Skip to main content
Log in

Comparative Tolerability Profiles of the Inhaled Anaesthetics

  • Review Article
  • Drug Experience
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Improved understanding of the structure/activity relationship of inhaled anaesthetics has resulted in the synthesis of fluorinated compounds which are more potent and less toxic than their unfluorinated antecedents. The toxic effects of inhaled anaesthetics on the liver and kidney are complex but, in general, are related to the extent to which individual inhaled agents are metabolised. Halothane hepatotoxicity is a rare, idiosyncratic reaction which typically occurs in obese women having more than one exposure to the drug within a short time interval. All currently available volatile anaesthetic drugs have depressant effects on the cardiovascular and respiratory systems; arrhythmias are more likely with halothane than with the fluorinated ethers. Cerebral blood flow tends to increase during inhalation anaesthesia, especially with halothane and in the presence of hypercarbia; isoflurane may be given sparingly during neurosurgical procedures whilst monitoring its end-tidal concentration. Although the volatile agents tend to cause uterine relaxation they may be given safely in low concentration to avoid awareness during Caesarean section. In general, young children require rather higher concentrations of volatile agents than adults and seem to be less susceptible to organ toxicity. Two relatively new volatile agents, sevoflurane and desflurane, offer some advantages over isoflurane but neither is an ‘ideal drug’. Sevoflurane interacts with soda-lime to produce a series of degradation products, the most important of which is compound A. Production is greatest during low-flow, closed circuit anaesthesia using high inspired concentrations of the drug. Compound A has nephrotoxic potential in rats but the clinical significance of the interaction between sevoflurane and soda-lime is unclear. Nitrous oxide when given for prolonged periods may cause irreversible bone marrow depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Booth HS, Bixby EM. Fluorine derivatives of chloroform. J Indust Eng Chem 1932; 24: 637–41

    CAS  Google Scholar 

  2. Suckling CW. Some chemical and physical factors in the development of fluothane. Br J Anaesth 1957; 29: 466–72

    PubMed  CAS  Google Scholar 

  3. Terrell RC. Physical and chemical properties of anaesthetic agents. Br J Anaesth 1984; 56: 3S–7S

    PubMed  CAS  Google Scholar 

  4. Kharasch ED, Hankins D, Mautz D, et al. Identification of the enzyme responsible for oxidative halothane metabolism: implications for prevention of halothane hepatitis. Lancet 1996; 347: 1367–71

    PubMed  CAS  Google Scholar 

  5. Carpenter RL, Eger EI II, Johnson BH, et al. The extent of metabolism of inhaled anesthetics in humans. Anesthesiology 1986; 65: 201–5

    PubMed  CAS  Google Scholar 

  6. Cohen EN, Trudell JR, Edmunds HN, et al. Urinary metabolites of halothane in man. Anesthesiology 1975; 43: 392–401

    PubMed  CAS  Google Scholar 

  7. Hubbard AK, Roth TP, Gandolfi AJ, et al. Halothane hepatitis patients generate an antibody response toward a covalently bound metabolite of halothane. Anesthesiology 1988; 68: 791–6

    PubMed  CAS  Google Scholar 

  8. Trudell JR, Ardies CM, Anderson WR. Antibodies raised against trifluoroacetyl protein adducts bind to N-trifluoroacetyl-phosphatidylethanolamine in hexagonal phase phospholipid micelles. J Pharmacol Exp Ther 1991; 257: 657–62

    PubMed  CAS  Google Scholar 

  9. Fee JPH, Black GW, Dundee JW, et al. A prospective study of liver enzyme and other changes following repeat administration of halothane and enflurane. Br J Anaesth 1979; 51:1133–41

    PubMed  CAS  Google Scholar 

  10. Allan LG, Hussey AJ, Howie J, et al. Hepatic glutathione S-transferase release after halothane anaesthesia: open randomized comparison with isoflurane. Lancet 1987; I: 771–3

    Google Scholar 

  11. Bunker JP, Forrest WH, Mosteller F, et al., editors. National Halothane Study: a study of the possible association between halothane anesthesia and postoperative hepatic necrosis. Washington: US Government Printing Office, 1969

    Google Scholar 

  12. Carney FMT, Van Dyke RA. Halothane hepatitis: a critical review. Anesth Analg 1972; 51: 135–60

    PubMed  CAS  Google Scholar 

  13. McCaughey W. A summary of the National Halothane Study. Br J Anaesth 1972; 44: 918

    PubMed  CAS  Google Scholar 

  14. Moult PJA, Sherlock S. Halothane-related hepatitis: a clinical study of twenty-six cases. Q J Med 1975; 44: 99–114

    PubMed  CAS  Google Scholar 

  15. Walton B, Simpson BR, Strunin L, et al. Unexplained hepatitis following halothane. BMJ 1976; 1: 1171–6

    PubMed  CAS  Google Scholar 

  16. Kenna JG, Neuberger J, Williams R. Specific antibodies to halothane-induced liver antigens in halothane-associated hepatitis. Br J Anaesth 1987; 59: 1286–90

