for predicting vancomycin dosing. DICP: Annals of Pharmacotherapy 23: 294–300, 1989

    PubMed  CAS  Google Scholar 

  • Carlstedt BC, Uaamnuichai M, Day RB, Bowman L, Brater DC. Aminoglycoside dosing in paediatric patients. Therapeutic Drug Monitoring 11: 38–43, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chiba K, Ishizaki T, Miura H, Minagawa K. Michaelis-Menten pharmacokinetics of diphenylhydantoin and application in the paediatric age patient. Journal of Pediatrics 96: 479–481, 1980

    Article  PubMed  CAS  Google Scholar 

  • Chiou WL, Gadalla MAF, Pang GW. Method for the rapid estimation of the total body clearance and adjustment of dosage regimens in patients during a constant-rate infusion. Journal of Pharmacokinetics and Biopharmaceutics 6: 135–151, 1978

    PubMed  CAS  Google Scholar 

  • Chrystyn H. Validation of the use of Bayesian analysis in the optimization of gentamicin therapy from the commencement of dosing. Drug Intelligence and Clinical Pharmacy 22: 49–53, 1988

    PubMed  CAS  Google Scholar 

  • Chrystyn H, Dean S. An assessment of population-based and Bayesian methods to individualize digoxin doses shortly after the start of therapy for atrial fibrillation. Journal of Clinical Pharmacy and Therapeutics 16: 177–185, 1991

    Article  PubMed  CAS  Google Scholar 

  • Chrystyn H, Ellis JW, Mulley BA, Peake MD. The accuracy and stability of Bayesian theophylline predictions. Therapeutic Drug Monitoring 10: 299–305, 1988

    Article  PubMed  CAS  Google Scholar 

  • Chrystyn H, Ellis JW, Mulley BA, Peake MD. Bayesian derived predictions for twice daily theophylline under outpatient conditions and an assessment of optimal sampling times. British Journal of Clinical Pharmacology 27: 215–221, 1989

    Article  PubMed  CAS  Google Scholar 

  • Chrystyn H, Morgan DH. A comparison of graphical nomogram methods with a computerized Bayesian analysis method in the interpretation of serum phenytoin concentrations. Journal of Clinical and Hospital Pharmacy 11: 443–448, 1986

    PubMed  CAS  Google Scholar 

  • Chrystyn H, Mulley BA, Peake MD. Therapeutic drug monitoring — the way ahead. British Journal of Pharmaceutical Practice 6: 182–287, 1984a

    Google Scholar 

  • Chrystyn H, Mulley BA, Peake MD. Precise individualisation of theophylline dosage using a nomogram and Bayesian analysis and dependence of accuracy on preparation used. In Levy & Turner-Warwick M (Eds) New perspectives on theophylline therapy, Royal Society of Medicine Symposium Series 78, pp. 117–128, 1984b

    Google Scholar 

  • Chrystyn H, Mulley BA, Peake MD. The accuracy of a pharmacokinetic theophylline predictor using once daily dosing. British Journal of Clinical Pharmacology 24: 301–307, 1987

    Article  PubMed  CAS  Google Scholar 

  • Conley BA, Forrest A, Egorin MJ, Zuhowski EG, Sinibaldi V, et al. Phase I trial using adaptive control of hexamethylene bisacetamide (NSC 95580). Cancer Research 49: 3436–3440, 1989

    PubMed  CAS  Google Scholar 

  • Crowley JJ, Koup JR, Cusack BJ, Ludden TM, Vestal RE. Evaluation of a proposed method for phenytoin maintenance dose prediction following an intravenous loading dose. European Journal of Clinical Pharmacology 32: 141–148, 1987

    Article  PubMed  CAS  Google Scholar 

  • D’Argenio D, Schumitzky A. A user’s guide to the ADAPT programs. Technical Report, Laboratory of Applied Pharmacokinetics, University of Southern California, 1979

  • Denaro CP, Ravenscroft PJ. Comparison of Sawchuk-Zaske and Bayesian forecasting for aminoglycosides in seriously ill patients. British Journal of Clinical Pharmacology 28: 37–44, 1989

    Article  PubMed  CAS  Google Scholar 

  • De Santis GN, Stuchbery P. Predictive performance of a commercial Bayesian computer program in routine clinical practice. Australian Journal of Hospital Pharmacy 20: 229–232, 1990

    Google Scholar 

  • Dreissen O, van de Velde EA, Hoppener RJ. Practical and theoretical aspects of phenytoin administration. European Neurology 19: 103–114, 1980

    Article  Google Scholar 

  • Driscoll MS, Ludden TM, Casto DT, Littlefield LC. Evaluation of theophylline pharmacokinetics in a pediatric population using mixed effects models. Journal of Pharmacokinetics and Biopharmaceutics 17: 141–168, 1989

    PubMed  CAS  Google Scholar 

  • Drusano GL, de Jongh C, Newman K, Joshi J, Wharton R, et al. Moxalactam and piperacillin: a study of in vitro characteristics and pharmacokinetics in cancer patients. Infection 13: 20–26, 1985

    Article  PubMed  CAS  Google Scholar 

  • Drusano GL, Forrest A, Plaisance KI, Wade JC. A prospective evaluation of optimal sampling theory in the determination of the steady-state pharmacokinetics of piperacillin in febrile neutropenic cancer patients. Clinical Pharmacology and Therapeutics 45: 635–641, 1989

    Article  PubMed  CAS  Google Scholar 

  • Drusano GL, Forrest A, Snyder MJ, Reed MD, Blumer JL. An evaluation of optimal sampling strategy and adaptive study design. Clinical Pharmacology and Therapeutics 44: 232–238, 1988

