Skip to main content
Log in

Transdermal Delivery of Treatment for Alzheimer’s Disease

Development, Clinical Performance and Future Prospects

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

There is increasing interest in the potential of transdermal drug delivery systems for the treatment of neurological disorders, especially in the elderly. In this population, the higher incidence of chronic diseases, such as diabetes mellitus, cardiovascular disease, neurological disease and chronic pain, has dramatically increased the need for long-term medications. Additionally, elderly patients often have a combination of several chronic diseases, meaning drug delivery, drug-drug interactions, absorption/blood concentrations, toxicity and compliance are of concern for patients as well as for their caregivers and physicians. Recent efforts have focused on developing pharmaceutical preparations that overcome these issues. For example, rate-controlled drug delivery systems have been under active development. Transdermal drug delivery systems have been developed to deliver phenserine, rivastigmine, nicotine and estradiol for the management of cognitive and behavioural dysfunctions in patients with Alzheimer’s disease because this form of administration has several advantages, including maintenance of sustained therapeutic plasma concentrations of drugs, easy application and reduced systemic adverse effects. Thus, transdermal drug delivery for elderly patients offers promise as the ideal therapeutic approach to treating Alzheimer’s disease.

This article reviews the technical principles underlying the development of transdermal drug delivery systems, focusing on cholinesterase inhibitors, and the prospects for future development. The clinical performance of transdermal patches, again with emphasis on cholinesterase inhibitors, is also reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Table I
Table II
Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Novartis media factsheet. Exelon® patch, a new therapeutic approach [online]. Available from URL: http://www.lif.se/cs/Publik%20webb/Sidinnehall/Publik_Dokument/Pressmedde-landen/FACTS_ABOUT_THE_EXELON_PATCH.doc [Accessed 2008 Jul 11]

  2. Hebert LE, Scherr PA, Bienias JL, et al. Alzheimer disease in the US population: prevalence estimates using the 2000 census. Arch Neurol 2003; 60: 1119–22

    Article  PubMed  Google Scholar 

  3. Chou J. Use your faculties and Alzheimer’s can be kept at bay. Taipei Times 2005; 15: 1–2

    Google Scholar 

  4. Wimo A, Jonsson L, Winblad B. An estimate of the worldwide prevalence and direct costs of dementia in 2003. Dement Geriatr Cogn Disord 2006; 21: 175–81

    Article  PubMed  CAS  Google Scholar 

  5. Darvesh S, Walsh R, Kumar R, et al. Inhibition of human cholinesterases by drugs used to treat Alzheimer disease. Alzheimer Dis Assoc Disord 2003; 17(2): 117–26

    Article  PubMed  CAS  Google Scholar 

  6. Perry EK, Perry RH, Blessed G, et al. Changes in brain cholinesterases in senile dementia of Alzheimer type. Neuropathol Appl Neurobiol 1978; 4: 273–7

    Article  PubMed  CAS  Google Scholar 

  7. Silver A. The biology of cholinesterases. Amsterdam: Elsevier, 1974

    Google Scholar 

  8. Sikdar S. Should titration schedules for cholinesterase inhibitors be changed? Int J Geriatr Psychiatry 2003; 18: 1063–4

    Article  PubMed  Google Scholar 

  9. Rosler M, Anand R, Cicin-Sain A, et al. Efficacy and safety of rivastigmine in patients with Alzheimer’s disease: international randomized controlled trial. BMJ 1999; 318(6): 633–40

    Article  PubMed  CAS  Google Scholar 

  10. Birks J. Cholinesterase inhibitors for Alzheimer’s disease. Cochrane Database Syst Rev 2006; 25(1): CD005593

    Google Scholar 

  11. Winblad B, Cumming J, Andreasen N, et al. A six-month double-blind, randomized, placebo-controlled study of a transdermal patch in Alzheimer’s disease: rivastigmine patch versus capsule. Int J Geriatr Psychiatry 2007; 32(5): 456–67