    PubMed  CAS  Google Scholar 

  17. Inman WHW, Mushin WW. Jaundice after repeated exposure to halothane: a further analysis of reports to the Committee on Safety of Medicines. BMJ 1978; 2: 1455–6

    PubMed  CAS  Google Scholar 

  18. Neuberger J, Kenna JG. Halothane hepatitis: a model of immune mediated drug hepatotoxicity. Clin Sci 1987; 72: 263–70

    PubMed  CAS  Google Scholar 

  19. Ray DC, Drummond GB. Halothane hepatitis. Br J Anaesth 1991; 67: 84–99

    PubMed  CAS  Google Scholar 

  20. Dundee JW, Fee JPH, McIlroy PDA, et al. Prospective study of liver function following repeat halothane and enflurane. J R Soc Med 1981; 74: 286–91

    PubMed  CAS  Google Scholar 

  21. Bentley JB, Vaughan RW, Gandolfi AJ, et al. Halothane bio-transformation in obese and non-obese patients. Anesthesiology 1982; 57: 94–7

    PubMed  CAS  Google Scholar 

  22. Benjamin SB, Goodman ZD, Ishak KG, et al. The morphologic spectrum of halothane-induced hepatic injury: analysis of 77 cases. Hepatology 1985; 5: 1163–71

    PubMed  CAS  Google Scholar 

  23. Hoft RH, Bunker JP, Goodman HI, et al. Halothane hepatitis in three pairs of closely related women. N Engl J Med 1981; 304: 1023–4

    PubMed  CAS  Google Scholar 

  24. Farrell G, Prendergast D, Murray M. Halothane hepatitis: detection of a constitutional susceptibility factor. N Engl J Med 1985; 313: 1310–4

    PubMed  CAS  Google Scholar 

  25. Strunin L, Simpson BR. Halothane in Britain today. Br J Anaesth 1972; 44: 919–24

    PubMed  CAS  Google Scholar 

  26. Inman WHW, Mushin WW. Jaundice after repeated exposure to halothane: an analysis of reports to the Committee on Safety of Medicines. BMJ 1974; 1: 5–10

    PubMed  CAS  Google Scholar 

  27. Neuberger J, Williams R. Halothane anaesthesia and liver damage. BMJ 1984; 289: 1136–9

    PubMed  CAS  Google Scholar 

  28. Committee on Safety of Medicines. Hepatoxicity. Current Problems in Pharmacovigilance 1986; 18

  29. Klion FM, Schaaffner F, Popper H. Hepatitis after exposure to halothane. Ann Intern Med 1969; 71: 467–77

    PubMed  CAS  Google Scholar 

  30. Walton B. Halothane hepatitis in children. Anaesthesia 1986; 41: 575–8

    PubMed  CAS  Google Scholar 

  31. Whitburn RH, Sumner E. Halothane hepatitis in an 11-month-old child. Anaesthesia 1986; 41: 611–3

    PubMed  CAS  Google Scholar 

  32. Kenna JG, Neuberger J, Mieli-Vergani G, et al. Halothane hepatitis in children. BMJ 1987; 294: 1209–11

    PubMed  CAS  Google Scholar 

  33. Bird GLA, Williams R. Anaesthesia-related liver disease. In: Assem E-SK, editor. Allergic reactions to anaesthetics: clinical and basic aspects. Monographs in Allergy 30. Basel: Karger, 1992: 174–91

    Google Scholar 

  34. Kenna JG, Satoh H, Christ DD, et al. Metabolic basis for a drug hypersensitivity: antibodies in sera from patients with halothane hepatitis recognize liver neoantigens that contain the trifluoroacetyl group derived from halothane. J Pharmacol Exp Ther 1988; 245: 1103–9

    PubMed  CAS  Google Scholar 

  35. Kenna JG, Van Pelt FNAM. The metabolism and toxicity of inhaled anaesthetic agents. Anaesthetic Pharmacol Rev 1994; 2: 29–42

    CAS  Google Scholar 

  36. Chase RE, Holaday DA, Fiserova-Bergerova V, et al. The biotransformation of ethrane in man. Anesthesiology 1971; 35: 262–7

    PubMed  CAS  Google Scholar 

  37. Brown Jr BR, Gandolfi AJ. Adverse effects of volatile anaesthetics. Br J Anaesth 1987; 59: 14–23

    PubMed  CAS  Google Scholar 

  38. Eger EI II, Smuckler EA, Ferrell LD, et al. Is enflurane hepatotoxic? Anesth Analg 1986; 65: 21–30

    PubMed  Google Scholar 

  39. Lewis JH, Zimmerman HJ, Ishak KG, et al. Enflurane hepatotoxicity: a clinical pathologic study of twenty-four cases. Ann Intern Med 1983; 98: 984–92