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Crom WR, Abromowitch M, Dodge R, Look AT, et al. Clinical pharmacodynamics of high dose methotrexate in acute lymphocytic leukaemia. New England Journal of Medicine 314: 471–477, 1986

    Article  PubMed  CAS  Google Scholar 

  • Evans WE, Shentag JJ, Jusko WJ. Applied pharmacokinetics: principles of therapeutic drug monitoring, pp. 95–173, Applied Therapeutics, Inc., Spokane, 1980

    Google Scholar 

  • Favre R, Charbit M, Rinaldi Y, Iliadis A, Carcassonne Y, et al. Optimization of cisplatin (DDP) dosage regimen administered by continuous 5 day infusion using Bayesian estimation. Proceedings of the American Association of Cancer Research 28: 434, 1987

    Google Scholar 

  • Fernandez de Gatta MM, Tamayo M, Garcia MJ, Amador D, Rey F, et al. Prediction of imipramine serum levels in enuretic children by a Bayesian method: comparison with two other conventional dosing methods. Therapeutic Drug Monitoring 11: 637–641, 1989

    Article  PubMed  CAS  Google Scholar 

  • Fitzpatrick RW. Pharmacokinetic individualisation of theophylline therapy. Pharmaceutical Journal 231: 384, 1983

    Google Scholar 

  • Flint N, Lopez LM, Robinson JD, Williams C, Salem RB. Comparison of eight phenytoin dosing methods in institutionalised patients. Therapeutic Drug Monitoring 7: 74–80, 1985

    Article  PubMed  CAS  Google Scholar 

  • Fugita T, Koshiro A. Development of the convenient and direct numerical analytical method of the pharmacokinetics of phenytoin by an ordinary and/or the Bayesian weighted least-squares method using the program MULTI(2) BAYES. Journal of Pharmacobio-Dynamics 12: 717–725, 1989

    Article  Google Scholar 

  • Garaffo R, Iliadis A, Cano JP, Dellamonica P, Lapalus P. Application of Bayesian estimation for the prediction of an appropriate dosage regimen of amikacin. Journal of Pharmaceutical Sciences 78: 753–757, 1989

    Article  Google Scholar 

  • Garcia MJ, Alonso AC, Maza A, Santos D, Matesanz C, et al. Comparison of methods of carbamazepine dosage, individualisation in epileptic patients. Journal of Clinical Pharmacy and Therapeutics 13: 375–380, 1988

    Article  PubMed  CAS  Google Scholar 

  • Garrelts JC, Godley PJ, Horton M, Karboski JA. Accuracy of Bayesian, Sawchuk-Zaske, and nomogram dosing methods for vancomycin. Clinical Pharmacy 6: 795–799, 1987

    PubMed  CAS  Google Scholar 

  • Godley PJ, Black JT, Frohna PA, Garrelts JC. Comparison of a Bayesian program with three microcomputer programs for predicting gentamicin concentrations. Therapeutic Drug Monitoring 10: 287–291, 1988

    Article  PubMed  CAS  Google Scholar 

  • Godley PJ, Karboski JA, Godley SE, Edwards GA, Moore ES, et al. Evaluation of three theophylline dosing methods in pediatric patients. DICP: Annals of Pharmacotherapy 25: 179–185, 1991

    PubMed  CAS  Google Scholar 

  • Godley PJ, Ludden TM, Clementi WA, Godley SE, Ramsey RR. Evaluation of a Bayesian regression-analysis computer program using non-steady-state phenytoin concentrations. Clinical Pharmacy 6: 634–639, 1987

    PubMed  CAS  Google Scholar 

  • Gonzalez ER, Vanderheyden BA, Ornato JP, Comstock TG. Computer-assisted optimisation of aminophylline therapy in the emergency department. American Journal of Emergency Medicine 7: 395–401, 1989

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez Lopez F, Marino EL, Dominguez-Gil A. Pharmacokinetics of tiadipone: a new anxiolytic. International Journal of Clinical Pharmacology Therapeutics and Toxicology. 24: 482–484, 1986

    CAS  Google Scholar 

  • Grasela TH, Sheiner L, Rambeck B, Boenigk HE, Dunlop A, et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clinical Pharmacokinetics 8: 355–364, 1983

    Article  PubMed  CAS  Google Scholar 

  • Graves N, Cloyd J, Leppik J, Sawchuk H, Van der Kleijn E, et al. Phenytoin dosage predictions using population clearances. Drug Intelligence and Clinical Pharmacy 16: 473, 1982

    Google Scholar 

  • Graves NM, Leppik IE, Termond E, Taylor JW. Phenytoin clearances in a compliant population: description and application. Therapeutic Drug Monitoring 8: 427–433, 1986

    Article  PubMed  CAS  Google Scholar 

  • Haumschild MJ, Murphy JE. Prediction of theophylline clearance using condition correction factors. Clinical Pharmacy 4: 59–64, 1985

    PubMed  CAS  Google Scholar 

  • Hendeles L, Weinberger M. Theophylline — a state of the art review. Pharmacotherapy 3: 2–44, 1983

    PubMed  CAS  Google Scholar 

  • Hendeles L, Weinberger M, Johnson G. Theophylline. In Evans et al. (Eds) Applied pharmacokinetics, pp. 95–138, Applied Therapeutics Inc., Spokane, 1980

    Google Scholar 

  • Higuchi S, Aoyama T, Horioka M. PEDA: a microcomputer program for parameter estimation and dosage adjustment in clinical practice. Journal of Pharmacobio-Dynamics 10: 703–718, 1987

    Article  PubMed  CAS  Google Scholar 

  • Higuchi S, Fukuoka R, Aoyama T, Horioka M. Predicting serum lithium concentration using Bayesian method: a comparison with other methods. Journal of Pharmacobio-Dynamics 11: 158–174, 1988a