    Article  Google Scholar 

  12. Utsuki T, Uchimura N, Irikura M, et al. Preclinical investigation of the topical administration of phenserine: transdermal flux, cholinesterase inhibition, and cognitive efficacy. J Pharmacol Exp Ther 2007; 321(1): 353–61

    Article  PubMed  CAS  Google Scholar 

  13. Davis B. Circadian cholinergic rhythms: implications for cholinesterase inhibitor therapy. Dement Geriatr Cogn Disord 2006; 21(2): 120–9

    Article  PubMed  Google Scholar 

  14. Transdermal drug delivery systems. In: Allen Jr LV, Popovich NG, Ansel HC. Ansel’s pharmaceutical dosage forms and drug delivery systems. 8th ed. Philadelphia (PA): Lippincott Williams and Willkins, 2004: 298–315

  15. Moller HJ, Hampel H, Hegerl U, et al. Double-blind, randomized, placebo-controlled clinical trial on the efficacy and tolerability of a physostigmine patch in patients with senile dementia of the Alzheimer type. Pharmacopsychiatry 1999; 32: 99–106

    Article  CAS  Google Scholar 

  16. Jaskari T, Vuorio M, Kontturi K, et al. Controlled transdermal iontophoresis by ion-exchange fiber. J Control Release 2000; 67(2–3): 179–90

    Article  PubMed  CAS  Google Scholar 

  17. Benech H, Vincenti M, Fouchart F, et al. Development and in vivo assessment of a transdermal system for physostigmine. Methods Find Exp Clin Pharmacol 1998; 20(6): 489–98

    Article  PubMed  CAS  Google Scholar 

  18. Kankkunen T, Sulkava R, Vuorio M, et al. Transdermal iontophoresis of tacrine in vivo. Pharm Res 2002; 19: 705–8

    Article  Google Scholar 

  19. Wagstaff AJ, McTavish D. Tacrine: a review of its pharmacodynamic and pharmacokinetic properties, and therapeutic efficacy in Alzheimer’s disease. Drugs Aging 1994; 4(6): 510–40

    Article  PubMed  CAS  Google Scholar 

  20. Lefèvre G, Sedek G, Jhee SS, et al. Pharmacokinetics and pharmacodynamics of the novel daily rivastigmine transdermal patch compared with twice-daily capsules in Alzheimer’s disease patients. Clin Pharmacol Ther 2008; 83: 106–14

    Article  PubMed  Google Scholar 

  21. Jann MW, Shirley KL, Small GW. Clinical pharmacokinetics and pharmacodynamics of cholinesterase inhibitors. Clin Pharmacokinet 2002; 41(10): 719–39

    Article  PubMed  CAS  Google Scholar 

  22. Howe MN, Price IR. Effects of transdermal nicotine on learning, memory, verbal fluency, concentration, and general health in a healthy sample at risk for dementia. Int Psychogeriatr 2001; 13: 465–75

    Article  PubMed  CAS  Google Scholar 

  23. White HK, Levin ED. Four-week nicotine skin patch treatment effects on cognitive performance in Alzheimer’s disease. Psychopharmacology 1999; 143: 158–65

    Article  PubMed  CAS  Google Scholar 

  24. Levin ED, Simon BB, Conners CK. Nicotine effects and attention-deficit/hyperactivity disorder. In: Piasecki M, Newhouse PA, editors. Nicotine in psychiatry: psychopathology and emerging therapeutics. Washington, DC: American Psychiatric Press 2000: 203–14

    Google Scholar 

  25. Levin ED, Rezvani AH. Nicotinic treatment for cognitive dysfunction. Curr Drug Targets CNS Neurol Disord 2002; 1(4): 423–31

    Article  PubMed  CAS  Google Scholar 

  26. Henderson V, Paganini-Hill A, Emanuel C, et al. Estrogen replacement therapy in older women: comparison between Alzheimer’s disease cases and nondemented control subjects. Arch Neurol 1994; 51: 896–900

