Skip to main content
Log in

Population Pharmacokinetics Theory and Clinical Application

  • Review Article
  • Published:
Clinical Pharmacokinetics Aims and scope Submit manuscript

Summary

Good therapeutic practice should always be based on an understanding of pharmacokinetic variability. This ensures that dosage adjustments can be made to accommodate differences in pharmacokinetics due to genetic, environmental, physiological or pathological factors. The identification of the circumstances in which these factors play a significant role depends on the conduct of pharmacokinetic studies throughout all stages of drug development. Advances in pharmacokinetic data analysis in the last 10 years have opened up a more comprehensive approach to this subject: early traditional small group studies may now be complemented by later population-based studies. This change in emphasis has been largely brought about by the development of appropriate computer software (NONMEM: Nonlinear Mixed Effects Model) and its successful application to the retrospective analysis of clinical data of a number of commonly used drugs, e.g. digoxin, phenytoin, gentamicin, procainamide, mexiletine and lignocaine (lidocaine). Success has been measured in terms of the provision of information which leads to increased efficiency in dosage adjustment, usually based on a subsequent Bayesian feedback procedure. The application of NONMEM to new drugs, however, raises a number of interesting questions, e.g. ‘what experimental design strategies should be employed?’ and ‘can kinetic parameter distributions other than those which are unimodal and normal be identified?’ An answer to the latter question may be provided by an alternative non-parametric maximum likelihood (NPML) approach.

Population kinetic studies generate a considerable amount of demographic and concentration-time data; the effort involved may be wasted unless sufficient attention is paid to the organisation and storage of such information. This is greatly facilitated by the creation of specially designed clinical pharmacokinetic data bases, conveniently stored on microcomputers.

A move towards the adoption of population pharmacokinetics as a routine procedure during drug development should now be encouraged. A number of studies have shown that it is possible to organise existing, routine data in such a way that valuable information on pharmacokinetic variability can be obtained. It should be relatively easy to organise similar studies prospectively during drug development and, where appropriate, proceed to the establishment of control systems based on Bayesian feedback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beal SL. Population pharmacokinetic data and parameter estimation based on their first two statistical moments. Drug Metabolism Reviews 15: 173–193, 1984

    Article  PubMed  CAS  Google Scholar 

  • Beal SL, Sheiner LB. The NONMEM system. American Statistician 34: 118–119, 1980

    Article  Google Scholar 

  • Beal SL, Sheiner LB. Estimating population kinetics. CRC Critical Reviews in Biomedical Engineering 8: 195–222, 1982

    CAS  Google Scholar 

  • Benet LZ, Sheiner LB. Design and optimisation of dosage regimens. In Goodman & Gilman (Eds) The pharmacological basis of therapeutics, 7th ed., pp. 1663–1734, Macmillan, New York, 1985

    Google Scholar 

  • Burton ME, Vasko MR, Brater DC. Comparison of drug dosing methods. Clinical Pharmacokinetics 10: 1–37, 1985

    Article  PubMed  CAS  Google Scholar 

  • Flühler H, Huber H, Widmer E, Brechbuhler S. Experiences in the application of NONMEM to pharmacokinetic data analysis. Drug Metabolism Reviews 15: 317–339, 1984

    Article  PubMed  Google Scholar 

  • Grasela TH, Sheiner LB. Population pharmacokinetics of procainamide from routine clinical data. Clinical Pharmacokinetics 9: 545–554, 1984

    Article  PubMed  CAS  Google Scholar 

  • Grasela TH, Sheiner LB, Rambeck B, Boenigk HE, Dunlop A, et al. Steady-state pharmacokinetics of phenytoin from routinely collected patient data. Clinical Pharmacokinetics 8: 355–364, 1983

    Article  PubMed  CAS  Google Scholar 

  • Iliadis A, Bachir-Raho M, Bruno R, Favre R. Bayesian estimation and prediction of clearance in high-dose methotrexate infusions. Journal of Pharmacokinetics and Biopharmaceutics 13: 101–115, 1985

    PubMed  CAS  Google Scholar 

  • Jelliffe RW, Jelliffe SM. A computer program for estimation of creatinine clearance from unstable serum creatinine levels, age, sex and weight. Mathematical Biosciences 14: 17–24, 1972

    Article  Google Scholar 

  • Jusko WJ, Gardner MJ, Mangione A, Schentag JJ, Koup JR, et al. Factors affecting theophylline clearances: age, tobacco, cirrhosis, congestive heart failure, obesity, oral contraceptives, benzodiazepines, barbiturates and ethanol. Journal of Pharmaceutical Sciences 68: 1358–1366, 1979

    Article  PubMed  CAS  Google Scholar 

  • Kelman AW, Thomson AH, Whiting B, Bryson SM, Steedman DA. et al. Estimation of gentamicin clearance and volume of distribution in neonates and young children. British Journal of Clinical Pharmacology 18: 685–692, 1984

    Article  PubMed  CAS  Google Scholar 

  • Kelman AW, Whiting B, Bryson SM. OPT: a package of computer programs for parameter optimisation in clinical pharmacokinetics. British Journal of Clinical Pharmacology 14: 247–256, 1982

    Article  PubMed  CAS  Google Scholar 

  • Mallet A. Méthodes d’estimation de Lois à partir d’observations indirectes d’un échantillon: application aux caractéristiques de population de modèles biotogiques. Thèse pour le doctorat d’état es-sciences, Université Paris 6, 1983