    Article  PubMed  CAS  Google Scholar 

  • Higuchi S, Yukawa E, Aoyama T. Bayesian prediction of serum phenytoin concentration in a simulation study. Chemical Pharmaceutical Bulletin 36: 1914–1918, 1988b

    Article  PubMed  CAS  Google Scholar 

  • Hudson SA, Farquhar DL, Thompson D, Smith RG. Phenytoin dosage individualization — five methods compared in the elderly. Journal of Clinical Pharmacy and Therapeutics 15: 25–34, 1990

    Article  PubMed  CAS  Google Scholar 

  • Hull JH, Sarubbi FA. Gentamicin serum concentrations: pharmacokinetic predictions. Annals of Internal Medicine 85: 183–189, 1976

    PubMed  CAS  Google Scholar 

  • Hurley SF, McNeil JJ. A comparison of the accuracy of a least squares regression, a Bayesian, Chiou’s and the steady-state clearance method of individualising theophylline dosage. Clinical Pharmacokinetics 14: 311–320, 1988

    Article  PubMed  CAS  Google Scholar 

  • Hurst AK, Iseri KT, Gill MA. Comparison of four methods for predicting serum gentamicin concentrations in surgical patients with perforated or gangrenous appendicitis. Clinical Pharmacy 6: 234–238, 1987

    PubMed  CAS  Google Scholar 

  • Hurst AK, Yoshinaga MA, Foo KA, Jelliffe RW, Harrison EC. Application of a Bayesian method to monitor and adjust vancomycin dosage regimens. Antimicrobial Agents and Chemotherapy 34: 1165–1171, 1990

    Article  PubMed  CAS  Google Scholar 

  • Iliadis A, Bachir-Raho M, Bruno R, Favre R. Bayesian estimation and prediction of clearance in high-dose methotrexate infusions. Journal of Pharmacokinetics and Biopharmaceutics 13: 101–115, 1985

    PubMed  CAS  Google Scholar 

  • Imaeda N, Takagi K, Hasegawa T, Saito H, Mizukami Y. Prediction of steady-state plasma theophylline concentration by Bayesian algorithm. International Journal of Clinical Pharmacology, Therapy and Toxicology 26: 588–593, 1988

    CAS  Google Scholar 

  • Jackson PR, Tucker GT, Woods HF. Backtracking booze with Bayes — the retrospective interpretation of blood alcohol data. British Journal of Clinical Pharmacology. 31: 55–63, 1991

    Article  PubMed  CAS  Google Scholar 

  • Joel SE, Bryson SM, Small M, Hillis WS, Kelman AW, et al. Kinetic predictive techniques applied to lignocaine therapeutic drug monitoring. Therapeutic Drug Monitoring 5: 271–277, 1983

    Article  PubMed  CAS  Google Scholar 

  • Jusko WJ, Gardner MJ, Mangione A, Shentag JJ, Koup JR, et al. Factors affecting theophylline clearance: age tobacco marijuana, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates and ethanol. Journal of Pharmaceutical Sciences 68: 1358–1366, 1979

    Article  PubMed  CAS  Google Scholar 

  • Karboski JA, Godley PJ, Ludden TM, Maffae D. Evaluating NONMEM derived parameters for theophylline in pediatric patients. Clinical Pharmacology and Therapeutics 47: 186, 1990

    Google Scholar 

  • Kehoe WA, Williams PJ, Brown JF. First-order versus zero-order absorption models for predicting theophylline concentrations after conversion from intravenous to oral therapy. Clinical Pharmacy 9: 458–461, 1990

    PubMed  CAS  Google Scholar 

  • Kelman AW, Thomson AH, Whiting B, Bryson SM, Steedman DA, et al. Estimation of gentamicin clearance and volume of distribution in neonates and young children. British Journal of Clinical Pharmacology 18: 685–692, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kelman AW, Whiting B, Bryson SM. OPT: a package of computer programs for parameter optimisation in clinical pharmacokinetics. British Journal of Clinical Pharmacology 14: 247–256, 1982

    Article  PubMed  CAS  Google Scholar 

  • Killilea T, Coleman R, Ludden T, Peck CC, Rose D. Bayesian regression analysis of non-steady-state phenytoin concentrations: evaluation of predictive performance. Therapeutic Drug Monitoring 11: 455–462, 1989

    PubMed  CAS  Google Scholar 

  • Koup JL. MULTI-Programs user manual. University of Washington, Seattle, 1982

    Google Scholar 

  • Koup JL, Shentag JJ, Vance JW, Kuritzky PM, Pyszcynski DR, et al. System for clinical pharmacokinetic monitoring of theophylline therapy. American Journal of Hospital Pharmacy 33: 949–956, 1976

    PubMed  CAS  Google Scholar 

  • Koup JL, Sack CM, Smith AL, Gibald M. Hypothesis for the individualisations of drug dosage. Clinical Pharmacokinetics 4: 460–469, 1979

    Article  PubMed  CAS  Google Scholar 

  • Lacarelle B, Granthil C, Manelli JC, Bruder N, Francois G, et al. Evaluation of a Bayesian method of amikacin dosing in intensive care unit patients with normal or impaired renal function. Therapeutic Drug Monitoring 9: 154–160, 1987

    Article  PubMed  CAS  Google Scholar 

  • Lanao JM, Berrocal A, Calvo MV, Perez M, de la Calle B, et al. Population pharmacokinetic study of gentamicin and a Bayesian approach in patients with renal impairment. Journal of Clinical Pharmacy and Therapeutics 14: 213–223, 1989

    Article  PubMed  CAS  Google Scholar 

  • Launay MC, Milano G, Iliadis A, Frenay M, Namer N. A limited sampling procedure for estimating adriamycin pharmacokinetics in cancer patients. British Journal of Cancer 60: 89–92, 1989