    Article  PubMed  CAS  Google Scholar 

  27. Baldereschi M, Di-Carlo A, Lepore V, et al. Estrogen-replacement therapy and Alzheimer’s disease in the Italian Longitudinal Study on Aging. Neurology 1998; 50: 996–1002

    Article  PubMed  CAS  Google Scholar 

  28. Hogervorst E, Yaffe K, Richards M, et al. Hormone replacement therapy for cognitive function in postmenopausal women. Cochrane Database Syst Rev 2002; (3): CD003122

    Google Scholar 

  29. Wenk GL. Neuropathologic changes in Alzheimer’s disease. J Clin Psychiatry 2003; 64Suppl. 9: 7–10

    PubMed  Google Scholar 

  30. Tiraboschi P, Hansen LA, Thal LJ, et al. The importance of neuritic plaques and tangles to the development and evolution of AD. Neurology 2004; 62(11): 1984–9

    Article  PubMed  CAS  Google Scholar 

  31. Scarpini E, Scheltens P, Feldman H. Treatment of Alzheimer’s disease: current status and new perspectives, Lancet Neurol 2003; 2: 539–47

    Article  PubMed  CAS  Google Scholar 

  32. Walker LC, Rosen RF. Alzheimer therapeutics: what after the cholinesterase inhibitors? Age Ageing 2006; 35: 332–5

    Article  PubMed  Google Scholar 

  33. Shen J, Kelleher 3rd RJ. The presenilin hypothesis of Alzheimer’s disease: evidence for a loss-of-function pathogenic mechanism. Proc Natl Acad Sci U S A 2007; 102(2): 403–9

    Article  Google Scholar 

  34. Mikiciuk-Olasik E, Szymanski P, Zurek E. Diagnostics and therapy of Alzheimer’s disease. Indian J Exp Biol 2007; 45(4): 315–25

    PubMed  CAS  Google Scholar 

  35. Iqbal K, Flory M, Khatoon S, et al. Subgroups of Alzheimer’s disease based on cerebrospinal fluid molecular markers. Ann Neurol 2005; 58: 748–57

    Article  PubMed  CAS  Google Scholar 

  36. Andorfer C, Acker CM, Kress Y, et al. Cell-cycle reentry and cell death in transgenic mice expressing nonmutant human tau isoforms. J Neurosci 2005; 25: 5446–54

    Article  PubMed  CAS  Google Scholar 

  37. Schmitz C, Rutten B, Pielen A, et al. Hippocampal neuron loss exceeds amyloid plaque load in a transgenic mouse model of Alzheimer’s disease. Am J Pathol 2004; 164(4): 1495–502

    Article  PubMed  Google Scholar 

  38. Nistor M, Don M, Parekh M, et al. Alpha- and beta-secretase activity as a function of age and beta-amyloid in Down syndrome and normal brain. Neurobiol Aging 2007; 28(10): 1493–506

    Article  PubMed  CAS  Google Scholar 

  39. Lott I, Head E. Alzheimer disease and Down syndrome: factors in pathogenesis. Neurobiol Aging 2005; 26(3): 383–9

    Article  PubMed  CAS  Google Scholar 

  40. Yankner B, Duffy L, Kirschner D. Neurotropic and neurotoxic effects of amyloid beta protein: reversal by tachykinin neuropeptides. Science 1990; 250: 279–82

    Article  PubMed  CAS  Google Scholar 

  41. Blanchard BJ, Hiniker AE, Lu CC, et al. Elimination of amyloid beta neurotoxicity. J Alzheimers Dis 2000; 2(2): 137–49

    PubMed  CAS  Google Scholar 

  42. Venezia V, Nizzari M, Carlo P, et al. Amyloid precursor protein and presenilin involvement in cell signaling. Neurodegener Dis 2007; 4(2–3): 101–11

