Skip to main content
Log in

Cotrimoxazole

Rationale for Re-Examining its Indications for Use

  • Leading Article
  • Published:
Drug Safety Aims and scope Submit manuscript

Summary

Trimethoprim was specifically developed in the late 1960s as a sulphonamide potentiator and was launched in combination with sulfamethoxazole as cotrimoxazole. Laboratory data showed synergy of antimicrobial action for the combination and suggested that the use of both agents would delay the emergence of resistance.

However, the tissue distribution of trimethoprim and sulfamethoxazole does not favour synergy, and resistance among common pathogens to sulfamethoxazole is high. Clinical studies comparing trimethoprim alone with cotrimoxazole for the treatment of respiratory tract and urinary tract infections have failed to show any benefit from the combination. The development of delayed resistance by use of the combination has not been substantiated.

The common adverse effects seen with cotrimoxazole are gastrointestinal disturbances and skin rashes which are well described adverse effects of sulphonamides. Comparative studies suggest that these are less common with trimethoprim alone. Serious adverse effects such as liver disorders and Stevens-Johnson syndrome appear more common with cotrimoxazole.

Where there is little evidence for benefit from the use of the combination, the exposure of patients to the additional risk from the adverse effects and drug interactions of 2 drugs cannot be justified. Therefore use of cotrimoxazole should be restricted to those situations such as Pneumocystis carnii pneumonia where the combination has been shown to be beneficial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kucers A, Bennett NMck. The use of antibiotics. 4th ed. London: Heinemann, 1987

    Google Scholar 

  2. Bushby SRM, Hitchings GH. Trimethoprim, a sulphonamide potentiator. Br J Pharmacol 1968; 33: 72–90

    CAS  Google Scholar 

  3. Bushby SRM. Trimethoprim-sulphamethoxazole: in vitro microbiological aspects. J Infect Dis 1973; 128: S442–62

    Article  CAS  Google Scholar 

  4. Wilkinson PJ, Reeves DS. Tissue penetration of trimethoprim and sulphonamides. J Antimicrob Chemother 1979; 5 Suppl. B: 159–68

    Article  PubMed  CAS  Google Scholar 

  5. Brumfitt W, Hamilton-Miller JMT, Havard CW, et al. Trimethoprim alone compared to co-trimoxazole in lower respiratory infections: pharmacokinetics and clinical effectiveness. Scand J infect Dis 1985; 17: 99–105

    Article  PubMed  CAS  Google Scholar 

  6. Salter AJ. Trimethoprim-sulphamethoxazole: an assessment of more than 12 years of use. Rev Infect Dis 1982: 4; 196–236

    Article  PubMed  CAS  Google Scholar 

  7. Wormser GP, Keusch GT, Heel RC. Co-trimoxazole (trimethoprim-sulphamethoxazole): an updated review of its antibacterial activity and clinical efficacy. Drugs 1982; 24: 459–518

    Article  PubMed  CAS  Google Scholar 

  8. Rubin RH, Swartz MN. Trimethoprim-sulphamethoxazole. N Engl J Med 1980; 303: 426–32

    Article  PubMed  CAS  Google Scholar 

  9. Grey D, Hamilton-Miller JMT, Brumfitt W. Combined action of sulphamethoxazole and trimethoprim against clinicallyisolated sulphonamide-resistant bacteria. Chemotherapy 1979; 25: 296–302

    Article  PubMed  CAS  Google Scholar 

  10. Hamilton-Miller JMT. Mechanisms and distribution of bacterial resistance to diaminopyrimidines and sulphonamides. J Antimicrob Chemother 1979; 5 Suppl. B: 61–73

    Article  PubMed  CAS  Google Scholar 

  11. Darrell JH, Garrod LP, Waterworth PM. Trimethoprim: laboratory and clinical studies. J Clin Pathol 1968; 21: 202–9

    Article  PubMed  CAS  Google Scholar 

  12. Lacey RW, Lord VL, Gunasekera HKW, et al. Comparison of trimethoprim alone with trimethoprim-sulphamethoxazole in the treatment of respiratory and urinary infections with particular reference to selection of trimethoprim resistance. Lancet 1980; I: 1270–3

    Article  Google Scholar 

  13. Huovinen P, Toivanen P. Trimethoprim resistance in Finland after five years’ use of plain trimethoprim. BMJ 1980; 1: 72–4

    Article  Google Scholar 

  14. British National Formulary No. 29. London: British Medical Association and Royal Pharmaceutical Society of Great Britain, 1995: 240

  15. Pearson RD, Guerrant RL. Enteric fever and other causes of abdominal symptoms with fever. In: Mandell GL, Douglas RG, Bennett JE, editors. Principles and practice of infectious diseases. 4th ed. New York: Churchill-Livingstone, 1995 998–1012

    Google Scholar 

  16. Gruneberg RN. Changes in urinary pathogens and their antibiotic sensitivities, 1971–1992. J Antimicrob Chemother 1994; 33 Suppl. A: 1–8

