ISSN 2074-9414 (Print),
ISSN 2313-1748 (Online)

Volume 50, Issue 3, 2020

3390
Abstract
Introduction. In Russia, production of juice, whey, milk, and flavor powders is complicated by the lack of effective manufacturing technologies. Thus, a new technological flow for simultaneous use of moisturizing additives and structured capillary-porous granules remains an urgent task as it would allow combining a polydisperse system with instantiation reliability. The research objective was to create a mathematical model of the process of granulation of dispersed mixtures, as well as scientific substantiation for the new technology of instant polydisperse granular beverage mixes.
Study objects and methods. The research featured a disk-type granulator with an activator and a polydisperse whey-based mix. The fractional composition of the mix included cranberry pulp (20%), whey (40%), potato starch (5%), powdered sugar (20%), premixes (5%), etc.
Results and discussion. The research revealed the effect of granulation modes, granulator operation modes, and the phase composition of the initial mix on the profile of the resulting granulated product. The mathematically obtained results were proved experimentally: the model accurately reflected the physical essence of the granulation process of the polydisperse mixes based on local raw materials and whey.
Conclusion. The study provided methods for regulating the process of granulation of polydisperse whey-based mixes n in disktype granulators. The article introduces a mathematical model of the process based on the hypothesis of the stochastic nature of the processes. The granulation process was described as a combination of seven states depending on the granular composition and granulation time.
4216
Abstract
Introduction. Longitudinal studies of human activity and metabolism revealed various anti-inflammatory, immunomodulatory, antistress, antioxidant, and adaptogenic properties of such secondary plant metabolites as phenolic compounds and pigments. Human cells cannot synthesize these compounds. Therefore, food biotechnology requires new data on the photosynthetic potential of plants with good functional prospects. The research objective was to study the qualitative and quantitative profile of biologically active compounds of Rhodiola rosea L. harvested from various plant communities in order to define the potential of their extracts and minor compounds for food technologies.
Study objects and methods. The research featured three communities of Rhodiola rosea L. originally located in ecologically and geographically different habitats. They were introduced into Kuzbass from the Kuznetsk Alatau, Gorny Altai, and the Tunka alpine tundra belt in Buryatia. The experiment began in 2018, when the rhizomes were dissected into equal shares of 40–42 g and placed in a medicinal plant nursery. The methods of high-performance liquid (HPLC) and thin-layer (TLC) chromatography were used to study the biologically active substances in the plant biomass. The photosynthetic pigments were detected using the spectrophotometric method. The obtained data underwent a statistical analysis based on Statistica 6.0 software.
Results and discussion. The sample from the Gorny Altai community revealed twelve biologically active substances. Its rhizomes appeared rich in gallic acid with the maximum content (mg/g) of 10.26 ± 2.31, rosein (20.45 ± 3.46), daphneticin (13.80 ± 2.30), and salidroside (28.16 ± 2.27). The tops demonstrated the maximum content (mg/g) of astragaline (38.94 ± 2.21), tricine (13.07 ± 0.72), tricine-5-O-β-D-glucopyranoside (35.25 ± 1.66), tricine-7-O-β-D-glucopyranoside (30.23 ± 1.45), and tyrosol (21.80 ± 1.21). The Kuznetsk Alatau sample proved to possess five biologically active substances. Its rhizomes had the maximum content (mg/g) of rosavin (16.89 ± 2.11) and salidroside (14.35 ± 2.52). The sample obtained from the Tunka ridge in Buryatia had six biologically active substances with the maximum content (mg/g) of rosavin (20.72 ± 2.11), methylgalate (39.00 ± 1.05), and cinnamaldehyde (10.15 ± 1.93) in the rhizomes. The top biomass of Rhodiola rosea L. accumulated about 0.333 mg/g of chlorophylls and synthesized 0.109 mg/g of carotenoids on average. The research established the correlation coefficients between the content of photosynthetic components with morphometric characteristics, including two positive dependences between the content of carotenoids and the number of leaves (r = 0.89 ± 0.09) and the content of carotenoids and shoot length (r = 0.96 ± 0.22).