    Article  PubMed  CAS  Google Scholar 

  • Lee C, Coleman RW, Mungall DR. Effect of using warfarin plasma concentrations in Bayesian forecasting of prothrombin-time response. Clinical Pharmacy 6: 406–412, 1987

    PubMed  CAS  Google Scholar 

  • Lenert L, Peck C, Vožeh S, Follath F. Lidocaine forecaster: a two-compartment Bayesian patient pharmacokinetic computer program. Clinical Pharmacology and Therapeutics 31: 243, 1982

    Google Scholar 

  • Lonnerholm G, Lindstrom B, Paalzow L, Sedin G. Plasma theophylline and caffeine and plasma clearance of theophylline during theophylline treatment in the first year of life. European Journal of Clinical Pharmacology 24: 371–374, 1983

    Article  PubMed  CAS  Google Scholar 

  • Ludden TM, Beal SL, Peck C, Godley PJ. Evaluation of a Bayesian regression-analysis computer program for predicting phenytoin concentration. Clinical Pharmacy 5: 580–585, 1986

    PubMed  CAS  Google Scholar 

  • Ludden TM, Hawkins DW, Allen JP, Hoffman SF. Optimum phenytoin-dosage regimens. Lancet 1: 307–308, 1976

    Article  PubMed  CAS  Google Scholar 

  • Lui K, Bryson SM, Irwin DB, Costello S. Evaluation of Bayesian forecasting for individualised gentamicin dosage in infants weighing 1000g or less. American Journal of Diseases of Children 145: 463–467, 1991

    PubMed  CAS  Google Scholar 

  • Lund L, Alvan G. Phenytoin dosage nomogram. Lancet 2: 1305, 1975

    Article  PubMed  CAS  Google Scholar 

  • Maitre PO, Ausems ME, Vožeh S, Stanski DR. Evaluating the accuracy of using population pharmacokinetic data to predict plasma concentrations of alfentanil. Anesthesiology 68: 59–67, 1988

    Article  PubMed  CAS  Google Scholar 

  • Maitre PO, Buhrer M, Thomson D, Stanski DR. A three-step approach combining Bayesian regression and NONMEM population analysis: application to midazolam. Journal of Pharmacokinetics and Biopharmaceutics 19: 377–384, 1991

    PubMed  CAS  Google Scholar 

  • Maitre PO, Stanski DR. Bayesian forecasting improves the prediction of intraoperative plasma concentrations of alfentanil. Anesthesiology 69: 652–659, 1988

    Article  PubMed  CAS  Google Scholar 

  • Maitre PO, Vožeh S, Heykants J, Thomson DA, Stanski DR. Population pharmacokinetics of alfentanil: the average dose-plasma concentration relationship and interindividual variability in patients. Anesthesiology 66: 3–12, 1987

    Article  PubMed  CAS  Google Scholar 

  • Mariño E, Fernandez Lastra C, Gonzalez Lopez F, Dominguez-Gil A, Garcia Santella JL, et al. Parametrization by non-linear regression and bayesian estimation of bentazepam in a multiple dosage regimen in humans. International Journal of Clinical Pharmacology, Therapy and Toxicology 25: 627–632, 1987

    Google Scholar 

  • Martin E, Tozer TN, Sheiner LB, Riegelman S. The clinical pharmacokinetics of phenytoin. Journal of Biopharmaceutics and Pharmacokinetics 5: 579–596, 1977

    Article  CAS  Google Scholar 

  • Mason RW, McQueen EG, Keary PJ, James NM. Pharmacokinetics of lithium: elimination half time, renal clearance and apparent volume of distribution in schizophrenia. Clinical Pharmacokinetics 3: 241–246, 1978

    Article  PubMed  CAS  Google Scholar 

  • Matzke GR, McGory RW, Halstenson CE, Keane WF. Pharmacokinetics of vancomycin in patients with various degrees of renal function. Antimicrobial Agents and Chemotherapy 25: 433–437, 1984

    Article  PubMed  CAS  Google Scholar 

  • Matzke GR, Zhanel GG, Guay DRP. Clinical pharmacokinetics of vancomycin. Clinical Pharmacokinetics 11: 257–282, 1986

    Article  PubMed  CAS  Google Scholar 

  • McClellan SD, Farringer JA. Bayesian forecasting of aminoglycoside dosing requirements in obese patients: influence of sub-population versus general population pharmacokinetic parameters as the internal estimates. Therapeutic Drug Monitoring 11: 431–436, 1989

    PubMed  CAS  Google Scholar 

  • Messori A, Longo G, Matucci M, et al. A pharmacokinetic model for analyzing the pharmacokinetics of Factor VIII in haemophilia patients undergoing major surgery. In Lindgren et al. (Eds) Progress in clinical pharmacy, pp. 185–192, Swedish Pharmaceutical Press, Stockholm, 1986

    Google Scholar 

  • Messori A, Longo G, Matucci M, Morfini M, Ferrini PLR. Clinical pharmacokinetics of Factor VIII in patients with classic haemophilia. Clinical Pharmacokinetics 13: 365–380, 1987

    Article  PubMed  CAS  Google Scholar 

  • Miller R, Rheeders M. Effect of source of population data on phenytoin dosage predictions in black patients. Clinical Pharmacy 8: 56–59, 1989

    PubMed  CAS  Google Scholar 

  • Miller R, Rheeders M, Klein C, Suchet I. Population pharmacokinetics of phenytoin in South African black patients. South African Medical Journal 72: 188–190, 1987

    PubMed  CAS  Google Scholar 

  • Moellering RC, Krogstad DJ, Greenblatt DJ. Vancomycin therapy in patients with impaired renal function: a nomogram for dosage. Annals of Internal Medicine 94: 343–346, 1981