    PubMed  CAS  Google Scholar 

  40. Allen PJ, Downing JW. A prospective study of hepatocellular function after repeated exposure to halothane or enflurane in women undergoing radium therapy for cervical cancer. Br J Anaesth 1977; 49: 1035–39

    PubMed  CAS  Google Scholar 

  41. Gauntlett IS, Koblin DD, Fahey MR, et al. Metabolism of isoflurane in patients receiving isoniazid. Anesth Analg 1989; 69: 245–9

    PubMed  CAS  Google Scholar 

  42. Christ DD, Kenna JG, Kammerer W, et al. Enflurane metabolism produces covalently bound liver adducts recognized by antibodies from patients with halothane hepatitis. Anesthesiology 1988; 69: 833–8

    PubMed  CAS  Google Scholar 

  43. Thummel KE, Kharasch ED, Podoll T, et al. Human liver microsomal enflurane defluorination catalyzed by cytochrome P450 2E1. Drug Metab Dispos 1993; 21: 350–7

    PubMed  CAS  Google Scholar 

  44. Zimmerman H. Even isoflurane. Hepatology 1991; 13: 1251–3

    PubMed  CAS  Google Scholar 

  45. Holaday DA, Fiserova-Bergerova V, Latto IP, et al. Resistance of isoflurane to biotransformation in man. Anesthesiology 1975; 43: 325–32

    PubMed  CAS  Google Scholar 

  46. Murray JM, Phillips AS, Fee JPH. Comparison of the effects of isoflurane and propofol on hepatic glutathione-S-transferase concentrations during and after prolonged anaesthesia. Br J Anaesth 1994; 72: 599–601

    PubMed  CAS  Google Scholar 

  47. Kharasch ED, Armstrong AS, Gunn K, et al. Clinical sevoflurane metabolism and disposition. II: the role of cytochrome P450 2E1 in fluoride and hexafluoroisopropanol formation. Anesthesiology 1995; 82: 1379–88

    PubMed  CAS  Google Scholar 

  48. Kharasch ED, Karol MD, Lanni C, et al. Clinical sevoflurane metabolism and disposition. I: sevoflurane and metabolite pharmacokinetics. Anesthesiology 1995; 82: 1369–78

    PubMed  CAS  Google Scholar 

  49. Cook TL, Beppu WJ, Hitt BA, et al. A comparison of renal effects and metabolism of sevoflurane and methoxyflurane in enzyme-induced rats. Anesth Analg 1975; 54: 829–34

    PubMed  CAS  Google Scholar 

  50. Frink Jr EJ, Ghantous H, Malan TP. Plasma inorganic fluoride with sevoflurane anesthesia: correlation with indices of hepatic and renal function. Anesth Analg 1992; 74: 231–5

    PubMed  Google Scholar 

  51. Bito H, Ikeda K. Renal and hepatic function in surgical patients after low-flow sevoflurane or isoflurane anesthesia. Anesth Analg 1996; 82: 173–6

    PubMed  CAS  Google Scholar 

  52. Franks JJ, Cruskal JB, Holaday DA. Immediate depression of fibrinogen, albumin and transferrin synthesis by halothane, isoflurane, sevoflurane and enflurane [abstract]. Anesthesiology 1989; 71: A238

    Google Scholar 

  53. Sutton TS, Koblin DD, Gruenke LD, et al. Fluoride metabolites after prolonged exposure of volunteers and patients to desflur-ane. Anesth Analg 1991; 73: 180–5

    PubMed  CAS  Google Scholar 

  54. Weiskopf RB, Eger EI II, Ionescu P, et al. Desflurane does not produce hepatic or renal injury in human volunteers. Anesth Analg 1992; 74: 570–4

    PubMed  CAS  Google Scholar 

  55. Martin JL, Plevak DJ, Flannery KD, et al. Hepatotoxicity after desflurane anesthesia. Anesthesiology 1995; 83: 1125–9

    PubMed  CAS  Google Scholar 

  56. Deutsch S, Goldberg M, Stephen GW, et al. Effects of halothane anesthesia on renal function in normal man. Anesthesiology 1966; 27: 793–804

    PubMed  CAS  Google Scholar 

  57. Mazze RI, Cousins MJ, Barr GA. Renal effects and metabolism of isoflurane in man. Anesthesiology 1974; 40: 536–42

    PubMed  CAS  Google Scholar 

  58. Mazze RI, Sievenpiper TS, Stevenson J. Renal effects of enflurane and halothane in patients with abnormal renal function. Anesthesiology 1984; 60: 161–3