    Article  PubMed  CAS  Google Scholar 

  43. Lee KH, Shin BH, Shin KJ, et al. A hybrid molecule that prohibits amyloid fibrils and alleviates neuronal toxicity induced by beta-amyloid (1–42). Biochem Biophys Res Commun 2005; 328(4): 816–23

    Article  PubMed  CAS  Google Scholar 

  44. Lacor PN, Buniel MC, Chang L, et al. Synaptic targeting by Alzheimer’s-related amyloid beta oligomers. J Neurosci 2004; 24(45): 10191–200

    Article  PubMed  CAS  Google Scholar 

  45. Siegel SJ, Bieschke J, Powers ET, et al. The oxidative stress metabolite 4-hydroxynonenal promotes Alzheimer protofibril formation. Biochemistry 2007; 46(6): 1503–10

    Article  PubMed  CAS  Google Scholar 

  46. Richartz E, Batra A, Simon P, et al. Diminished production of proinflammatory cytokines in patients with Alzheimer’s disease. Dement Geriatr Cogn Disord 2005; 19: 184–8

    Article  PubMed  CAS  Google Scholar 

  47. Arosio B, Trabattoni D, Galimberti L, et al. Interleukin-10 and interleukin-6 gene polymorphisms as risk factors for Alzheimer’s disease. Neurobiol Aging 2004; 25: 1009–15

    Article  PubMed  CAS  Google Scholar 

  48. Remarque EJ, Bollen EL, Weverling-Rijnsburger AW, et al. Patients with Alzheimer’s disease display a pro-inflammatory phenotype. Exp Gerontol 2001; 36: 171–6

    Article  PubMed  CAS  Google Scholar 

  49. Guerreiro RJ, Santana I, Bras JM, et al. Peripheral inflammatory cytokines as biomarkers in Alzheimer’s disease and mild cognitive impairment. Neurodegener Dis 2007; 4(6): 406–12

    Article  PubMed  CAS  Google Scholar 

  50. Zekanowski C, Religa D, Graff C, et al. Genetic aspects of Alzheimer’s disease. Acta Neurobiol Exp (Wars) 2004; 64(1): 19–31

    Google Scholar 

  51. Butterfield DA, Poon HF, Clair DS, et al. Redox proteomics identification of oxidatively modified hippocampal proteins in mild cognitive impairment: insights into the development of Alzheimer’s disease. Neurobiol 2006; 22: 223–32

    Article  CAS  Google Scholar 

  52. Butterfield DA, Reed T, Perluigi M, et al. Elevated protein-bound levels of the lipid peroxidation product, 4-hydroxy-2-nonenal, in brain from persons with mild cognitive impairment. Neurosci Lett 2006; 397: 170–3

    Article  PubMed  CAS  Google Scholar 

  53. Schipper HM, Bennett DA, Liberman A, et al. Glial heme oxygenase-1 expression in Alzheimer disease and mild cognitive impairment. Neurobiol 2006; 27: 252–61

    CAS  Google Scholar 

  54. Raina AK, Zhu X, Rottkamp CA, et al. Cyclin’ toward dementia: cell cycle abnormalities and abortive oncogenesis in Alzheimer disease. J Neurosci Res 2000; 61(2): 128–33

    Article  PubMed  CAS  Google Scholar 

  55. McShea A, Lee HG, Petersen RB, et al. Neuronal cell cycle reentry mediates Alzheimer disease-type changes. Biochim Biophys Acta 2007; 1772: 467–72

    Article  PubMed  CAS  Google Scholar 

  56. Chen X, Stern D, Yan SD. Mitochondrial dysfunction and Alzheimer’s disease. Curr Alzheimer Res 2006; 3(5): 515–20

    Article  PubMed  CAS  Google Scholar 

  57. Chen X, Yan SD. Mitochondrial Abeta: a potential cause of metabolic dysfunction in Alzheimer’s disease. IUBMB Life 2006; 58(12): 686–94