Conclusion. The samples of Rhodiola rosea L. demonstrated a good biotechnological potential for medicine and food industry. The Kuznetsk Alatau plant community proved rich in rosavin, salidroside, and methyl gallate. The Gorny Altai samples revealed high content of salidroside, gallic acid, daphnetitsin, and rosein. The Tunka samples appeared to synthesize a lot of methyl gallate, rosavin, and cinnamaldehyde. In addition, the top biomass of the Altai sample proved rich in tricine and its derivatives, astragaline and tyrosol. The research also established the possibility of commercial extraction of photosynthetic pigments from the top biomass of Rhodiola rosea L. for functional food production.
3751
Abstract
Introduction. The present research featured the antioxidant complex of Russian tea varieties. The research objective was to study the formation patterns of the components responsible for the quality characteristics of tea as a raw material and finished product. The paper describes the changes that the biochemical composition of tea undergoes during the growing season and during processing. The study focused on pigments, vitamins, caffeine, and amino acids.
Study objects and methods. The research featured the following varieties of tea grown in the Krasnodar region of Russia: “Kolkhida” (control) and “Sochi”; forms – No. 582, 3823, 855, and 2264. The research was performed on the foundation plantation of collection tea in the village of Uch-Dere (Lazarevsky district of Sochi, Krasnodar region, Russia) and in the laboratory of plant physiology and biochemistry. The study involved traditional and advanced research methods.
Results and discussion. The paper introduces some results of a comprehensive analysis of the biochemical composition of various tea sorts. Shoots No. 2264, 3823, and the “Sochi” variety demonstrated high values of ascorbic acid. Form No. 3823 and the “Sochi” variety proved to have a relatively stable content of ascorbic acid. All experimental plants had the highest caffeine synthesis in July (from 24.633 to 28.614 μg/100 g). Processing destroyed caffeine and reduced its amount. The experimental samples of raw materials had eleven amino acids, the largest number being synthesized in May. Processing triggered both general changes in their quantity and varietal differences in the metabolic reactions of amino acid conversion.
Conclusion. The tea flushes and finished products differed in all biologically active substances, which is associated with both varietal characteristics and the effect of weather conditions during vegetation.
4381
Abstract
Introduction. More than 170 foods can cause allergic reactions in humans. The list of potential allergens includes a lot of dairy products. To reduce the antigenic properties, dairy raw materials can be subjected to thermal treatment. However, prolonged heating reduces the nutritional value, solubility, and digestibility of the final product. Biocatalytic conversion is considered a more effective way to reduce the allergenicity of milk proteins and dairy products.
Study objects and methods. The research featured the bioconversion process of milk whey using an enzyme complex of fungal protease and exo-peptidase produced by Aspergillus oryx season. The research provided an optimal concentration of the enzyme preparation, as well as temperature parameters, reaction time, and the effect of pH on the intensity of the process. The experiment involved standard research methods. The mass fraction of free amino acids was determined by distribution chromatography after protein hydrolysis.
Results and discussion. The research helped to define the effect of enzymatic treatment time and the pH on the hydrolysis of serum proteins after bioconversion. The indicator of the degree of hydrolysis and its time was affected by the concentration of the introduced enzyme preparation. The maximum degree of hydrolysis was observed at pH = 4.0 ± 0.1 with an enzyme-substrate ratio of 1:700. The degree of hydrolysis in samples with an enzyme-substrate ratio of 1:1,000 and 1:700 was almost the same. Therefore, the enzymesubstrate ratio of 1:1,000 proved more effective. The concentration of many important amino acids increased, which indicated the hydrolytic cleavage of the protein. The research made it possible to determine the most effective parameters of the process of biocatalytic conversion of whey enzyme by the protease complex Aspergillus oryx season: the ratio of enzyme-substrate – 1:1,000, time – 60–90 min, pH – 4.0 ± 0.1, temperature – 35–45°C.