    PubMed  CAS  Google Scholar 

  59. Cronnelly R, Salvatierra Jr O, Feduska NJ. Renal allograft function following halothane, enflurane or isoflurane anesthesia [abstract]. Anesth Analg 1984; 63: 202

    Google Scholar 

  60. Taves DR, Fry BW, Freeman RB, et al. Toxicity following methoxyflurane anesthesia. II: fluoride concentrations in nephro-toxicity. J Am Med Assoc 1970; 214: 91–5

    CAS  Google Scholar 

  61. Kharasch ED, Hankins DC, Thummel KE. Human kidney methoxyflurane and sevoflurane metabolism. Anesthesiology 1995; 82: 689–99

    PubMed  CAS  Google Scholar 

  62. Young SR, Stoelting RK, Peterson C, et al. Anesthetic biotransformation and renal function in obese patients during and after methoxyflurane or halothane anesthesia. Anesthesiology 1975; 42: 451–7

    PubMed  CAS  Google Scholar 

  63. Mazze RI, Calverley RK, Smith NT. Inorganic fluoride nephrotoxicity: prolonged enflurane and halothane anesthesia in volunteers. Anesthesiology 1977; 46: 265–71

    PubMed  CAS  Google Scholar 

  64. Murray JM, Trinick TR. Plasma fluoride concentrations during and after prolonged anesthesia: a comparison of halothane and isoflurane. Anesth Analg 1992; 74: 236–40

    PubMed  CAS  Google Scholar 

  65. Kobayashi Y, Ochiai R, Takeda J, et al. Serum and urinary inorganic fluoride concentrations after prolonged inhalation of sevoflurane in humans. Anesth Analg 1992; 74: 753–7

    PubMed  CAS  Google Scholar 

  66. Bito H, Ikeda K. Plasma inorganic fluoride and intracircuit degradation product concentrations in long-duration, low-flow sevoflurane anesthesia. Anesth Analg 1994; 79: 946–51

    PubMed  CAS  Google Scholar 

  67. Eger EI II, Smith NT, Stoelting RK, et al. Cardiovascular effects of halothane in man. Anesthesiology 1970; 32: 396–409

    PubMed  Google Scholar 

  68. Calverley RK, Smith NT, Prys-Roberts C, et al. Cardiovascular effects of enflurane anesthesia during controlled ventilation in man. Anesth Analg 1978; 57: 619–28

    PubMed  CAS  Google Scholar 

  69. Stevens WC, Cromwell TH, Halsey MJ, et al. The cardiovascular effects of a new inhalation anesthetic, Forane, in human volunteers at constant arterial carbon dioxide tension. Anesthesiology 1971; 35: 8–16

    PubMed  CAS  Google Scholar 

  70. Malan Jr TP, DiNardo JA, Isner RJ. Cardiovascular effects of sevoflurane compared with those of isoflurane in volunteers. Anesthesiology 1995; 83: 918–28

    PubMed  CAS  Google Scholar 

  71. Weiskopf RB, Cahalan MK, Eger EI II, et al. Cardiovascular actions of desflurane in normocarbic volunteers. Anesth Analg 1991; 73: 143–56

    PubMed  CAS  Google Scholar 

  72. Winter PM, Hornbein TF, Smith G. Hyperbaric nitrous oxide anaesthesia in man: determination of anaesthetic potency (MAC) and cardiorespiratory effects [abstracts of Scientific Papers], Annual Meeting of American Society of Anesthesiologists 1972

  73. McKinney MS, Fee JPH, Clarke RSJ. Cardiovascular effects of isoflurane and halothane in young and elderly adult patients. Br J Anaesth 1993; 71: 696–701

    PubMed  CAS  Google Scholar 

  74. Domenech RJ, Macho P, Valdes J, et al. Coronary vascular resistance during halothane anesthesia. Anesthesiology 1977; 46: 236–40

    PubMed  CAS  Google Scholar 

  75. Merin RG, Kumazawa T, Luka NL. Enflurane depresses myocardial function, perfusion, and metabolism in the dog. Anesthesiology 1976; 45: 501–7

    PubMed  CAS  Google Scholar 

  76. Heiberg JK, Wiberg-Jørgensen F, Skovsted P. Heart rate changes caused by enflurane and halothane anaesthesia in man. Acta Anaesthesiol Scand 1978; 22 Suppl. 67: 59–62

    Google Scholar 

  77. Reiz S, Bålfors E, Sørensen MB, et al. Isoflurane — a powerful coronary vasodilator in patients with coronary artery disease. Anesthesiology 1983; 59: 91–7