    PubMed  Google Scholar 

  • Morfini M, Grasela TH, Longo G, Matucci M, Messori A, et al. Comparison of two pharmacokinetic techniques for individualizing Factor VIII dosage in haemophilia patients. Haematologica 70: 454–456, 1985

    PubMed  CAS  Google Scholar 

  • Mullen PW. Optimal phenytoin therapy: a new technique for individualising dosage. Clinical Pharmacology and Therapeutics 23: 228–232, 1978

    PubMed  CAS  Google Scholar 

  • Mungall D, Bancroft W, Marshall J. Computer-assisted oral and intravenous theophylline therapy. Computers in Biomedical Research 15: 18–28, 1982

    Article  CAS  Google Scholar 

  • Mungall D, Floyd R. Bayesian forecasting of APTT response to continuously infused heparin with and without warfarin administration. Journal of Clinical Pharmacology 29: 1043–1047, 1989

    PubMed  CAS  Google Scholar 

  • Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RL, et al. Population pharmacokinetics of racemic warfarin in adult patients. Journal of Pharmacokinetics and Biopharmaceutics 13: 213–227, 1985

    PubMed  CAS  Google Scholar 

  • Mungall DR, Marshall J, Ludden TM, Hawkins DW, Crawford MH. Population kinetics of warfarin. Paper presented to Second World Congress on Clinical Pharmacology, Washington, DC, August 9, 1983

  • Murphy MG, Peck CC, Merenstein GB, Rodden D. An evaluation of Bayesian microcomputer predictions of theophylline concentrations in newborn infants. Therapeutic Drug Monitoring 12: 47–53, 1990

    Article  PubMed  CAS  Google Scholar 

  • Murray B, Coleman R, McWaters D, Ludden T, Mungall D. Pharmacodynamics of warfarin at steady state. Therapeutic Drug Monitoring 9: 1–5, 1987

    Article  PubMed  CAS  Google Scholar 

  • Murray KM, Bauer LA, Koup JR. Predictive performance of computer dosing methods for tobramycin using two pharmacokinetic models and two weighting algorithms. Clinical Pharmacy 5: 411–414, 1986

    PubMed  CAS  Google Scholar 

  • Muscas GC, Zaccara G. Comparison of three techniques for individualising phenytoin dosage: inappropriate data analysis. American Journal of Hospital Pharmacy 40: 778–779, 1983

    Google Scholar 

  • Nagashima R, O’Reilly RA, Levy G. Kinetics of pharmacologic effects in man: the anticoagulant action of warfarin. Clinical Pharmacology and Therapeutics 10: 22–35, 1969

    PubMed  CAS  Google Scholar 

  • Niven AA. The control of cyclosporin in transplantation: pharmacokinetic aspects, PhD Thesis, University of Glasgow, Glasgow, 1990

    Google Scholar 

  • Niven AA, Grevel J, Al-Banna M, Kelman AW, Whiting B, et al. Pharmacokinetics of cyclosporin in the early post-operative period following renal transplantation. British Journal of Clinical Pharmacology 26: 626P, 1988

    Google Scholar 

  • Okamoto MP, Chin A, Gill M, Yellin AE, Berne TV, et al. Comparison of two microcomputer Bayesian pharmacokinetic programs for predicting serum gentamicin concentrations. Clinical Pharmacy 9: 708–711, 1990

    PubMed  CAS  Google Scholar 

  • Peck CC. Computer assisted clinical pharmacokinetics. In Benet et al. (Eds) Pharmacokinetic basis for drug treatment, pp. 349–356, Raven Press, New York, 1984

    Google Scholar 

  • Peck CC, Brown WD, Sheiner LB, Schuster BD. A microcomputer drug (theophylline) dosing program which assists and teaches physicians. Proceedings of the 4th Annual Conference on Computers and Medical Care, pp. 988–991, 1980

  • Pepin S, Baker D, Nance K, et al. Lithium dosage calculation from age, sex. height, weight and serum creatinine. 15th Annual ASHP Midyear Clinical Meeting, San Francisco, 9 December, 1980

  • Perry PJ, Alexander B, Dunner FJ, Schoenwald RD, Pfohl B, Miller D. Pharmacokinetic protocol for predicting serum lithium levels. Journal of Clinical Psychopharmacology 2: 114–118, 1982

    Article  PubMed  CAS  Google Scholar 

  • Perry PJ, Alexander B, Prince RA, Dunner FJ. The utility of a single-point dosing protocol for predicting steady-state lithium levels. British Journal of Psychiatry 148: 401–405, 1986

    Article  PubMed  CAS  Google Scholar 

  • Powell JR, Vožeh S, Hopewell P, Costello J, Sheiner LB, et al. Theophylline disposition in acutely ill hospitalized patients: the effect of smoking, heart failure, severe airway obstruction and pneumonia. American Review of Respiratory Disease 118: 229–238, 1978

    PubMed  CAS  Google Scholar 

  • Privitera MD, Homan RW, Ludden TM, Peck CC, Vasko MR. Clinical utility of a Bayesian dosing program for phenytoin. Therapeutic Drug Monitoring 11: 285–294, 1989

    Article  PubMed  CAS  Google Scholar 

  • Pryka RD, Rodvold KA, Erdman SM. An updated comparison of drug dosing methods IV: vancomycin. Clinical Pharmacokinetics 20: 463–476, 1991

    Article  PubMed  CAS  Google Scholar 

  • Pryka RD, Rodvold KA, Garrison M, Rotschafer JC. Individualizing vancomycin dosage regimens: one-versus two-compartment Bayesian models. Therapeutic Drug Monitoring 11: 450–454, 1989