    Article  PubMed  CAS  Google Scholar 

  58. Mancuso M, Coppede F, Murri L, et al. Mitochondrial cascade hypothesis of Alzheimer’s disease: myth or reality? Antioxid Redox Signal 2007; 9(10): 1631–46

    Article  PubMed  CAS  Google Scholar 

  59. Alzheimer’s disease [online]. Available from URL: http://en.wikipedia.org/wiki/Alzheimer’s_disease [Accessed 2007 Jul 28]

  60. Asthana S, Craft S, Baker LD, et al. Cognitive and neuroendocrine response to transdermal estrogen in postmenopausal women with Alzheimer’s disease: results of a placebo-controlled, double-blind, pilot study. Psychoneuroendocrinology 1999; 24(6): 657–77

    Article  PubMed  CAS  Google Scholar 

  61. Mercier F, Lefèvre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin 2007 Dec; 23(12): 3199–204

    Article  PubMed  CAS  Google Scholar 

  62. Morrow T. Transdermal patches are more than skin deep. Manag Care 2004; 13(4): 50–1

    Google Scholar 

  63. Greig NH, Ruckle J, Comer P, et al. Anticholinesterase and pharmacokinetic profile of phenserine in healthy elderly human subjects. Curr Alzheimer Res 2005; 2(4): 483–92

    Article  PubMed  CAS  Google Scholar 

  64. Sathyan G, Ritschel WA, Hussain AS. Transdermal delivery of tacrine: I. Identification of a suitable delivery vehicle. Int J Pharm 1995; 114: 75–83

    Article  CAS  Google Scholar 

  65. Fishman DL. Computerized Clinical Information System (CCIS). Wilton (CT): Micromedex Inc. Online Inc., 2006

    Google Scholar 

  66. Greig NH, De Micheli E, Holloway HW, et al. The experimental Alzheimer drug phenserine: preclinical pharmacokinetics and pharmacodynamics. Acta Neurol Scand Suppl 2000; 176: 74–84

    Article  PubMed  CAS  Google Scholar 

  67. Utsuki T, Uchimura N, Irikura M, et al. Pre-clinical investigation of the topical administration of phenserine: transdermal flux cholinesterase inhibition and cognitive efficacy. J Pharmacol Exp Ther 2007; 321(1): 353–61

    Article  PubMed  CAS  Google Scholar 

  68. Lefèvre G, Sedek G, Huang HA, et al. Pharmacokinetics of a rivastigmine transdermal patch formulation in healthy volunteers: relative effects of body site application. J Clin Pharmacol 2007; 47: 471–8

    Article  PubMed  Google Scholar 

  69. Mercier F, Lefèvre G, Huang HL, et al. Rivastigmine exposure provided by a transdermal patch versus capsules. Curr Med Res Opin 2007 Dec; 23(12): 3199–204

    Article  PubMed  CAS  Google Scholar 

  70. Cummings J, Lefèvre G, Small G, et al. Pharmacokinetic rationale for the rivastigmine patch. Neurology 2007; 69: S10–3

    Article  PubMed  CAS  Google Scholar 

  71. Winblad B, Kawata AK, Beusterien KM, et al. Caregiver preference for rivastigmine patch relative to capsules for treatment of probable Alzheimer’s disease. Int J Geriatr Psychiatry 2007; 22(5): 485–91

    Article  PubMed  Google Scholar 

  72. Clinicaltrials.gov. Identifier NCT00561392: clinical effectiveness of 10 cm2 rivastigmine patch in patients with Alzheimer’s disease (ADEPT) [online]. Available from URL: http://clini-caltrials.gov/ct2/show/NCT00561392 [Accessed 2008 Jul 13]

  73. Clinicaltrials.gov. Identifier NCT00506415: comparative efficacy, safety, and tolerability of rivastigmine 10 and 15 cm2 patch in patients with Alzheimer’s disease (AD) showing cognitive decline [online]. Available from URL: http://clini-caltrials.gov/ct2/show/NCT00506415 [Accessed 2008 Jul 13]