    PubMed  CAS  Google Scholar 

  78. Eger EI II. The pharmacology of isoflurane. Br J Anaesth 1984; 56: 71S–99S

    PubMed  CAS  Google Scholar 

  79. Leung JM, Goehner P, O’Kelly BF, et al. Isoflurane anesthesia and myocardial ischemia: comparative risk versus sufentanil anesthesia in patients undergoing coronary artery bypass graft surgery. Anesthesiology 1991; 74: 838–47

    PubMed  CAS  Google Scholar 

  80. Wouters P, Doursout M-F, Florence B. Hemodynamic effects of sevoflurane in chronically instrumented dogs [abstract]. Anesthesiology 1989; 71: A508

    Google Scholar 

  81. Merin RG, Bernard J-M, Doursout M-F, et al. Comparison of the effects of isoflurane and desflurane on cardiovascular dynamics and regional blood flow in the chronically instrumented dog. Anesthesiology 1991; 74: 568–74

    PubMed  CAS  Google Scholar 

  82. Helman JD, Leung JM, Bellows WH, et al. The risk of myocardial ischemia in patients receiving desflurane versus sufentanil anesthesia for coronary artery bypass graft surgery. Anesthesiology 1992; 77: 47–62

    PubMed  CAS  Google Scholar 

  83. Katz RL, Katz GJ. Surgical infiltration of pressor drugs and their interaction with volatile anaesthetics. Br J Anaesth 1966; 38:712–8

    PubMed  CAS  Google Scholar 

  84. Black GW. A comparison of cardiac rhythm during halothane and methoxyflurane anaesthesia at normal and elevated levels of paCO2. Acta Anaesthesiol Scand 1967; 11: 103–8

    PubMed  CAS  Google Scholar 

  85. Atlee JL, Bosnjak ZJ. Mechanisms for cardiac dysrhythmias during anesthesia. Anesthesiology 1990; 72: 347–74

    PubMed  Google Scholar 

  86. Johnstone RR, Eger EI II, Wilson C. A comparative interaction of epinephrine with enflurane, isoflurane, and halothane in man. Anesth Analg 1976; 55: 709–12

    Google Scholar 

  87. Alexander JP, Murtagh JG. Arrhythmia during oral surgery: fascicular blocks in the cardiac conducting system. Br J Anaesth 1979; 51: 149–55

    PubMed  CAS  Google Scholar 

  88. Hutchison GL, Davies CA, Main G, et al. Incidence of arrhythmias in dental anaesthesia: a cross-over comparison of halothane and isoflurane. Br J Anaesth 1989; 62: 518–21

    PubMed  CAS  Google Scholar 

  89. Reisner LS, Lippmann M. Ventricular arrhythmias after epinephrine injection in enflurane and in halothane anesthesia. Anesth Analg 1975; 54: 468–70

    PubMed  CAS  Google Scholar 

  90. Sigurdsson GH, Carlsson C, Lindhahl S, et al. Cardiac arrhythmias in non-intubated children during adenoidectomy: a comparison between enflurane and halothane anaesthesia. Acta Anaesthesiol Scand 1983; 27: 75–80

    PubMed  CAS  Google Scholar 

  91. Willatts DG, Harrison AR, Groom JF, et al. Cardiac arrhythmias during outpatient dental anaesthesia: comparison of halothane with enflurane. Br J Anaesth 1983; 55: 399–403

    PubMed  CAS  Google Scholar 

  92. Kopriva CJ, Eltringham R. The use of enflurane during resection of a pheochromocytoma. Anesthesiology 1974; 41:399–400

    PubMed  CAS  Google Scholar 

  93. Kreul JF, Dauchot PJ, Anton AH. Hemodynamic and catecholamine studies during pheochromocytoma resection under enflurane anesthesia. Anesthesiology 1976; 44: 265–8

    PubMed  CAS  Google Scholar 

  94. Cattermole RW, Verghese C, Blair IJ, et al. Isoflurane and halothane for outpatient dental anaesthesia in children. Br J Anaesth 1986; 58: 385–9

    PubMed  CAS  Google Scholar 

  95. Suzukawa M, Michaels IAL, Ruzbarsky J, et al. Use of isoflurane during resection of pheochromocytoma. Anesth Analg 1983; 62: 100–3

    PubMed  CAS  Google Scholar 

  96. Fay ML, Holzman RS. Isoflurane for resection of pheochromocytomas [letter]. Anesth Analg 1983; 62: 955

    PubMed  CAS  Google Scholar 

  97. Navarro R, Weiskopf, Moore MA, et al. Humans anesthetized with sevoflurane or isoflurane have similar arrhythmic response to epinephrine. Anesthesiology 1994; 80: 545–9

    PubMed  CAS  Google Scholar 

  98. Weiskopf RB, Eger EI II, Holmes MA. Epinephrine-induced premature ventricular contractions and changes in arterial blood pressure and heart rate during I–653, isoflurane, and halothane anesthesia in swine. Anesthesiology 1989; 70: 293–8