Conclusion. The whey samples subjected to biocatalytic conversion by an enzyme complex of the genus Aspergillus oryx season showed the presence of low-molecular peptides in its composition, which indicated the effectiveness of the process and reducing the allergenicity of the whey protein.
4263
Abstract
Introduction. The process of air-cooling caramel remains one of the most complicated issues of contemporary food industry, since it is time-consuming and requires multi-level cooling units. Therefore, the development of an innovative method of cooling caramel in “cold” potable ethanol is an urgent task the modern food science has to solve. The method op-timizes and intensifies the technological process, as it reduces production areas by eliminating some technological stages and complex units of metal-intensive and energyintensive equipment. It gives caramel antiseptic properties and a perfectly smooth, shiny, and dry surface.
Study objects and methods. The research objective was to develop a fundamentally new and promising caramel technology. The experimental studies on the production and cooling were performed in a mixing and forming multi-unit with a high-performance cooling chamber. The chamber had functions of automatic measurements and control of the main parameters of the cooling process. The research used “cold” potable ethanol.
Results and discussion. The paper introduces a mathematical model of the process of cooling caramel in ethanol. It includes heat transfer processes in alcohol, in the caramel mass, and on their border. The model was based on equations of transient heat conduction in a sphere. The process of heat exchange with the environment, i.e. alcohol, was characterized by the coefficient of heat transfer from the sphere. The model parameters included dynamic viscosity, density, thermal conductivity coefficient, and specific heat capacity. Based on the experimental data, the parameters were ap-proximated as a function of temperature by a cubic polynomial.
Conclusion. The developed mathematical model made it possible to estimate the radial temperature distribution of caramel in the form of a sphere during its convective cooling in ethanol. The model also predicted the change in the average volume temperature of the caramel and energy costs depending on the cooling period, the flow speed of the ethanol, the thermophysical properties of the caramel and the cooling agent. The proposed mathematical model can be used to calculate the required consumption of ethanol for cooling and backwater of the caramel production line.
3633
Abstract
Introduction. Shock freezing is widely used in food industry. However, it is not popular with public catering enterprises that produce their own bread and bakery products. Many businesses prefer to use ready-made frozen semi-finished products, rather than to bake them on their own. However, the range of such semi-finished products is not sufficiently diverse: as a rule, it includes “basic” popular products. The authors believe that bread can be an advantageous image product for any public catering company. Fresh
bread makes the company more competitive. Shock freezing technology can help public catering enterprises to expand their range of bakery products, diversify the bread menu, and increase profitability. The research objective was to establish shock-freezing modes for bakery products produced in the conditions of a public catering enterprise, including using non-traditional raw materials, e.g. cranberry and beet puree.
Study objects and methods. The research featured samples of baked products from yeast dough prepared in various ways, including shock-freezing technology. The quality of the raw materials and finished products was assessed by a combination of organoleptic and physicochemical indicators using standard methods.
Results and discussion. The article introduces new scientific-based formulations of yeast dough products with beetroot and cranberry puree, modes and parameters of shock freezing and baking of bakery products in the conditions of a public catering enterprise. The doses of beet and cranberry puree that provide the best quality indicators of finished products were 10% of beet and 5% of cranberry puree per unit of flour. The authors studied the effect of baking time on the quality of frozen bakery products, as well as the freezing time and the cooking time after refreezing.
Conclusion. The research established the quality indicators, modes, and parameters of shock freezing of bakery products at chain catering enterprises. The optimal freezing time for 50 g products after 10 min of baking in a convection oven at 180°C proved 50 ± 2 min at –40°C; the baking time after refreezing was 10 min at 180°C.
3704
Abstract
Introduction. The research objective was to establish the effect of the complete and partial replacement of sucrose by trehalose on the dispersion of ice crystals in ice cream with a low mass fraction of fat and solids.
Study objects and methods. The present research featured three test samples of ice cream with a 3% mass fraction of fat: one with a complete replacement of sucrose (15.5%) and two with a partial replacement of 7.5% and 3%. In the control sample, the mass fraction of sucrose was 15.5%. To control the dynamic viscosity indicator of consistency, the research employed such an advanced method as rotational viscometry. Microstructure methods were used to determine the dispersion of ice crystals and the air phase.