  74. Spencer JP, Weil A, Hill K, et al. Transgenic mice over-expressing human beta-amyloid have functional nicotinic alpha 7 receptors. Neuroscience 2006; 137(3): 795–805

    Article  PubMed  CAS  Google Scholar 

  75. Rosato SM, Cattaneo A, Cherubini E. Nicotine-induced enhancement of synaptic plasticity at CA3-CA1 synapses requires GABAergic interneurons in adult anti-NGF mice. J Physiol 2006; 576 Pt 2: 361–77

    Article  Google Scholar 

  76. Wilson AL, Langley LK, Monley J, et al. Nicotine patches in Alzheimer’s disease: pilot study on learning, memory, and safety. Pharmacol Biochem Behav 1995; 51: 509–14

    Article  PubMed  CAS  Google Scholar 

  77. Hogg RC, Bertrand D. Partial agonists as therapeutic agents at neuronal nicotinic acetylcholine receptors. Biochem Pharmacol 2007; 73(4): 459–68

    Article  PubMed  CAS  Google Scholar 

  78. Messer Jr WS. The utility of muscarinic agonists in the treatment of Alzheimer’s disease. J Mol Neurosci 2002; 19(1–2): 187–93

    Article  PubMed  CAS  Google Scholar 

  79. Fisher A, Brandeis R, Bar-Ner RH, et al. AF150(S) and AF267B: M1 muscarinic agonists as innovative therapies for Alzheimer’s disease. J Mol Neurosci 2002; 19(1–2): 145–53

    Article  PubMed  CAS  Google Scholar 

  80. Frederick B, Satlin A, Wald LL, et al. Brain proton magnetic resonance spectroscopy in Alzheimer disease: changes after treatment with xanomeline. Am J Geriatr Psychiatry 2002; 10(1): 81–8

    PubMed  Google Scholar 

  81. Bodick NC, Offen WW, Levey AI, et al. Effects of xanomeline, a selective muscarinic receptor agonist, on cognitive function and behavioral symptoms in Alzheimer disease. Arch Neurol 1997; 54(4): 465–73

    Article  PubMed  CAS  Google Scholar 

  82. Mirza NR, Peters D, Sparks RG. Xanomeline and the antipsychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 2003; 9(2): 159–86

    Article  PubMed  CAS  Google Scholar 

  83. Green PS, Simpkins JW. Estrogens and estrogen-like non-feminizing compounds: their role in the prevention and treatment of Alzheimer’s disease. Ann N Y Acad Sci 2000; 924: 93–8

    Article  PubMed  CAS  Google Scholar 

  84. Yaffe K, Vittinghoff E, Ensrud KE, et al. Effects of ultra-low-dose transdermal estradiol on cognition and health-related quality of life. Arch Neurol 2006; 63(7): 945–50

    Article  PubMed  Google Scholar 

  85. Almeida OP, Lautenschlager NT, Vasikaran S, et al. A 20-week randomized controlled trial of estradiol replacement therapy for women aged 70 years and order: effecting mood, cognition and quality of life. Neurobiol Aging 2006; 27(1): 141–9

    Article  PubMed  CAS  Google Scholar 

  86. Hogervorst E, Yaffe K, Richards M, et al. Hormone replacement therapy to maintain cognitive function in women with dementia. Cochrane Database Syst Rev 2002; (3): CD003799

    Google Scholar 

  87. Effects of estrogen on memory in post-menopause women and patients with Alzheimer’s disease [online]. Available from URL: http://www.clinicaltrials.gov/ct2/results?.term=es-trogen+AND+alzheimer%27s+disease [Accessed 2007 Jul 29]

  88. Hall KA, Keks NA, O’Connor DW. Transdermal estrogen patches for aggressive behavior in male patients with dementia: a randomized, controlled trial. Int Psychogeriatr 2005; 17(2): 165–78