    PubMed  CAS  Google Scholar 

  99. Weiskopf RB, Moore MA, Eger EI II, et al. Rapid increase in desflurane concentration is associated with greater transient cardiovascular stimulation than with rapid increase in isoflurane concentration in humans. Anesthesiology 1994; 80:1035–45

    PubMed  CAS  Google Scholar 

  100. Ebert TJ, Muzi M. Sympathetic hyperactivity during desflurane anesthesia in healthy volunteers. Anesthesiology 1993; 79: 444–53

    PubMed  CAS  Google Scholar 

  101. Gormley WP, Murray JM, Trinick TR. Intravenous lidocaine does not attenuate the cardiovascular and catecholamine response to a rapid increase in desflurane concentration. Anesth Analg 1996; 82: 358–61

    PubMed  CAS  Google Scholar 

  102. Muzi M, Pacentine GG, Lopatka CW, et al. Lidocaine airway anesthesia does not attenuate sympathetic activation during desflurane administration in humans [abstract]. Anesthesiology 1994; 81: A370

    Google Scholar 

  103. Smith AL, Wollman H. Cerebral blood flow and metabolism: effects of anesthetic drugs and techniques. Anesthesiology 1972; 36: 378–400

    PubMed  CAS  Google Scholar 

  104. Miletich DJ, Ivankovich AD, Albrecht RF, et al. Absence of autoregulation of cerebral blood flow during halothane and enflurane anesthesia. Anesth Analg 1976; 55: 100–9

    PubMed  CAS  Google Scholar 

  105. Lassen NA, Christensen MS. Physiology of cerebral blood flow. Br J Anaesth 1976; 48: 719–34

    PubMed  CAS  Google Scholar 

  106. Artu AA. Effects of halothane and fentanyl on the rate of CSF production in dogs. Anesth Analg 1983; 62: 581–5

    Google Scholar 

  107. Burchiel KJ, Stockard JJ, Calverley RK, et al. Electroencephalographic abnormalities following halothane anesthesia. Anesth Analg 1978; 57: 244–51

    CAS  Google Scholar 

  108. Murphy FL, Kennell EM, Johnstone RE. The effects of enflurane, isoflurane and halothane on cerebral blood flow and metabolism in man [abstracts of Scientific Papers]. American Society of Anesthesiologists, Annual Meeting, 1974: 62-3

  109. Moss E, Dearden NM, McDowall DG. Effects of 2% enflurane on intracranial pressure and cerebral perfusion pressure. Br J Anaesth 1983; 55: 1083–8

    PubMed  CAS  Google Scholar 

  110. Neigh JL, Garman JK, Harp JR. The electroencephalographic pattern during anesthesia with ethrane: effects of depth of anesthesia, PaCO2 and nitrous oxide. Anesthesiology 1971; 35: 482–7

    PubMed  CAS  Google Scholar 

  111. Opitz A, Oberwetter WD. Enflurane or halothane anaesthesia for patients with cerebral convulsive disorders?. Acta Anaesthesiol Scand 1979; 23 Suppl. 71: 43–7

    CAS  Google Scholar 

  112. Rosén I, Söderberg M. Electroencephalographic activity in children under enflurane anesthesia. Acta Anaesthesiol Scand 1975; 19: 361–9

    PubMed  Google Scholar 

  113. Adams RW, Cucchiara RF, Gronert GA, et al. Isoflurane and cerebrospinal fluid pressure in neurosurgical patients. Anesthesiology 1981; 54: 97–9

    PubMed  CAS  Google Scholar 

  114. Eger EI II, Stevens WC, Cromwell TH. The electroencephalo-graph in man anesthetized with Forane. Anesthesiology 1971; 35: 504–8

    PubMed  CAS  Google Scholar 

  115. Pauca AL, Dripps RD. Clinical experience with isoflurane (Forane). Br J Anaesth 1973; 45: 697–703

    PubMed  CAS  Google Scholar 

  116. Scheller MS, Tateishi A, Drummond JC, et al. The effects of sevoflurane on cerebral blood flow, cerebral metabolic rate for oxygen, intracranial pressure, and the electroencephalogram are similar to those of isoflurane in the rabbit. Anesthesiology 1988; 68: 548–51

    PubMed  CAS  Google Scholar 

  117. Lutz LJ, Milde JH, Milde LN. The cerebral functional, metabolic, and hemodynamic effects of desflurane in dogs. Anesthesiology 1990; 73: 125–31

    PubMed  CAS  Google Scholar 

  118. Ornstein E, Young WL, Ostapkovich N, et al. Comparative effects of desflurane and isoflurane on cerebral blood flow [abstract]. Anesthesiology 1991; 75: A209

