Skip to main content
Log in

Sustained-Release Ophthalmic Drug Delivery Systems for Treatment of Macular Disorders

Present and Future Applications

  • Review Article
  • Published:
Drugs & Aging Aims and scope Submit manuscript

Abstract

Macular disease currently poses the greatest threat to vision in aging populations. Historically, most of this pathology could only be dealt with surgically, and then only after much damage to the macula had already occurred. Current pathophysiological insights into macular diseases have allowed the development of effective new pharmacotherapies. The field of drug delivery systems has advanced over the last several years with emphasis placed on controlled release of drug to specific areas of the eye. Its unique location and tendency toward chronic disease make the macula an important and attractive target for drug delivery systems, especially sustained-release systems. This review evaluates the current literature on the research and development of sustained-release posterior segment drug delivery systems that are primarily intended for macular disease with an emphasis on age-related macular degeneration.

Current effective therapies include corticosteroids and anti-vascular endothelial growth factor compounds. Recent successes have been reported using antiangiogenic drugs for therapy of age-related macular degeneration. This review also includes information on implantable devices (biodegradable and nonbiodegradable), the use of injected particles (microspheres and liposomes) and future enhanced drug delivery systems, such as ultrasound drug delivery. The devices reviewed show significant drug release over a period of days or weeks. However, macular disorders are chronic diseases requiring years of treatment. Currently, there is no ‘gold standard’ for therapy and/or drug delivery. Future studies will focus on improving the efficiency and effectiveness of drug delivery to the posterior chamber. If successful, therapeutic modalities will significantly delay loss of vision and improve the quality of life for patients with chronic macular disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Table I
Fig. 4
Table II
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. The use of trade names is for product identification purposes only and does not imply endorsement.

References

  1. Sultana Y, Jain R, Aqil M, et al. Review of ocular drag delivery. Curr Drug Deliv 2006 Apr; 3(2): 207–17

    Article  PubMed  CAS  Google Scholar 

  2. Ghate D, Edelhauser HF. Ocular drug delivery. Expert Opin Drug Deliv 2006 Mar; 3(2): 275–87

    Article  PubMed  CAS  Google Scholar 

  3. Mainardes RM, Urban MC, Cinto PO, et al. Colloidal carriers for ophthalmic drag delivery. Curr Drag Targets 2005 May; 6(3): 363–71

    Article  CAS  Google Scholar 

  4. Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drag Deliv Rev 2005 Dec 13; 57(14): 2063–79

    Article  CAS  Google Scholar 

  5. Lu M, Adamis AP. Ocular delivery of angiostatic agents. Int Ophthalmol Clin 2004; 44(3): 41–51

    Article  PubMed  Google Scholar 

  6. Yasukawa T, Ogura Y, Tabata Y, et al. Drug delivery systems for vitreoretinal diseases. Prog Retin Eye Res 2004; 23: 253–81

    Article  PubMed  CAS  Google Scholar 

  7. Davis JL, Gilger BC, Robinson MR. Novel approaches to ocular drug delivery. Curr Opin Mol Ther 2004 Apr; 6(2): 195–205

    PubMed  CAS  Google Scholar 

  8. Duvvuri S, Majumdar S, Mitra AK. Drug delivery to the retina: challenges and opportunities. Expert Opin Biol Ther 2003 Feb; 3(1): 45–56

    Article  PubMed  CAS  Google Scholar 

  9. Kurz D, Ciulla TA. Novel approaches for retinal drug delivery. Ophthalmol Clin North Am 2002; 15: 405–10

    Article  PubMed  Google Scholar 

  10. Congdon N, O’Colmain B, Klaver CC, et al. Causes and prevalence of visual impairment among adults in the United States. Arch Ophthalmol 2004 Apr; 122(4): 477–85

    Article  PubMed  Google Scholar 

  11. Gohdes DM, Balamurugan A, Larsen BA, et al. Age-related eye diseases: an emerging challenge for public health professionals. Prev Chronic Dis 2005 Jul; 2(3): A17

    PubMed  Google Scholar 

  12. Klein R, Klein BE, Jensen SC, et al. The five-year incidence and progression of age-related maculopathy: the Beaver Dam Eye Study. Ophthalmology 1997 Jan; 104(1): 7–21

    PubMed  CAS  Google Scholar 

  13. Klein R. Diabetic retinopathy. Annu Rev Public Health 1996; 17: 137–58

    Article  PubMed  CAS  Google Scholar 

  14. Kempen JH, O’Colmain BJ, Leske MC, et al. The prevalence of diabetic retinopathy among adults in the United States. Arch Ophthalmol 2004 Apr; 122(4): 552–63

    Article  PubMed  Google Scholar 

  15. Klein M, Vignaud JM, Hennequin V, et al. Increased expression of the vascular endothelial growth factor is a pejorative prognosis marker in papillary thyroid carcinoma. J Clin Endocrinol Metab 2001 Feb; 86(2): 656–8