    PubMed  CAS  Google Scholar 

  • Rambeck B, Boenigk HE, Dunlop A, Mullen PW, Wadsworth J, et al. Predicting phenytoin dose: a revised nomogram. Therapeutic Drug Monitoring 1: 325–333, 1979

    Article  PubMed  CAS  Google Scholar 

  • Ratain MJ, Staubus AE, Schilsky RL, Malspeis L. Limited sampling models for amonafide (NSC 308847) pharmacokinetics. Cancer Research 48: 4127–4130, 1988

    PubMed  CAS  Google Scholar 

  • Ratain MJ, Vogelzang NJ. Limited sampling model for vinblastine pharmacokinetics. Cancer Treatment Reports 71: 935–939, 1987

    PubMed  CAS  Google Scholar 

  • Richens A. A study of the pharmacokinetics of phenytoin (diphenylhydantoin) in epileptic patients, and the development of a nomogram for making dose increments. Epilepsia 16: 627–646, 1975

    Article  PubMed  CAS  Google Scholar 

  • Richens A, Dunlop A. Serum phenytoin levels in the management of epilepsy. Lancet 2: 247–248, 1975

    Article  PubMed  CAS  Google Scholar 

  • Robb RA, Bauer LA, Koup JR. Manual of integrated HP-41C calculator programs for pharmacokinetic calculations, p. 11, American Society of Hospital Pharmacists, Bethesda, 1982

    Google Scholar 

  • Robinson PC, Mayer PR. A graphic method for predicting individual phenytoin levels in an office practice. Therapeutic Drug Monitoring 4: 225–228, 1982

    Article  PubMed  CAS  Google Scholar 

  • Rodman JH, Abromowitch M, Sinkule JA, Hayes FA, Rivers GK, et al. Clinical pharmacodynamics of continuous infusion teniposide: systemic exposure as a determinant of response in a Phase I trial. Journal of Clinical Oncology 5: 1007–1014, 1987

    PubMed  CAS  Google Scholar 

  • Rodman JH, Sunderland M, Kavanagh RL, Ochs J, Yalowich J, et al. Pharmacokinetics of continuous infusion of methotrexate and teniposide in pediatric cancer patients. Cancer Research 50: 4267–4271, 1990

    PubMed  CAS  Google Scholar 

  • Rodvold KA, Blum RA. Predictive performance of Sawchuk-Zaske and Bayesian dosing methods for tobramycin. Journal of Clinical Pharmacology 27: 419–427, 1987

    PubMed  CAS  Google Scholar 

  • Rodvold KA, Blum RA, Fischer JH, Zorkufa HZ, Rotschafer JC, et al. Vancomycin pharmacokinetics in patients with varying degrees of renal function. Antimicrobial Agents and Chemotherapy 32: 848–852, 1988

    Article  PubMed  CAS  Google Scholar 

  • Rodvold KA, Pryka R, Garrison M, Rotschafer JC. Evaluation of a two-compartment Bayesian forecasting program for predicting vancomycin concentrations. Therapeutic Drug Monitoring 11: 269–275, 1989

    Article  PubMed  CAS  Google Scholar 

  • Rodvold KA, Pryka RD, Kuehl PG, Blum RA, Donahue P. Bayesian forecasting of serum gentamicin concentrations in intensive care patients. Clinical Pharmacokinetics 18: 409–418, 1990

    Article  PubMed  CAS  Google Scholar 

  • Ruffo S, Messori A, Grasela TH, Longo G, Donati-Cori G, et al. A calculator program for clinical application of the Bayesian method of predicting plasma drug levels. Computer Programs in Biomedicine 19: 167–177, 1985

    Article  PubMed  CAS  Google Scholar 

  • Ruffo S, Messori A, Longo G, Matucci M, Morfini M, et al. A microcomputer program for individualizing Factor VIII dosage in haemophilia patients undergoing major surgery. Computer Programs in Biomedicine 23: 37–46, 1986

    Article  CAS  Google Scholar 

  • Sarubbi FA, Hull JA. Amikacin serum concentrations: predictions of levels and dosage guidelines. Annals of Internal Medicine 89: 612–618, 1978

    PubMed  CAS  Google Scholar 

  • Sawchuk RJ, Zaske DE. Pharmacokinetics of dosing regimens which utilize multiple intravenous infusions: gentamicin in burn patients. Journal of Pharmacokinetics and Biopharmaceutics 4: 183–195, 1976

    PubMed  CAS  Google Scholar 

  • Sawchuk RJ, Zaske DE, Cipolle RJ, Wargin WA, Strate RJ. Kinetic model of gentamicin dosing with the use of individual patient parameters. Clinical Pharmacology and Therapeutics 21: 362–369, 1977

    PubMed  CAS  Google Scholar 

  • Schmidlin O, Vožeh S, Keller B, Perruchoud A, Follath F. Predictability and intraindividual variability of serum theophylline concentration sin patients with obstructive lung disease: 12h versus 24h dosing. European Journal of Clinical Pharmacology 39: 253–256, 1990

    Article  PubMed  CAS  Google Scholar 

  • Serre-Debeauvais F, Iliadis A, Tranchand B, Michallet M, Benzekri S, et al. Bayesian estimation of cyclosporine clearance in bone marrow graft. Therapeutic Drug Monitoring 12: 16–22, 1990

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Bayesian individualization of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. Journal of Pharmaceutical Sciences 71: 1344–1348, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Evaluation of models for estimating population pharmacokinetic parameters I: Michaelis-Menten model, routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 8: 553–571, 1980

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clinical Pharmacology and Therapeutics 26: 294–305, 1979

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Halkin H, Peck C, Rosenberg B, Melmon KL. Improved computer-assisted digoxin therapy: a method of using feedback of measured serum digoxin concentrations. Annals of Internal Medicine 82: 619–627, 1975