    Google Scholar 

  119. Rampil IJ, Weiskopf RB, Brown JG, et al. 1653 and isoflurane produce similar dose-related changes in the electroencephalogram of pigs. Anesthesiology 1988; 69: 298–302

    PubMed  CAS  Google Scholar 

  120. Pellegrino DA, Miletich DJ, Hoffman WE, et al. Nitrous oxide markedly increases cerebral cortical metabolic rate and blood flow in the goat. Anesthesiology 1984; 60: 405–12

    Google Scholar 

  121. Moss E, McDowall DG. ICP increases with 50% nitrous oxide in oxygen in severe head injuries during controlled ventilation. Br J Anaesth 1979; 51: 757–61

    PubMed  CAS  Google Scholar 

  122. Sakabe T, Kuramoto T, Kumagae S, et al. Cerebral responses to the addition of nitrous oxide to halothane in man. Br J Anaesth 1976; 48: 957–62

    PubMed  CAS  Google Scholar 

  123. Phirman JR, Shapiro HM. Modification of nitrous oxide-induced intracranial hypertension by prior induction of anesthesia. Anesthesiology 1977; 46: 150–1

    PubMed  CAS  Google Scholar 

  124. Hoffman WE, Miletich DJ, Albrecht RF. The effects of mid-azolam on cerebral blood flow and oxygen consumption and its interaction with nitrous oxide. Anesth Analg 1986; 65: 729–33

    PubMed  CAS  Google Scholar 

  125. Jones RM. Clinical comparison of inhalation anaesthetic agents. Br J Anaesth 1984; 56: 57S–69S

    PubMed  Google Scholar 

  126. Lockhart SH, Rampil IJ, Yasuda N, et al. Depression of ventilation by desflurane in humans. Anesthesiology 1991; 74: 484–8

    PubMed  CAS  Google Scholar 

  127. Doi M, Ikeda K. Respiratory effects of sevoflurane. Anesth Analg 1987; 66: 241–4

    PubMed  CAS  Google Scholar 

  128. Doi M, Ikeda K. Postanesthetic respiratory depression in humans: a comparison of sevoflurane, isoflurane and halothane. J Anesth 1987; 1: 137–42

    PubMed  CAS  Google Scholar 

  129. Hornbein TF, Eger EI II, Winter PM, et al. The minimum alveolar concentration of nitrous oxide in man. Anesth Analg 1982; 61: 553–6

    PubMed  CAS  Google Scholar 

  130. France CJ, Plumer MH, Eger EI II, et al. Ventilatory effects of isoflurane (Forane) or halothane when combined with morphine, nitrous oxide and surgery. Br J Anaesth 1974; 46: 117–20

    PubMed  CAS  Google Scholar 

  131. Doi M, Ikeda K. Airway irritation produced by volatile anesthetics during brief inhalation: comparison of halothane, en-flurane, isoflurane and sevoflurane. Can J Anaesth 1993; 40: 122–6

    PubMed  CAS  Google Scholar 

  132. Rampil IJ, Lockhart SH, Zwass MS, et al. Effects of age or nitrous oxide on the MAC of desflurane [abstract]. Anesth Analg 1990; 70: S319

    Google Scholar 

  133. Bunting HE, Kelly MC, Milligan KR. Effects of nebulized lignocaine on airway irritation and haemodynamic changes during induction of anaesthesia with desflurane. Br J Anaesth 1995; 75: 631–3

    PubMed  CAS  Google Scholar 

  134. Hartman GS, Kelly RE, Embree PB, et al. Vital capacity rapid inhalation induction (VCRII) with desflurane [abstract]. Anesthesiology 1990; 73: A20

    Google Scholar 

  135. Heneghan CPH, Bergman NA, Jordan C, et al. Effect of isoflurane on bronchomotor tone in man. Br J Anaesth 1986; 58: 24–8

    PubMed  CAS  Google Scholar 

  136. Royston BD, Bottiglieri T, Nunn JF. Short term effect of nitrous oxide on methionine and S-adenosyl methionine concentrations. Br J Anaesth 1989; 62: 419–24

    PubMed  CAS  Google Scholar 

  137. O’Sullivan H, Jennings F, Ward K, et al. Human bone marrow biochemical function and megaloblastic hematopoiesis after nitrous oxide anesthesia. Anesthesiology 1981; 55: 645–9

    PubMed  Google Scholar 

  138. Nunn JF, Chanarin I, Tanner AG, et al. Megaloblastic bone marrow changes after repeated nitrous oxide anaesthesia. Br J Anaesth 1986; 58: 1469–70

    PubMed  CAS  Google Scholar 

  139. Amess JAL, Burman JF, Rees GM, et al. Megaloblastic haemopoiesis in patients receiving nitrous oxide. Lancet 1978; 2: 339–42