    Article  PubMed  CAS  Google Scholar 

  16. Norrby K. In vivo models of angiogenesis. J Cell Mol Med 2006 Jul; 10(3): 588–612

    Article  PubMed  CAS  Google Scholar 

  17. Folkman J. Angiogenesis: an organizing principle for drug discovery. Nature Rev 2007 Apr; 6: 273–86

    Article  CAS  Google Scholar 

  18. Ryan SJ. Subretinal neovascularization. Trans New Orleans Acad Ophthalmol 1983; 31: 43–52

    PubMed  CAS  Google Scholar 

  19. Moss SE, Klein R, Klein BE. The 14-year incidence of visual loss in a diabetic population. Ophthalmology 1998 Jun; 105(6): 998–1003

    Article  PubMed  CAS  Google Scholar 

  20. Senger DR, Van De WL, Brown LF, et al. Vascular permeability factor (VPF, VEGF) in tumor biology. Cancer Metastasis Rev 1993 Sep; 12(3–4): 303–24

    Article  PubMed  CAS  Google Scholar 

  21. Aiello LP, Bursell SE, Clermont A, et al. Vascular endothelial growth factor-induced retinal permeability is mediated by protein kinase C in vivo and suppressed by an orally effective beta-isoform-selective inhibitor. Diabetes 1997 Sep; 46(9): 1473–80

    Article  PubMed  CAS  Google Scholar 

  22. Dawson DW, Volpert OV, Gillis P, et al. Pigment epithelium-derived factor: a potent inhibitor of angiogenesis. Science 1999 Jul 9; 285(5425): 245–8

    Article  PubMed  CAS  Google Scholar 

  23. Donaldson MJ, Pulido JS. Treatment of nonexudative (dry) age-related macular degeneration. Curr Opin Ophthalmol 2006 Jun; 17(3): 267–74

    Article  PubMed  Google Scholar 

  24. Toth CA. Macular degeneration: the latest in current surgical management. Retina 2006 Jul; 26(6 Suppl.): S21–5

    Article  PubMed  Google Scholar 

  25. Lim JI. Macular degeneration: the latest in current medical management. Retina 2006 Jul; 26(6 Suppl.): S17–20

    Article  PubMed  Google Scholar 

  26. Photodynamic therapy of subfoveal choroidal neovascularization in age-related macular degeneration with verteporfin: one-year results of 2 randomized clinical trials — TAP report. Treatment of age-related macular degeneration with photodynamic therapy (TAP) Study Group. Arch Ophthalmol 1999 Oct; 117(10): 1329–45

    Google Scholar 

  27. Comer GM, Ciulla TA, Criswell MH, et al. Current and future treatment options for nonexudative and exudative age-related macular degeneration. Drags Aging 2004; 21(15): 967–92

    Article  CAS  Google Scholar 

  28. Pelzek C, Lim JI. Diabetic macular edema: review and update. Ophthalmol Clin North Am 2002 Dec; 15(4): 555–63

    Article  PubMed  Google Scholar 

  29. Aiello LP, Davis MD, Girach A, et al. Effect of raboxistaurin on visual loss in patients with diabetic retinopathy: PKC-DRS2 Group. Ophthalmology 2006 Dec; 113(12): 2221–30

    Article  PubMed  Google Scholar 

  30. Ciulla TA, Walker JD, Fong DS, et al. Corticosteroids in posterior segment disease: an update on new delivery systems and new indications. Curr Opin Ophthalmol 2004 Jun; 15(3): 211–20

    Article  PubMed  Google Scholar 

  31. Jonas JB, Spandau UH, Kamppeter BA, et al. Repeated intravitreal high-dosage injections of triamcinolone acetonide for diffuse diabetic macular edema. Ophthalmology 2006 May; 113(5): 800–4

    Article  PubMed  Google Scholar 

  32. Jonas JB, Kreissig I, Hugger P, et al. Intravitreal triamcinolone acetonide for exudative age related macular degeneration. Br J Ophthalmol 2003; 87: 462–8

    Article  PubMed  CAS  Google Scholar 

  33. Gillies MC, Simpson JM, Luo W, et al. A randomized clinical trial of a single dose of intravitreal triamcinolone acetonide for neovascular age-related macular degeneration: one-year results. Arch Ophthalmol 2003 May; 121(5): 667–73

    Article  PubMed  CAS  Google Scholar 

  34. Gillies MC, Simpson JM, Billson FA, et al. Safety of an intravitreal injection of triamcinolone: results from a randomized clinical trial. Arch Ophthalmol 2004 Mar; 122(3): 336–40

    Article  PubMed  CAS  Google Scholar 

  35. Roth DB, Chieh J, Spim MJ, et al. Noninfectious endophthalmitis associated with intravitreal triamcinolone injection. Arch Ophthalmol 2003 Sep; 121(9): 1279–82

    Article  PubMed  Google Scholar 

  36. Jonas JB, Akkoyun I, Budde WM, et al. Intravitreal reinjection of triamcinolone for exudative age-related macular degeneration. Arch Ophthalmol 2004 Feb; 122(2): 218–22