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. Journal of Pharmacokinetics and Biopharmaceutics 5: 445–479, 1977

    PubMed  CAS  Google Scholar 

  • Shentag JJ. Aminoglycosides. In Evans et al. (Eds) Applied pharmacokinetics: principles of therapeutic drug monitoring, pp. 174–209, Applied Therapeutics Inc., Spokane, 1980

    Google Scholar 

  • Slotfeldt ML, Johnson CE, Grambau G, Weg M. Reliability of theophylline clearance in determining chronic oral dosage regimens. American Journal of Hospital Pharmacy 37: 66–68, 1979

    Google Scholar 

  • Stein U, Oellerich M, Sybrecht GW, Schneider B. Evaluation of a novel Bayesian method for individualizing theophylline dosage. Journal of Clinical Chemistry and Clinical Biochemistry 26: 405–414, 1988

    CAS  Google Scholar 

  • Svec JM, Coleman RW, Mungall DR, Ludden TM. Bayesian pharmacokinetic/pharmacodynamic forecasting of prothrombin response to warfarin therapy: preliminary evaluation. Therapeutic Drug Monitoring 7: 174–180, 1985

    Article  PubMed  CAS  Google Scholar 

  • Theofanous TG, and Barile RG. Multiple dose kinetics of oral anticoagulants: methods of analysis and optimized dosing. Journal of Pharmaceutical Sciences 62: 261–266, 1973

    Article  PubMed  CAS  Google Scholar 

  • Thomson AH, Campbell KC, Kelman AW. Evaluation of six gentamicin nomograms using a Bayesian parameter estimation program. Therapeutic Drug Monitoring 12: 258–263, 1990

    Article  PubMed  CAS  Google Scholar 

  • Thomson AH, Grant AC, Rodger RSC, Hughes R. Gentamicin and vancomycin removal by continuous venovenous hemofiltration. DICP: Annals of Pharmacotherapy 25: 127–129, 1991

    PubMed  CAS  Google Scholar 

  • Thomson AH, Kelman AW, de Vane PJ, Hillis WS, Whiting B. Bayesian parameter estimation: comparison of one- and two-compartment models for lignocaine. Proceedings of the Second European Congress of Biopharmaceutics and Pharmacokinetics, Salamanca, Spain, 1984

  • Thomson AH, Kelman AW, de Vane PJ, Hillis WS, Whiting B. Changes in lignocaine disposition during long-term infusion in patients with acute ventricular arrhythmias. Therapeutic Drug Monitoring 9: 283–291, 1987

    Article  PubMed  CAS  Google Scholar 

  • Tozer TN, Winter ME. Phenytoin. In Evans et al. (Eds) Applied pharmacokinetics, pp. 275–314, Applied Therapeutics Inc., San Francisco, 1980

    Google Scholar 

  • Uaamanuichai M, Day RB, Brater DC. Bayesian and least squares methods for vancomycin dosing. American Journal of the Medical Sciences 294: 100–104, 1987

    Article  Google Scholar 

  • Uematsu T, Hirayama H, Nagashima S, Yamazaki T, Tsuchiya N, et al. Prediction of individual dosage requirements for lignocaine: a validation study for Bayesian forecasting in Japanese patients. Therapeutic Drug Monitoring 11: 25–31, 1989

    Article  PubMed  CAS  Google Scholar 

  • Vasquez Rodriguez A, Santos Buegla D, Alonso Gonzalez AC, Garcia Sanchez MJ, Dominguez-Gil Hurle A. Comparison of methods for the prediction of phenytoin concentrations. Journal of Clinical Pharmacy and Therapeutics 16: 55–62, 1991

    Article  Google Scholar 

  • Vožeh S, Berger M, Wenk M, Ritz R, Follath F. Rapid prediction of individual dose requirements for lignocaine. Clinical Pharmacokinetics 9: 354–363, 1984b

    Article  PubMed  Google Scholar 

  • Vožeh S, Hillman R, Wandell M, Ludden T, Sheiner L. Computer-assisted drug assay interpretation based on Bayesian estimation of individual pharmacokinetics: application to lidocaine. Therapeutic Drug Monitoring 7: 66–73, 1985

    Article  PubMed  Google Scholar 

  • Vožeh S, Muir KT, Sheiner LB, Follath F. Predicting individual phenytoin dosage. Journal of Biopharmaceutics and Pharmacokinetics 9: 131–147, 1981

    Article  Google Scholar 

  • Vožeh S, Steimer J-L. Feedback control mechanisms for drug dosage optimisation: concepts, classification and clinical application. Clinical Pharmacokinetics 10: 457–476, 1985

    Article  PubMed  Google Scholar 

  • Vožeh S, Steiner C. Estimates of the population pharmacokinetic parameters and performance of Bayesian feedback: a sensitivity analysis. Journal of Pharmacokinetics and Biopharmaceutics 15: 511–528, 1987

    PubMed  Google Scholar 

  • Vožeh S, Wenk M, Follath F. Experience with NONMEM: analysis of serum concentration data in patients treated with mexiletine and lidocaine. Drug Metabolism Reviews 15: 305–315, 1984a

    Article  PubMed  Google Scholar 

  • Wagner JG. New and simple method to predict dosage of drugs obeying simple Michaelis-Menten elimination kinetics and to distinguish such kinetics from simple first-order and from parallel Michaelis-Menten and first order kinetics. Therapeutic Drug Monitoring 7: 377–386, 1985

    Article  PubMed  CAS  Google Scholar 

  • Watson ID, Langan CE, Stewart MJ. Assessment of theophylline compliance in general practice using a ‘compliance index’ based on apparent drug clearance. Annals of Clinical Biochemistry 28: 60–67, 1991