    PubMed  CAS  Google Scholar 

  17. Lacey RW, Rogerson JG, Stokes A. Antimicrobial effects of trimethoprim and sulphadiazine in infected urine and blood. J Med Microbiol 1980; 13: 121–32

    Article  PubMed  CAS  Google Scholar 

  18. Brumfitt W, Pursell R. Double-blind trial to compare ampicillin, cephalexin, co-trimoxazole and trimethoprim in treatment of urinary infections. BMJ 1972; 2: 673–6

    Article  PubMed  CAS  Google Scholar 

  19. Kasanen A, Kaarsalo E, Hiltunen R, et al. Comparison of longterm, low-dosage nitrofurantoin, methenamine hippurate, trimethoprim and trimethoprim-sulphamethoxazole on the control of recurrent urinary tract infection. Ann Clin Res 1974; 6: 285–9

    PubMed  CAS  Google Scholar 

  20. Sobel JD, Kaye D. Urinary tract infections. In: Mandell GL, Douglas RG, Bennett JE, editors. Principles and practice of infectious diseases. 4th ed. New York: Churchill-Livingstone, 1995 662–90

    Google Scholar 

  21. Hoskins TW, Bernstein LS. Trimethoprim/sulphadiazine compared with penicillin V in the treatment of streptococcal throat infections. J Antimicrob Chemother 1981; 8: 495–6

    Article  PubMed  CAS  Google Scholar 

  22. Brumfitt W, Hamilton-Miller JMT. Limitations of and indications for the use of co-trimoxazole. J Chemother 1994; 6: 3–11

    PubMed  CAS  Google Scholar 

  23. Spencer RC. The emergence of epidemic, multiple-antibioticresistant Stenotrophomonas (Xanthomonas) maltophilia and Burkholderia (Pseudomonas) cepacia. J Hosp Infect 1995; 30 Suppl.: 453–64

    Article  PubMed  Google Scholar 

  24. Ariza J, Gudiol F, Pallares R, et al. Comparative trial of cotrimoxazole versus tetracycline-streptomycin in treating human brucellosis. J Infect Dis 1985; 152: 1358–9

    Article  PubMed  CAS  Google Scholar 

  25. Young EJ. Brucella species. In: Mandell GL, Douglas RG, Bennett JE, editors. Principles and practice of infectious diseases. 4th ed. New York: Churchill-Livingstone, 1995 2053–60

    Google Scholar 

  26. Recommendations for prophylaxis against Pneumocystis carinii pneumonia for adults and adolescents infected with HIV. JAMA 1992; 267: 2294–9

    Article  Google Scholar 

  27. Frisch JM. Clinical experience with adverse reactions to trimethoprim-sulphamethoxazole. J Infect Dis 1973; 128 Suppl.: S607–11

    Article  Google Scholar 

  28. Lawson DH, Jick H. Adverse reactions to co-trimoxazole in hospitalised medical patients. Am J Med Sci 1978; 275; 53–7

    Article  PubMed  CAS  Google Scholar 

  29. Brumfitt W, Hamilton-Miller JMT, Kosmidis J. Trimethoprim-sulphamethoxazole: the present position. J Infect Dis 1973; 128 Suppl.: 778–91

    Article  Google Scholar 

  30. Jewkes RF, Edwards MS, Grant BJ, et al. Haematological changes in a patient on long-term treatment with a trimethoprim-sulphamethoxazole combination. Postgrad Med J 1970; 46: 723–6

    Article  PubMed  CAS  Google Scholar 

  31. Jick H, Derby LE. A large population-based follow-up study of trimethoprim-sulphamethoxazole, trimethoprim, and cephalexin for uncommon serious drug toxicity. Pharmacotherapy 1995; 15(4): 428–32

    PubMed  CAS  Google Scholar 

  32. Jung AC, Paauw DS. Management of adverse reactions to trimethoprim-sulphamethoxazole in human immunodeficiency virus-infected patients. Arch Intern Med 1994; 154: 2402–6

    Article  PubMed  CAS  Google Scholar 

  33. Medina I, Mills J, Leoung G, et al. Oral therapy for Pneumocystis carinii pneumonia in the acquired immunodeficiency syndrome: a controlled trial of trimethoprim-sulphamethoxazole versus trimethoprim-dapsone. N Engl J Med 1990; 323: 776–82

    Article  PubMed  CAS  Google Scholar 

  34. Kovacs JA, Hiemenz JW, Macher AM, et al. Pneumocystis carinii pneumonia: a comparison between patients with the acquired immunodeficiency syndrome and patients with other immunodeficiencies. Ann Intern Med 1984; 100: 663–71

    PubMed  CAS  Google Scholar 

  35. Co-trimoxazole use restricted. Drug Ther Bull 1995: 33(12); 92–3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Howe, R.A., Spencer, R.C. Cotrimoxazole. Drug-Safety 14, 213–218 (1996). https://doi.org/10.2165/00002018-199614040-00001

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2165/00002018-199614040-00001

Keywords

Navigation