    Article  PubMed  CAS  Google Scholar 

  37. Jonas JB, Degenring RF, Kreissig I, et al. Exudative age-related macular degeneration treated by intravitreal triamcinolone acetonide: a prospective comparative nonrandomized study. Eye 2005 Feb; 19(2): 163–70

    Article  PubMed  CAS  Google Scholar 

  38. Holekamp NM, Thomas MA, Pearson A. The safety profile of long-term, high-dose intraocular corticosteroid delivery. Am J Ophthalmol 2005 Mar; 139(3): 421–8

    Article  PubMed  CAS  Google Scholar 

  39. Slakter JS. Anecortave acetate for treating or preventing choroidal neovascularization. Ophthalmol Clin North Am 2006 Sep; 19(3): 373–80

    PubMed  Google Scholar 

  40. Slakter JS, Bochow TW, D’Amico DJ, et al. Anecortave acetate (15 milligrams) versus photodynamic therapy for treatment of subfoveal neovascularization in age-related macular degeneration. Ophthalmology 2006 Jan; 113(1): 3–13

    Article  PubMed  Google Scholar 

  41. Kim IK, Husain D, Michaud N, et al. Effect of intravitreal injection of ranibizumab in combination with verteporfin PDT on normal primate retina and choroid. Invest Ophthalmol Vis Sci 2006; 47: 357–63

    Article  PubMed  Google Scholar 

  42. Dorrell MI, Aguilar E, Scheppke L, et al. Combination angiostatic therapy completely inhibits ocular and tumor angiogenesis. Proc Natl Acad Sci U S A 2007 Jan; 104(2): 967–72

    Article  PubMed  CAS  Google Scholar 

  43. Gragoudas ES, Adamis AP, Cunningham Jr ET, et al. Pegaptanib for neovascular age-related macular degeneration. N Engl J Med 2004 Dec 30; 351(27): 2805–16

    Article  PubMed  CAS  Google Scholar 

  44. Eyetech Study Group. Preclinical and phase 1A clinical evaluation of an anti-VEGF pegylated aptamer (EYE001) for the treatment of exudative age-related macular degeneration. Retina 2002 Apr; 22(2): 143–52

    Article  Google Scholar 

  45. Rosenfeld PJ, Heier JS, Hantsbarger G, et al. Tolerability and efficacy of multiple escalating doses of ranibizumab (Lucentis) for neovascular age-related macular degeneration. Ophthalmology 2006 Apr; 113(4): 623–32

    Article  PubMed  Google Scholar 

  46. Moshfeghi AA, Rosenfeld PJ, Puliafito CA, et al. Systemic bevacizumab (Avastin) therapy for neovascular age-related macular degeneration: twenty-four-week results of an uncontrolled open-label clinical study. Ophthalmology 2002 Nov; 113(11): e1–12

    Google Scholar 

  47. Jorge R, Costa RA, Calucci D, et al. Intravitreal bevacizumab (Avastin) for persistent new vessels in diabetic retinopathy (IBEPE study). Retina 2006 Nov; 26(9): 1006–13

    Article  PubMed  Google Scholar 

  48. Tolentino MJ, Brucker AJ, Fosnot J, et al. Intravitreal injection of vascular endothelial growth factor small interfering RNA inhibits growth and leakage in a nonhuman primate, laser-induced model of choroidal neovascularization. Retina 2004 Feb; 24(1): 132–8

    Article  PubMed  Google Scholar 

  49. Mori K, Gehlbach P, Yamamoto S, et al. AAV-mediated gene transfer of pigment epithelium-derived factor inhibits choroidal neovascularization. Invest Ophthalmol Vis Sci 2002 Jun; 43(6): 1994–2000

    PubMed  Google Scholar 

  50. Strom C, Sander B, Klemp K, et al. Effect of ruboxistaurin on blood-retinal barrier permeability in relation to severity of leakage in diabetic macular edema. Invest Ophthalmol Vis Sci 2005 Oct; 46(10): 3855–8

    Article  PubMed  Google Scholar 

  51. Geroski DH, Edelhauser HF. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci 2000; 41(5): 961–4

    PubMed  CAS  Google Scholar 

  52. Olsen TW, Edelhauser HF, Lim JI, et al. Human scierai permeability: effects of age, cryotherapy, transscleral diode laser and surgical thinning. Invest Ophthalmol Vis Sci 1995; 36: 1893–903

    PubMed  CAS  Google Scholar 

  53. Ambati J, Canakis CS, Miller JW, et al. Diffusion of high molecular weight compounds through sciera. Invest Ophthalmol Vis Sci 2000; 41: 1181–5

    PubMed  CAS  Google Scholar 

  54. Cruysberg LP, Nuijts RM, Geroski DH, et al. In vitro human scierai permeability of fluorescein, dexamethasone-fluoresce-in, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther 2002 Dec; 18(6): 559–69