    Article  PubMed  Google Scholar 

  89. Corbo RM, Gambina G, Ruggeri M, et al. Association of estrogen receptor alpha (ESR1) Pvull and Xbal polymorphisms with sporadic Alzheimer’s disease and their effect on apolipoprotein E concentrations. Dement Geriatr Cogn Disord 2006; 22(1): 67–72

    Article  PubMed  CAS  Google Scholar 

  90. Monastero R, Cefalu AB, Camarda C, et al. Association of estrogen receptor alpha gene with Alzheimer’s disease: a case-control study. J Alzheimers Dis 2006; 9(3): 273–8

    PubMed  CAS  Google Scholar 

  91. Porrello E, Monti MC, Sinforiani E, et al. Estrogen receptor alpha and APOEepsilon4 polymorphisms interact to increase risk for sporadic AD in Italian females. Eur J Neurol 2006; 13(6): 639–44

    Article  PubMed  CAS  Google Scholar 

  92. Luckhaus C, Sand PG. Estrogen receptor 1 gene (ESR1) variants in Alzheimer’s disease: results of a meta-analysis. Aging Clin Exp Res 2007; 19(2): 165–8

    PubMed  Google Scholar 

  93. Chopda G. Transdermal drug delivery systems: a review, 2006 [online]. Available from URL: http://www.pharmainfo.net/ex-clusive/reviews/transdermal_drug_delivery_system-s_:_a_review/ [Accessed 2007 Jul 29]

  94. Chien YW, Lin S. Optimization of treatment by applying programmable rate-controlled drug delivery technology. Clin Pharmacokinet 2002; 41(15): 1267–99

    Article  PubMed  CAS  Google Scholar 

  95. Muhlack S, Przuntek H, Miller T. Transdermal rivastigmine treatment does not worsen impaired performance of complex motions in patients with Alzheimer’s disease. Pharmacopsychiatry 2006; 39: 16–9

    Article  PubMed  CAS  Google Scholar 

  96. Cummings J. A transdermal patch in Alzheimer disease. Neurology 2007; 69Suppl. 1: S2–3

    Article  Google Scholar 

  97. Lemaire L, Fournier J, Ponthus C, et al. Magnetic resonance imaging of the neuroprotective effect of xaliproden in rats. Invest Radiol 2002; 37(6): 321–7

    Article  PubMed  CAS  Google Scholar 

  98. Santa-Maria I, Hernandez F, Del Rio J, et al. Tramiprosate, a drug of potential interest for the treatment of Alzheimer’s disease, promotes an abnormal aggregation of tau. Mol Neurodegener 2007; 2: 17. Epub 2007 Sep 6

    Article  PubMed  Google Scholar 

  99. Targum SD. Biomarkers for the identification and treatment of dementia: psychiatry MMC [online]. Available from URL: http://www.psychiatrymmc.com/biomarkers-for-the-identifi-cation-and-treatment-of-dementia/ [Accessed 2008 Jul 13]

  100. Hone J. Alzheimer’s disease: the facts [online]. Available from URL: http://www.pharmatimes.com/subscribe [Accessed 2008 Jul 13]

  101. Wang Y, Thakur R, Fan Q, et al. Transdermal iontophoresis: combination strategies to improve transdermal iontophoretic drug delivery. Eur J Pharm Biopharm 2005; 60: 179–91

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

No sources of funding were used to assist in the preparation of this review. The authors have no conflicts of interest that are directly relevant to the content of this review. The authors are grateful to the transdermal patch research team at Novartis for editing and reviewing the text, particularly section 4.

The authors are also grateful to Ms Cristina Chang of Novartis (Taiwan) Co. Ltd and Dr Gilbert Lefèvre for assistance in the preparation of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Jin Lin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chan, A.L.F., Chien, Y.W. & Lin, S.J. Transdermal Delivery of Treatment for Alzheimer’s Disease. Drugs Aging 25, 761–775 (2008). https://doi.org/10.2165/00002512-200825090-00003

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200825090-00003

Keywords

Navigation