    PubMed  Google Scholar 

  • Weinberger M, Hendeles L, Ahrens R. Clinical pharmacology of drugs used for asthma. Pediatric Clinics of North America 28: 47–75, 1981

    PubMed  CAS  Google Scholar 

  • Welty TE, Robinson FC, Mayer PR. A comparison of phenytoin dosing methods in private practice patients. Epilepsia 27: 76–80, 1986

    Article  PubMed  CAS  Google Scholar 

  • White R, Mungall D. Outpatient management of warfarin therapy: comparison of computer-predicted dosage adjustment to skilled professional care. Therapeutic Drug Monitoring 13: 46–50, 1991

    Article  PubMed  CAS  Google Scholar 

  • Whiting B, Kelman AW, Bryson SM, Derkx FHM, Thomson AH, et al. Clinical pharmacokinetics: a comprehensive system for therapeutic drug monitoring and prescribing. British Medical Journal 288: 541–545, 1984

    Article  PubMed  CAS  Google Scholar 

  • Whiting B, Kelman AW, Grevel JG. Population pharmacokinetics: theory and clinical application. Clinical Pharmacokinetics 11: 387–401, 1986

    Article  PubMed  CAS  Google Scholar 

  • Whiting B, Kelman AW, Grevel JG. Population pharmacokinetics. In Hansch et al. (Eds.) Comprehensive medicinal chemistry, volume 5: Biopharmaceutics, pp. 297–304, Pergamon Press, 1990

    Google Scholar 

  • Whiting B, Kelman AW, Struthers AE. Prediction of response to theophylline in chronic bronchitis. British Journal of Clinical Pharmacology 17: 1–8, 1984

    Article  PubMed  CAS  Google Scholar 

  • Whiting B, Niven AA, Kelman AW, Briggs JD. Improved therapeutic control of cyclosporin in renal transplantation. In Decision support for patient management: measurement, modelling and control, pp. 33–38, British Medical Informatics Society, London, 1989

    Google Scholar 

  • Whiting B, Niven AA, Kelman AW, Thomson AH, Anderson JE, et al. A Bayesian kinetic control strategy for cyclosporin in renal transplantation. In D’Argenio DZ (Ed.) Advanced methods of pharmacokinetic and pharmacodynamic systems analysis, pp. 171–176 Plenum Press, New York, 1991

    Google Scholar 

  • Williams PJ, Browne JL, Patel RA. Bayesian forecasting of serum lithium concentrations: comparison with traditional methods. Clinical Pharmacokinetics 17: 45–52, 1989

    Article  PubMed  CAS  Google Scholar 

  • Williams PJ, Lane J, Murray W, Mergener MA, Kamigaki M. Pharmacokinetics of the digoxin-quinidine interaction via mixed-effect modelling. Clinical Pharmacokinetics 22: 66–74, 1992

    Article  PubMed  CAS  Google Scholar 

  • Yamaoka K, Nakagawa T, Tanaka H, Yasuhara M, Okumura K, et al. A nonlinear multiple regression program, MULTI 2 (BAYES), based on Bayeisan algorithm for microcomputer. Journal of Pharmacobio-Dynamics 8: 246–256, 1985

    Article  PubMed  CAS  Google Scholar 

  • Yuen GJ, Drusano GL, Forrest A, Plaisance K, Caplan ES. Prospective use of optimal sampling theory: steady-state ciprofloxacin pharmacokinetics in critically ill trauma patients. Clinical Pharmacology and Therapeutics 46: 451–457, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Yuen GJ, Latimer PT, Littlefield LC, Mackey R. Phenytoin dosage predictions in paediatric patients. Clinical Pharmacokinetics 16: 254–260, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Yuen GJ, Taylor JW, Ludden TM, Murphy MJ. Predicting phenytoin dosages using Bayesian feedback: a comparison with other methods. Therapeutic Drug Monitoring 5: 437–441, 1983

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Aoyama T. Clinical utility of a new and simple technique for individualizing phenytoin dosage. Journal of Pharmacobio-Dynamics 12: 187–192, 1989a

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Aoyama T. Clinical evaluation of population pharmacokinetic parameters in phenytoin dosage adjustment. Chemical Pharmaceutical Bulletin 37: 3363–3366, 1989b

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Aoyama T. Population pharmacokinetics of phenytoin from routine clinical data in Japan. Journal of Clinical Pharmacy and Therapeutics 14: 71–77, 1989

    Article  PubMed  CAS  Google Scholar 

  • Yukawa E, Higuchi S, Ohtsubo K, Aoyama T. Comparison of single-point phenytoin dosage prediction techniques. Journal of Clinical Pharmacy and Therapeutics 13: 293–305, 1988

    Article  PubMed  CAS  Google Scholar 

  • Zaccara G, Messori A, Muscas GC, Albani F, Baruzzi A, Bianchi A, et al. Predictive performance of pharmacokinetic methods for phenytoin dosing: a multi-center evaluation in 282 patients with epilepsy. Epilepsy Research 3: 253–261, 1989

    Article  PubMed  CAS  Google Scholar 

  • Zantvoort FA, Wagenvoort JHT, Derkx FHM, Michel MF. Evaluation of a microcomputer program (OPT) for parameter optimisation in clinical pharmacokinetics: gentamicin and tobramycin. British Journal of Clinical Pharmacology 24: 511–518, 1987

    Article  PubMed  CAS  Google Scholar 

  • Zetin M, Garber D, Cramer M. A simple mathematical model for predicting lithium dose requirement. Journal of Clinical Psychiatry 44: 144–145, 1983

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Thomson, A.H., Whiting, B. Bayesian Parameter Estimation and Population Pharmacokinetics. Clin. Pharmacokinet. 22, 447–467 (1992). https://doi.org/10.2165/00003088-199222060-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-199222060-00004

Keywords

Navigation