    Article  PubMed  CAS  Google Scholar 

  55. Ambati J, Gragoudas ES, Miller JW, et al. Transscleral delivery of bioactive protein to the choroid and retina. Invest Ophthalmol Vis Sci 2000 Apr; 41(5): 1186–91

    PubMed  CAS  Google Scholar 

  56. Entezari M, Ahmadieh H, Dehghan MH, et al. Posterior sub-tenon triamcinolone for refractory diabetic macular edema: a randomized clinical trial. Eur J Ophthalmol 2005 Nov; 15(6): 746–50

    PubMed  CAS  Google Scholar 

  57. Robinson MR, Lee SS, Kim H, et al. A rabbit model for assessing the ocular barriers to the transscleral delivery of triamcinolone acetonide. Exp Eye Res 2006 Mar; 82(3): 479–87

    Article  PubMed  CAS  Google Scholar 

  58. Voigt M, Kralinger M, Kieselbach G, et al. Ocular aspirin distribution: a comparison of intravenous, topical, and coulomb-controlled iontophresis administration. Invest Ophthalmol Vis Sci 2002; 43: 3299–306

    PubMed  Google Scholar 

  59. Behar-Cohen FF, Parel J-M, Pouliquen Y, et al. Iontophoresis of dexamethasone in the treatment of endotoxin-induced-uveitis in rats. Exp Eye Res 1997; 65: 533–45

    Article  PubMed  CAS  Google Scholar 

  60. Behar-Cohen F, Savoldelli M, Parel JM, et al. Reduction of corneal edema in endotoxin-induced-uveitis after application of L-NAME as nitric oxide synthase inhibitor in rats by iontophoresis. Invest Ophthalmol Vis Sci 1998; 39: 897–904

    PubMed  CAS  Google Scholar 

  61. Yokoyama A, Oshitari T, Negishi H, et al. Protection of retinal ganglion cells from ischemia-reperfusion injury by electrically applied Hsp27. Invest Ophthalmol Vis Sci 2001 Dec; 42(13): 3283–6

    PubMed  CAS  Google Scholar 

  62. Oshima Y, Sakamoto T, Yamanaka I, et al. Targeted gene transfer to corneal endothelium in vivo by electric pulse. Gene Ther 1998; 5: 1347–54

    Article  PubMed  CAS  Google Scholar 

  63. Bochot A, Couvreur P, Fattal E. Intravitreal administration of antisense oligonucleotides: potential of liposomal delivery. Prog Retin Eye Res 2000 Mar; 19(2): 131–47

    Article  PubMed  CAS  Google Scholar 

  64. Langer R. New methods of drug delivery. Science 1990; 249: 1527–33

    Article  PubMed  CAS  Google Scholar 

  65. Kimura H, Ogura Y. Biodegradable polymers for ocular drug delivery. Ophthalmologica 2001 May; 215(3): 143–55

    Article  PubMed  CAS  Google Scholar 

  66. Musch DC, Martin DF, Gordon JF, et al. Treatment of cytomegalovirus retinitis with a sustained-release ganciclovir implant: the Ganciclovir Implant Study Group. N Engl J Med 1997 Jul 10; 337(2): 83–90

    Article  PubMed  CAS  Google Scholar 

  67. Sanborn GE, Anand R, Torti RE, et al. Sustained-release ganciclovir therapy for treatment of cytomegalovirus retinitis: use of an intravitreal device. Arch Ophthalmol 1992 Feb; 110(2): 188–95

    Article  PubMed  CAS  Google Scholar 

  68. Yang CS, Khawly JA, Hainsworth DP, et al. An intravitreal sustained-release triamcinolone and 5-fluorouracil codrug in the treatment of experimental proliferative vitreoretinopathy. Arch Ophthalmol 1998 Jan; 116(1): 69–77

    PubMed  CAS  Google Scholar 

  69. Jaffe GJ, Martin D, Callanan D, et al. Fluocinolone acetonide implant (Retisert) for noninfectious posterior uveitis: thirty-four-week results of a multicenter randomized clinical study. Ophthalmology 2006 Jun; 113(6): 1020–7

    Article  PubMed  Google Scholar 

  70. Jaffe GJ, Pearson PA, Ashton P. Dexamethasone sustained drug delivery implant for the treatment of severe uveitis. Retina 2000; 20(4): 402–3

    Article  PubMed  CAS  Google Scholar 

  71. Jaffe GJ, Yang CS, Wang XC, et al. Intravitreal sustained-release cyclosporine in the treatment of experimental uveitis. Ophthalmology 1998 Jan; 105(1): 46–56

    Article  PubMed  CAS  Google Scholar 

  72. Lim JI, Wolitz RA, Dowling AH, et al. Visual and anatomic outcomes associated with posterior segment complications after ganciclovir implant procedures in patients with AIDS and cytomegalovirus retinitis. Am J Ophthalmol 1999 Mar; 127(3): 288–93

    Article  PubMed  CAS  Google Scholar 

  73. Okabe K, Kimura H, Okabe J, et al. Intraocular tissue distribution of betamethasone after intrascleral administration using a nonbiodegradable drug delivery device. Invest Ophthalmol Vis Sci 2003; 44: 2702–7