Results and discussion. The usage of trehalose in the production of low-fat ice cream in the amounts of 3.0%, 7.5%, and 15% increased the dispersion of ice crystals and preserved it during storage. After three months of storage, most ice crystals in the test ice cream samples had a size of ≤ 45 μm with an organoleptic sensibility of ≤ 50 μm, while in the control sample (15.5% of sucrose) it did not exceed 60 μm. The experiment determined the effect of trehalose on the consistency of ice cream according to the following indicators: dynamic viscosity, overrun, and dispersion of the air phase. 15.5% of trehalose increased the dynamic viscosity of ice cream mix by 1.2 times as compared to the sample with the same concentration of sucrose. According to the average diameter of air bubbles, trehalose helped to preserve the dispersion of the air phase during storage. After three months, Sample 1 with 15.5% of trehalose demonstrated the maximum dispersion, which was 17% higher than in the control sample with a sucrose mass fraction of 15.5%.
Conclusion. The complete (15.5%) and partial (3% and 7.5%) sucrose replacement by trehalose in low-fat ice cream increased the dispersion of ice crystals and improved its consistency. Unlike the sample with 15.5% of sucrose, samples with trehalose had smaller ice crystals, which remained the same after three months. The trehalose samples had a better dynamic viscosity and air saturation. The research requires a further study of dispersion of ice crystals after 12 months of storage.
3951
Abstract
Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran.
Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts.
Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology.
Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.
3838
Abstract
Introduction. Vegetables are an integral part of human diet. Specialists from many countries of the world develop and improve technologies for storing vegetables in order to ensure the safety, quality, and quantity of commercial products. Turnip is one of the most promising vegetables from the point of view of healthy nutrition. Its production has been revived in recent years. This root vegetable has a high nutritional value and contains a significant amount of physiologically active components. There are regulatory documents for the storage of potatoes, carrots, and cabbage. However, storage standards for turnip are still under development due to the variability of their chemical composition, place of growth, etc. As a result, any rationale for storage methods for fresh and ripened turnips of different varieties grown on farms in the Novosibirsk region is relevant.
Study objects and methods. The research featured fresh and ripened turnips of the “Kometa”, “Luna”, and “Orbita” varieties. Research methods were generally accepted and standard. The samples were stored at 0–1°C and relative humidity of 90–95% on pallets in opened plastic bags, board boxes with plastic liners, and board boxes without liners.
Results and discussion. After 6 months, the method with polymer materials showed the best results, regardless of the variety: the average yield of quality products was 88%. Storage in wooden boxes without plastic liners provided only 70% of standard products. The decrease in the mass during 6-month storage was about 2% when stored in opened plastic bags and board boxes with plastic liners, while in board boxes without liners it was 20.6%. After the latter storage method, 9.8% of root crops appeared affected by microbiological diseases. A similar trend was observed in the content of total sugars: an average loss of 2.7% was detected when using polymer materials and 3.6% – without them. The board boxes with plastic liners proved better in preserving vitamin C: the average loss was 22.3%, while it reached 30.3% for plastic bags and 37.3% for board boxes without liners. After 6 months of storage, all samples maintained satisfactory quality. The sensory properties ranged from 7.01 to 7.94 points. The points were discarded for decreased consistency of epithelial tissues, pulp, taste, and aroma.
Conclusion. The turnips of the “Kometa”, “Luna”, and “Orbita” varieties grown in the Novosibirsk region should be stored at 0–1°C and a relative humidity of 90–95% in plastic bags or board boxes with plastic liners placed on pallets.
4415
Abstract
Introduction. One of the urgent problems of medicine and biology is the use of plant objects as industrial producers of target metabolites in vitro. In vitro cells can be used as pharmaceutical preparations.