    Google Scholar 

  • Mungall DR, Ludden TM, Marshall J, Hawkins DW, Talbert RT, et al. Population pharmacokinetics of racemic warfarin in adult patients. Journal of Pharmacokinetics and Biopharmaceutics 13: 213–227, 1985

    PubMed  CAS  Google Scholar 

  • Peck CC, Brown WD, Sheiner LB, Schuster BG. A microcomputer drug (theophylline) dosing program which assists and teaches physicians. Proceedings of the Fourth Symposium on Computer Applications in Medical Care: 989–994, 1980

    Google Scholar 

  • Rheeders M. Evaluation of factors influencing phenytoin population pharmacokinetics. M.Sc. Thesis, University of Potchefstroom. 1985

  • Sheiner LB. The population approach to pharmacokinetic data analysis: rationale and standard data analysis methods. Drug Metabolism Reviews 15: 153–171, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB. Modeling pharmacokinetic/pharmacodynamic variability. In Rowland et al. (Eds) Variability in drug therapy, pp. 51–64, Raven Press. New York, 1985

    Google Scholar 

  • Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. I. Michaelis-Menten model: routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 8: 553–571, 1980

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. II. Biexponential model; routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 9: 635–651, 1981

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Bayesian individualisation of pharmacokinetics: simple implementation and comparison with non-Bayesian methods. Journal of Pharmaceutical Sciences 71: 1344–1348, 1982

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL. Evaluation of methods for estimating population pharmacokinetic parameters. III. Monoexponential model; routine clinical pharmacokinetic data. Journal of Pharmacokinetics and Biopharmaceutics 11: 303–319, 1983

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Beal SL, Rosenberg B, Marathe VV. Forecasting individual pharmacokinetics. Clinical Pharmacology and Therapeutics 26: 294–305, 1979

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Grasela TH. Experience with NONMEM: analysis of routine phenytoin clinical pharmacokinetic data. Drug Metabolism Reviews 15: 293–303, 1984

    Article  PubMed  CAS  Google Scholar 

  • Sheiner LB, Halkin H, Peck CC, Rosenberg B, Melmon KL. Improved computer-assisted digoxin therapy: a method using feedback of measured serum digoxin concentration. Annals of Internal Medicine 82: 619–627, 1975

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Marathe VV. Estimation of population characteristics of pharmacokinetic parameters from routine clinical data. Journal of Pharmacokinetics and Biopharmaceutics 5: 445–479, 1977

    PubMed  CAS  Google Scholar 

  • Sheiner LB, Rosenberg B, Melmon KL. Modelling of individual pharmacokinetics for computer-aided drug dosage. Computers and Biomedical Research 5: 441–459, 1972

    Article  Google Scholar 

  • Siersbaek-Nielsen K, Molholm Hansen J, Kampmann J, Kristensen M. Rapid evaluation of creatinine clearance. Lancet 1: 1133–1134, 1971

    Article  PubMed  CAS  Google Scholar 

  • Slattery JT, Gibaldi M, Koup JR. Pharmacokinetic concepts: Prediction of maintenance dose required to attain a desired drug concentration at steady-state from a single determination of concentration after an initial dose. Clinical Pharmacokinetics 5: 377–385, 1980

    Article  PubMed  CAS  Google Scholar 

  • Steimer J-L, Mallet A, Golmard J-L, Boisvieux J-F. Alternative approaches to estimation of population pharmacokinetic parameters: comparison with the nonlinear mixed-effects model. Drug Metabolism Reviews 15: 265–292, 1984

    Article  PubMed  CAS  Google Scholar 

  • Steimer J-L, Mallet A, Mentre F. Estimating interindividual pharmacokinetic variability. In Rowland et al. (Eds) Variability in drug therapy, pp. 65–111. Raven Press, New York, 1985

    Google Scholar 

  • Vozeh S, Berger M, Wenk M, Ritz R, Follath F. Rapid prediction of individual dosage requirements for lignocaine. Clinical Pharmacokinetics 9: 354–363, 1984a

    Article  PubMed  CAS  Google Scholar 

  • Vozeh S, Katz G, Steiner V, Follath F. Population pharmacokinetic parameters in patients treated with oral mexiletine. European Journal of Clinical Pharmacology 23: 445–451, 1982

    Article  PubMed  CAS  Google Scholar 

  • Vozeh S, Muir KT, Sheiner LB, Follath F. Predicting individual phenytoin dosage. Journal of Pharmacokinetics and Biopharmaceutics 9: 131–146, 1981

    PubMed  CAS  Google Scholar 

  • Vozeh S, Steimer J-L. Feedback control methods for drug dosage optimisation. Clinical Pharmacokinetics 10: 457–476, 1985

    Article  PubMed  CAS  Google Scholar 

  • Vozeh S, Wenk M, Follath F. Experience with NONMEM: analysis of serum concentration data in patients treated with mexilitine and lidocaine. Drug Metabolism Reviews 15: 305–315, 1984b

    Article  PubMed  CAS  Google Scholar 

  • Wilson JM, Slattery JT. Maintenance-dose prediction based on a single determination of concentration: dose of parent drug required to give a desired steady-state concentration of metabolite. Journal of Pharmaceutical Sciences 72: 1174–1181, 1983

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Whiting, B., Kelman, A.W. & Grevel, J. Population Pharmacokinetics Theory and Clinical Application. Clin-Pharmacokinet 11, 387–401 (1986). https://doi.org/10.2165/00003088-198611050-00004

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00003088-198611050-00004

Keywords

Navigation