    Article  PubMed  Google Scholar 

  74. Maurice D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther 2001 Aug; 17(4): 393–401

    Article  PubMed  CAS  Google Scholar 

  75. Kato A, Kimura H, Okabe K, et al. Feasibility of drug delivery to the posterior pole of the rabbit eye with an episcleral implant. Invest Ophthalmol Vis Sci 2004; 45: 238–44

    Article  PubMed  Google Scholar 

  76. Ciulla TA, Criswell MH, Danis RP, et al. Choroidal neovascular membrane inhibition in a laser treated rat model with intraocular sustained release triamcinolone acetonide microimplants. Br J Ophthalmol 2003 Aug; 87(8): 1032–7

    Article  PubMed  CAS  Google Scholar 

  77. Beeley NR, Stewart JM, Tano R, et al. Development, implantation, in vivo elution, and retrieval of a biocompatible, sustained release subretinal drug delivery system. J Biomed Mater Res A 2006 Mar 15; 76(4): 690–8

    PubMed  Google Scholar 

  78. Sieving PA, Caruso RC, Tao W, et al. Ciliary neurotrophic factor (CNTF) for human retinal degeneration: phase I trial of CNTF delivered by encapsulated cell intraocular implants. Proc Natl Acad Sci U S A 2006 Mar 7; 103(10): 3896–901

    Article  PubMed  CAS  Google Scholar 

  79. Hincal AA, Calis S. Microsphere preparation by solvent evaporation method. In: Wise DL, editor. Handbook of pharmaceutical controlled release technology. New York: Marcel Dekker, 2000: 329–43

    Google Scholar 

  80. Suggs LJ, Mikos AG. Synthetic biodegradable polymers for medical applications. In: Mark JE, editor. Physical properties of polymers. Woodbury (NY): American Institute of Physics, 1996: 615–24

    Google Scholar 

  81. Yasukawa T, Kimura H, Kunou N, et al. Biodegradable scierai implant for intravitreal controlled release of ganciclovir. Graefes Arch Clin Exp Ophthalmol 2000 Feb; 238(2): 186–90

    Article  PubMed  CAS  Google Scholar 

  82. Hashizoe M, Ogura Y, Kimura H, et al. Scierai plug of biodegradable polymers for controlled drug release in the vitreous. Arch Ophthalmol 1994 Oct; 112(10): 1380–4

    Article  PubMed  CAS  Google Scholar 

  83. Hashizoe M, Ogura Y, Takanashi T, et al. Implantable biodegradable polymeric device in the treatment of experimental proliferative vitreoretinopathy. Curr Eye Res 1995 Jun; 14(6): 473–7

    Article  PubMed  CAS  Google Scholar 

  84. Hashizoe M, Ogura Y, Takanashi T, et al. Biodegradable polymeric device for sustained intravitreal release of ganciclovir in rabbits. Curr Eye Res 1997 Jul; 16(7): 633–9

    Article  PubMed  CAS  Google Scholar 

  85. Kimura H, Ogura Y, Hashizoe M, et al. A new vitreal drug delivery system using an implantable biodegradable polymeric device. Invest Ophthalmol Vis Sci 1994 May; 35(6): 2815–9

    PubMed  CAS  Google Scholar 

  86. Miyamoto H, Ogura Y, Hashizoe M, et al. Biodegradable scleral implant for intravitreal controlled release of fluconazole. Curr Eye Res 1997 Sep; 16(9): 930–5

    Article  PubMed  CAS  Google Scholar 

  87. Morita Y, Ohtori A, Kimura M, et al. Intravitreous delivery of dexamethasone sodium m-sulfobenzoate from poly(DL-lactic acid) implants. Biol Pharm Bull 1998 Feb; 21(2): 188–90

    Article  PubMed  CAS  Google Scholar 

  88. Tan DT, Chee SP, Lim L, et al. Randomized clinical trial of Surodex steroid drug delivery system for cataract surgery: anterior versus posterior placement of two Surodex in the eye. Ophthalmology 2001 Dec; 108(12): 2172–81

    Article  PubMed  CAS  Google Scholar 

  89. Zhou T, Lewis H, Foster RE, et al. Development of a multiple-drug delivery implant for intraocular management of proliferative vitreoretinopathy. J Control Release 1998 Nov 13; 55(2–3): 281–95

    Article  PubMed  CAS  Google Scholar 

  90. Yasukawa T, Ogura Y, Sakurai E, et al. Intraocular sustained drug delivery using implantable polymeric devices. Adv Drug Deliv Rev 2005 Dec 13; 57(14): 2033–46

    Article  PubMed  CAS  Google Scholar 

  91. Kunou N, Ogura Y, Yasukawa T, et al. Long-term sustained release of ganciclovir from biodegradable scierai implant for the treatment of cytomegalovirus retinitis. J Control Release 2000 Aug 10; 68(2): 263–71