Study objects and methods. The present research featured medicinal plants that grow in the Siberian Federal district and are a popular source of medicinal raw materials. The physicochemical properties, e.g. total ash content in extracts, the content of heavy metals, the content of organic solvents in the extracts, and the mass loss upon drying was determined by standard methods. The antimicrobial properties of in vitro extracts were determined by the diffusion method and the method based on optical density measurement. The list of opportunistic and pathogenic test strains included the following microorganisms: E. coli ATCC 25922, S. aureus ATCC 25923, P. vulgaris ATCC 63, P. aeruginosa ATCC 9027, and C. albicans EMTC 34. The number of viable cancer cells was determined using the MTT colorimetric method.
Results and discussion. The paper describes the physicochemical properties, safety indicators, antioxidant activity, antimicrobial activity, and antitumor properties of extracts of a complex of biologically active substances obtained in vitro from the dried biomass of callus and suspension cell cultures and root cultures. The root extracts proved to have the maximum antimicrobial and cytotoxic properties. They could reduce the survival rate of cancer cells to 24.8–36.8 %.
Conclusion. The research featured extracts obtained from the dried biomass of callus and suspension cell cultures and root cultures in vitro of safflower leuzea (Leuzea carthamoides L.), Rhodiola rosea (Rhodiola rosea L.), various sorts of skullcap (Scutellaria baicalensis L., Scutellaria andrachnoides L., Scutellaria galericulata L.), Potentilla alba (Potentilla alba L.) and ginseng (Panax L.). The results showed that the extracts can be used for the production of pharmaceuticals and biologically active additives with antitumor, antimicrobial, and antioxidant properties.
4211
Abstract
Introduction. Any waste can become a raw material for new products. Therefore, waste should be considered as secondary material resources. Grape pomace is the basic waste of wine industry, and research in its chemical composition may allow for a more effective recycling of food industry waste. Study objects and methods. The research featured sweet and fermented pomace of white and red grapes, namely “Chardonnay”, “Sauvignon Blanc”, “Riesling”, “Pinot Blanc”, “Traminer Pink”, “Viognier”, “Morava” “Pinot Noir”, “Roesler”, “Cabernet Sauvignon”, “Merlot”, “Saperavi”, and “Rebo”. They were obtained in the production of wines at wineries in the Krasnodar region. Mass concentrations of organic acids and cations of alkaline and alkaline-earth elements were determined in extracts by capillary electrophoresis. The data was converted to dry matter. Moisture content was calculated as a percentage of the change in the mass of grape pomace. Results and discussion. The moisture content of sweet pomace varied from 49.33 ± 2.04 to 70.35 ± 0.60%, and in fermented pomace – from 47.49 ± 0.02 to 64.24 ± 0.60%. The varieties were studied for mass concentrations of tartaric, malic, succinic, citric, and lactic acids. Tartaric and malic acids proved to be the most abundant ones. The pomace of Riesling grapes had the greatest amount of tartaric acid (104.47 ± 4.16 g/kg). The “Chardonnay” variety proved rich in malic acid (19.40 ± 2.67 g/kg), while the “Morava” pomace had the biggest amount of citric acid (12.61 ± 1.12) and succinic acid (11.72 ± 1.23). The research also defined concentrations of alkaline and alkaline-earth elements. Their content ranged from 41.04 to 3.29 g/kg. Potassium appeared to be the main cation in the pomace samples. The share of potassium in the total mineralization of pomace was up to 94%. The “Riesling” variety grown near Novorossiysk had the largest amount of potassium (36.46 ± 4.65 g/kg). The samples demonstrated a significant correlation between the content of tartaric acid and potassium. Conclusion. The research revealed a significant variation in the concentration of the organic acids and cations of alkaline and alkalineearth metals, depending on the grape variety, the place of its growth, and processing. The grape pomace samples differed moisture content. It depended on the volume of the liquid fraction, i.e. wort or wine material selected during pressing.