    PubMed  CAS  Google Scholar 

  140. Lassen HCA, Henriksen A, Neukirch F, et al. Treatment of tetanus: severe bone marrow depression after prolonged nitrous oxide anaesthesia. Lancet 1956; I: 527–30

    Google Scholar 

  141. Britt BA, Endrenyi L, Frodis W. Comparison of effects of several inhalation anaesthetics on caffeine-induced contractures of normal and malignant hyperthermic skeletal muscle. Can Anaesth Soc J 1980; 27: 12–5

    PubMed  CAS  Google Scholar 

  142. Simpson KH, Ellis FR. Inherited metabolic diseases and anaesthesia. In: Nimmo WS, Rowbotham DJ, Smith G, editors. Anaesthesia. 2nd ed. London: Blackwell Scientific Publications, 1994: 1128–38

    Google Scholar 

  143. Sharer NM, Nunn JF, Royston JP, et al. Effects of chronic exposure to nitrous oxide on methionine synthase activity. Br J Anaesth 1983; 55: 693–701

    PubMed  CAS  Google Scholar 

  144. Davenport HT, Halsey MJ, Wardley-Smith B, et al. Occupational exposure to anaesthetics in 20 hospitals. Anaesthesia 1980; 35: 354–9

    PubMed  CAS  Google Scholar 

  145. Hillman KM, Saloojee Y, Brett II, et al. Nitrous oxide concentrations in the dental surgery; atmospheric and blood concentrations of personnel. Anaesthesia 1981; 36: 257–62

    PubMed  CAS  Google Scholar 

  146. Cohen EN, Brown BW, Wu ML, et al. Occupational disease in dentistry and chronic exposure to trace anesthetic gases. J Am Dent Assoc 1980; 101: 21–31

    PubMed  CAS  Google Scholar 

  147. Crawford JS, Lewis M. Nitrous oxide in early human pregnancy. Anaesthesia 1986; 41: 900–5

    PubMed  CAS  Google Scholar 

  148. Aldridge LM, Tunstall ME. Nitrous oxide and the fetus. Br J Anaesth 1986; 58: 1348–56

    PubMed  CAS  Google Scholar 

  149. Sharp JH, Trudell JR, Cohen EN. Volatile metabolites and decomposition products of halothane in man. Anesthesiology 1979; 50: 2–8

    PubMed  CAS  Google Scholar 

  150. Wallin RF, Regan BM, Napoli MD, et al. Sevoflurane: a new inhalational anesthetic agent. Anesth Analg 1975; 54: 758–65

    PubMed  CAS  Google Scholar 

  151. Hanaki C, Fujii K, Morio M, et al. Decomposition of sevoflurane by soda lime. Hiroshima J Med Sci 1987; 36: 61–7

    PubMed  CAS  Google Scholar 

  152. Morio M, Fujii K, Satoh N, et al. Reaction of sevoflurane and its degradation products with soda lime: toxicity of the byproducts. Anesthesiology 1992; 77: 1155–67

    PubMed  CAS  Google Scholar 

  153. Frink Jr EJ, Malan TP, Morgan SE, et al. Quantification of the degeneration products of sevoflurane in two CO2 absorbants during low-flow anesthesia in surgical patients. Anesthesiology 1992; 77: 1064–9

    PubMed  Google Scholar 

  154. Fee JPH, Murray JM, Luney SR. Molecular sieves: an alternative method of carbon dioxide removal which does not generate compound A during simulated low-flow sevoflurane anaesthesia. Anaesthesia 1995; 50: 841–5

    PubMed  CAS  Google Scholar 

  155. Fang ZX, Eger EI II, Laster MJ, et al. Carbon monoxide production from degradation of desflurane, enflurane, isoflurane, halothane, and sevoflurane by soda lime and Baralyme®. Anesth Analg 1995; 80: 1187–93

    PubMed  CAS  Google Scholar 

  156. Harrison N, Knowles AC, Welchew EA. Carbon monoxide within circle systems. Anaesthesia 1996; 51: 1037–40

    PubMed  CAS  Google Scholar 

  157. Aronow WS, Isbell MW. Carbon monoxide effect on exercise-induced angina pectoris. Ann Intern Med 1973; 79: 392–5

    PubMed  CAS  Google Scholar 

  158. Baum J, Sachs G, v. d. Driesch C, et al. Carbon monoxide generation in carbon dioxide absorbents. Anesth Analg 1995; 81: 144–6

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howard Fee, J.P., Thompson, G.H. Comparative Tolerability Profiles of the Inhaled Anaesthetics. Drug-Safety 16, 157–170 (1997). https://doi.org/10.2165/00002018-199716030-00002

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199716030-00002

Keywords

Navigation