    Article  PubMed  CAS  Google Scholar 

  92. Gunatillake PA, Adhikari R. Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 2003 May 20; 5: 1–16

    PubMed  CAS  Google Scholar 

  93. Okabe J, Kimura H, Kunou N, et al. Biodegradable intrascleral implant for sustained intraocular delivery of betamethasone phosphate. Invest Ophthalmol Vis Sci 2003 Feb; 44(2): 740–4

    Article  PubMed  Google Scholar 

  94. Fialho SL, Rego MB, Siqueira RC, et al. Safety and pharmacokinetics of an intravitreal biodegradable implant of dexamethasone acetate in rabbit eyes. Curr Eye Res 2006 Jun; 31(6): 525–34

    Article  PubMed  CAS  Google Scholar 

  95. Beeley NR, Rossi JV, Mello-Filho PA, et al. Fabrication, implantation, elution, and retrieval of a steroid-loaded polycaprolactone subretinal implant. J Biomed Mater Res A 2005 Jun 15; 73(4): 437–44

    PubMed  Google Scholar 

  96. Haesslein A, Ueda H, Hacker MC, et al. Long-term release of fluocinolone acetonide using biodegradable fumarate-based polymers. J Control Release 2006 Aug 28; 114(2): 251–60

    Article  PubMed  CAS  Google Scholar 

  97. Le Visage C, Quaglia F, Dreux M, et al. Novel microparticulate system made of poly(methylidene malonate 2.1.2). Biomaterials 2001 Aug; 22(16): 2229–38

    Article  PubMed  Google Scholar 

  98. Felt-Baeyens O, Eperon S, Mora P, et al. Biodegradable scleral implants as new triamcinolone acetonide delivery systems. Int J Pharm 2006 Sep 28; 322(1–2): 6–12

    Article  PubMed  CAS  Google Scholar 

  99. Allergan Inc. Allergan completes acquisition of Oculex Pharmaceuticals, Inc. Allergan’s investigational Posurdex® technology demonstrates improvement in patients with macular edema (swelling of the retina) in phase 2 clinical trial according to data presented at American Academy of Ophthalmology [online]. Available from URL: http://www.shareholder.com/AGN/ReleaseDetail.cfm?.ReleaseID=123213 [Accessed 2006 Nov 30]

  100. Haller JA. The Retina Debates 2003: new technology and controversies from the posterior segment: intravitreal steroids in retinal diseases: the steroid device. The Oculex Study. Anaheim (CA): American Academy of Ophthalmology, 2003

    Google Scholar 

  101. Li X, Jasti BR. Design of controlled release drug delivery systems. New York: McGraw-Hill, 2006

    Google Scholar 

  102. Khoobehi B, Stradtmann MO, Peyman GA, et al. Clearance of sodium fluorescein incorporated into microspheres from the vitreous after intravitreal injection. Ophthalmic Surg 1991 Mar; 22(3): 175–80

    PubMed  CAS  Google Scholar 

  103. Moritera T, Ogura Y, Yoshimura N, et al. Biodegradable micro-spheres containing adriamycin in the treatment of proliferative vitreoretinopathy. Invest Ophthalmol Vis Sci 1992 Oct; 33(11): 3125–30

    PubMed  CAS  Google Scholar 

  104. Herrero-Vanrell R, Ramirez L, Fernandez-Carballido A, et al. Biodegradable PLGA microspheres loaded with ganciclovir for intraocular administration: encapsulation technique, in vitro release profiles, and sterilization process. Pharm Res 2000 Oct; 17(10): 1323–8

    Article  PubMed  CAS  Google Scholar 

  105. Kimura H, Ogura Y, Moritera T, et al. In vitro phagocytosis of polylactide microspheres by retinal pigment epithelial cells and intracellular drug release. Curr Eye Res 1994 May; 13(5): 353–60

    Article  PubMed  CAS  Google Scholar 

  106. Moritera T, Ogura Y, Yoshimura N, et al. Feasibility of drug targeting to the retinal pigment epithelium with biodegradable microspheres. Curr Eye Res 1994 Mar; 13(3): 171–6

    Article  PubMed  CAS  Google Scholar 

  107. Ogura Y, Kimura H. Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium. Surv Ophthalmol 1995 May; 39Suppl. 1: S17–24

    Article  PubMed  Google Scholar 

  108. Veloso Jr AA, Zhu Q, Herrero-Vanrell R, et al. Ganciclovir-loaded polymer microspheres in rabbit eyes inoculated with human cytomegalovirus. Invest Ophthalmol Vis Sci 1997 Mar; 38(3): 665–75

    PubMed  Google Scholar 

  109. Moritera T, Ogura Y, Honda Y, et al. Microspheres of biodegradable polymers as a drug-delivery system in the vitreous. Invest Ophthalmol Vis Sci 1991 May; 32(6): 1785–90

    PubMed  CAS  Google Scholar 

  110. Herrero-Vanrell R, Refojo MF. Biodegradable microspheres for vitreoretinal drug delivery. Adv Drug Deliv Rev 2001 Oct 31; 52(1): 5–16

    Article  PubMed  CAS  Google Scholar 

  111. Bourges JL, Gautier SE, Delie F, et al. Ocular drug delivery targeting the retina and retinal pigment epithelium using polylactide nanoparticles. Invest Ophthalmol Vis Sci 2003 Aug; 44(8): 3562–9

    Article  PubMed  Google Scholar 

  112. Sakurai E, Ozeki H, Kunou N, et al. Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res 2001 Jan; 33(1): 31–6

    Article  PubMed  CAS  Google Scholar 

  113. Giordano GG, Refojo MF, Arroyo MH. Sustained delivery of retinoic acid from microspheres of biodegradable polymer in PVR. Invest Ophthalmol Vis Sci 1993 Aug; 34(9): 2743–51

    PubMed  CAS  Google Scholar 

  114. Peyman GA, Conway M, Khoobehi B, et al. Clearance of microsphere-entrapped 5-fluorouracil and cytosine arabinoside from the vitreous of primates. Int Ophthalmol 1992 Mar; 16(2): 109–13

    Article  PubMed  CAS  Google Scholar 

  115. Moshfeghi AA, Peyman GA. Micro- and nanoparticulates. Adv Drug Deliv Rev 2005 Dec 13; 57(14): 2047–52

    Article  PubMed  CAS  Google Scholar 

  116. Ayalasomayajula SP, Kompella UB. Subconjunctivally administered celecoxib-PLGA microparticles sustain retinal drug levels and alleviate diabetes-induced oxidative stress in a rat model. Eur J Pharmacol 2005 Mar 28; 511(2–3): 191–8

    Article  PubMed  CAS  Google Scholar 

  117. Carrasquillo KG, Ricker JA, Rigas IK, et al. Controlled delivery of the anti-VEGF aptamer EYE001 with poly(lactic-coglycolic)acid microspheres. Invest Ophthalmol Vis Sci 2003 Jan; 44(1): 290–9

    Article  PubMed  Google Scholar 

  118. Kompella UB, Bandi N, Ayalasomayajula SP. Subconjunctival nano- and microparticles sustain retinal delivery of budesonide, a corticosteroid capable of inhibiting VEGF expression. Invest Ophthalmol Vis Sci 2003 Mar; 44(3): 1192–201

    Article  PubMed  Google Scholar 

  119. Saishin Y, Silva RL, Saishin Y, et al. Periocular injection of microspheres containing PKC412 inhibits choroidal neovascularization in a porcine model. Invest Ophthalmol Vis Sci 2003 Nov; 44(11): 4989–93

    Article  PubMed  Google Scholar 

  120. Ayalasomayajula SP, Kompella UB. Celecoxib, a selective cyclooxygenase-2 inhibitor, inhibits retinal vascular endothelial growth factor expression and vascular leakage in a streptozotocin-induced diabetic rat model. Eur J Pharmacol 2003 Jan 5; 458(3): 283–9

    Article  PubMed  CAS  Google Scholar 

  121. Ayalasomayajula SP, Kompella UB. Retinal delivery of celecoxib is several-fold higher following subconjunctival administration compared to systemic administration. Pharm Res 2004 Oct; 21(10): 1797–804

    Article  PubMed  CAS  Google Scholar 

  122. Mantipragada SB, Horvath LI, Arias HR, et al. Lipid-protein interactions and effect of local anesthetics in acetylcholine receptor-rich membranes from Torpedo marmorata electric organ. Biochemistry 2003 Aug 5; 42(30): 9167–75

    Article  PubMed  CAS  Google Scholar 

  123. Peyman GA, Charles HC, Liu KR, et al. Intravitreal liposomeencapsulated drugs: a preliminary human report. Int Ophthalmol 1988; 12(3): 175–82

    Article  PubMed  CAS  Google Scholar 

  124. Cheng L, Hostetler KY, Chaidhawangul S, et al. Intravitreal toxicology and duration of efficacy of a novel antiviral lipid prodrug of ganciclovir in liposome formulation. Invest Ophthalmol Vis Sci 2000 May; 41(6): 1523–32

    PubMed  CAS  Google Scholar 

  125. Mitra AK, editor. Ophthalmic drug delivery systems. New York (NY): Marcel Dekker, Inc., 2002

    Google Scholar 

  126. Bochot A, Fattal E, Boutet V, et al. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci 2002 Jan; 43(1): 253–9

    PubMed  Google Scholar 

  127. Feinstein SB. The powerful microbubble: from bench to bedside, from intravascular indicator to therapeutic delivery system, and beyond. Am J Physiol Heart Circ Physiol 2004 Aug; 287(2): H450–7

    Article  PubMed  CAS  Google Scholar 

  128. Porter TR, Cwajg JM. Contrast echocardiography. In: Prohost GM, editor. Imaging in cardiovascular disease. Philadelphia (PA): Lippincott Williams & Wilkins, 2000: 85–96

    Google Scholar 

  129. Gramiak R, Shah PM. Echocardiography of the aortic root. Invest Radiol 1968 Sep; 3(5): 356–66

    Article  PubMed  CAS  Google Scholar 

  130. Bekeredjian R, Katus HA, Kuecherer HF. Therapeutic use of ultrasound targeted microbubble destruction: a review of non-cardiac applications. Ultraschall Med 2006 Apr; 27(2): 134–40

    Article  PubMed  CAS  Google Scholar 

  131. Schutt EG, Klein DH, Mattrey RM, et al. Injectable microbubbles as contrast agents for diagnostic ultrasound imaging: the key role of perfluorochemicals. Angew Chem Int Ed Engl 2003 Jul 21; 42(28): 3218–35

    Article  PubMed  CAS  Google Scholar 

  132. Dijkmans PA, Juffermans LJ, Musters RJ, et al. Microbubbles and ultrasound: from diagnosis to therapy. Eur J Echocardiogr 2004 Aug; 5(4): 245–56

    Article  PubMed  CAS  Google Scholar 

  133. Kost J, Leong K, Langer R. Ultrasound-enhanced polymer degradation and release of incorporated substances. Proc Natl Acad Sci U S A 1989 Oct; 86(20): 7663–6

    Article  PubMed  CAS  Google Scholar 

  134. Zderic V, Clark JI, Vaezy S. Drug delivery into the eye with the use of ultrasound. J Ultrasound Med 2004 Oct; 23(10): 1349–59

    PubMed  Google Scholar 

  135. Huber PE, Pfisterer P. In vitro and in vivo transfection of plasmid DNA in the Dunning prostate tumor R3327-AT1 is enhanced by focused ultrasound. Gene Ther 2000 Sep; 7(17): 1516–25

    Article  PubMed  CAS  Google Scholar 

  136. Miller DL, Bao S, Gies RA, et al. Ultrasonic enhancement of gene transfection in murine melanoma tumors. Ultrasound Med Biol 1999 Nov; 25(9): 1425–30

    Article  PubMed  CAS  Google Scholar 

  137. Kim HJ, Greenleaf JF, Kinnick RR, et al. Ultrasound-mediated transfection of mammalian cells. Hum Gene Ther 1996 Jul 10; 7(11): 1339–46

    Article  PubMed  CAS  Google Scholar 

  138. Tata DB, Dunn F, Tindall DJ. Selective clinical ultrasound signals mediate differential gene transfer and expression in two human prostate cancer cell lines: LnCap and PC-3. Biochem Biophys Res Commun 1997 May 8; 234(1): 64–7

    Article  PubMed  CAS  Google Scholar 

  139. Bao S, Thrall BD, Miller DL. Transfection of a reporter plasmid into cultured cells by sonoporation in vitro. Ultrasound Med Biol 1997; 23(6): 953–9

    Article  PubMed  CAS  Google Scholar 

  140. Mukherjee D, Wong J, Griffin B, et al. Ten-fold augmentation of endothelial uptake of vascular endothelial growth factor with ultrasound after systemic administration. J Am Coll Cardiol 2000 May; 35(6): 1678–86

    Article  PubMed  CAS  Google Scholar 

  141. Bekeredjian R, Grayburn PA, Shohet RV. Use of ultrasound contrast agents for gene or drug delivery in cardiovascular medicine. J Am Coll Cardiol 2005 Feb 1; 45(3): 329–35

    Article  PubMed  CAS  Google Scholar 

  142. Klibanov AL. Microbubble contrast agents: targeted ultrasound imaging and ultrasound-assisted drug-delivery applications. Invest Radiol 2006 Mar; 41(3): 354–62

    Article  PubMed  Google Scholar 

  143. Church CC. The effects of an elastic solid surface layer on the radial pulsations of gas bubbles. J Acoust Soc Am 1995; 97(3): 1510–21

    Article  Google Scholar 

  144. Hoff L, Sontum PC, Hovem JM. Oscillations of polymeric microbubbles: effect of the encapsulating shell. J Acoust Soc Am 2000 Apr; 107(4): 2272–80

    Article  PubMed  Google Scholar 

  145. Shankar PM, Krishna PD, Newhouse VL. Subharmonic back-scattering from ultrasound contrast agents. J Acoust Soc Am 1999 Oct; 106 (4 Pt 1): 2104–10

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NEI-EY-006311 (JMH), NIA-AG-23055 (JMH), the Research to Prevent Blindness Senior Scientific Investigator Award (JMH) and LSU Eye Center Core Grant EY02377. The Department of Ophthalmology, LSU Health Sciences Center, New Orleans also has an unrestricted grant from Research to Prevent Blindness, New York, New York. The authors have no conflicts of interest that are directly relevant to the content of this review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James M. Hill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Booth, B.A., Denham, L.V., Bouhanik, S. et al. Sustained-Release Ophthalmic Drug Delivery Systems for Treatment of Macular Disorders. Drugs Aging 24, 581–602 (2007). https://doi.org/10.2165/00002512-200724070-00006

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002512-200724070-00006

Keywords

Navigation