3793
Abstract
Introduction. The market of dietary supplements is actively developing due to the general deterioration of public health and the fact degenerative diseases affect younger population. Functional foods and biologically active additives can prevent and treat various pathological processes. Unlike pharmaceuticals, they provoke neither addiction nor allergic reactions and do not accumulate in the human body. Therefore, consumer interest in dietary supplements is a relevant research issue. The research objective was to conduct marketing research in order to study the current state of the market of dietary supplements. Study objects and methods. This research was based on a systematic approach and abstract-logical, statistical-economic, and graphical methods. Results and discussion. The marketing research made it possible to classify biologically active additives on the pharmaceutical market of Kemerovo (Russia). The market included 45 organizations and 15 brands. A sociological survey of 100 respondents revealed that the younger participants were familiar with the concept of dietary supplements. All respondents monitored the state of their health; however, their attitude to functional food additives was quite neutral. They used supplements for general health promotion and to solve particular problems, e.g. acne. On average, they took one course of administration per year based on medical prescriptions and recommendations of close relatives. The survey identified the most popular brands and producers of dietary supplements in Kemerovo. Most supplements were purchased in pharmacies and specialized stores. Packaging appeared to be the least important factor that affected the consumer behavior. The paper introduces some recommendations on attractive packaging. Conclusion. Biologically active additives replenish the necessary amount of nutrients to maintain health, which makes them a popular product on Kemerovo market. Further study is required, despite the obvious benefits of functional additives.
3300
Abstract
Introduction. Chemical factor presupposes substances that enter the finished product and reduce its quality. Water used in production process can be a source of such substances. The domestic drinking water supply system may contain various contaminants that possess toxic and carcinogenic properties and can affect the quality characteristics of food products. Study objects and methods. The research featured popular water pollutants found in the drinking water supply system, components of fruit and whey beverages, and the process of adsorption extraction of the contaminants by various sorbents. Results and discussion. The paper focuses on the effect of water contamination as a dangerous chemical factor on the quality of restored whey products. The study revealed the effect of organic water pollutants on the formulation components of reduced fruit and whey beverages, including interaction with proteins, lactose, and vitamins of the reduced whey. The research also featured such components of fruit and whey vitamin beverages as anthocyanins, catechins, leucoanthocyanins, and karatine, as well as additives introduced to regulate the sensory properties and improve shelf life. The paper introduces a new method for reducing water contamination based on adsorption processes for extracting organic compounds from aqueous solutions. It describes the specifics, patterns, and mechanisms of adsorption. Activated carbons of SKD-515, AG-OV-1, and AG-3 brands proved to have the best adsorption capacity for both chloroform and trichloroethylene, which makes it possible to recommend them for further research and practical use. A study of the kinetic and dynamic characteristics of the process resulted in the optimal parameters of adsorption columns and operation modes of the adsorption filter. A production flowchart describes the introduction of the adsorption posttreatment stage in the technological process of producing fruit and whey beverages. Conclusion. The proposed method of water decontamination partially reduced the chemical factor and improved the quality of the finished products.
4874
Abstract
Introduction. High-quality dairy products depend on the properties of raw materials. Milk is the basic raw material for all dairy products. Its quality is subject to requirements of biological safety, and its physicochemical and technological properties comply with strict indicators. ϰ-casein gene is a basic milk protein. Its allelic variants affect milk productivity, as well as its composition and technological properties, e.g. cheeseability and heat resistance. The research objective was to develop a new method for determining the ratio of the relative proportions of selection-significant kappa-casein gene alleles in bulk cow’s milk powder by means of molecular genetics and bioinformation system. The method can help to test raw materials for further processing rationality. Study objects and methods. The research included a genetic analysis of samples of bulk whole milk powder, bulk powdered skimmed milk, and bulk raw milk. The developed method involved DNA extraction, combined PCR-RFLP technique, electrophoretic results, and analysis detection of information data using new mathematical algorithms and software. Results and discussion. The ratio of the relative proportions of the kappa-casein gene alleles in milk powder was determined using primer sets JK5 and JK3, as well as restriction endonuclease HinfI for PCR-RFLP analysis. The experiment showed satisfactory reproducibility and interpretation of the obtained data. The program provided a ratio calculation of the kappa-casein gene alleles relative proportions in the studied milk powder samples, expressed as a percentage of the A allele proportion with additional indication of the absolute and relative errors. It also placed the information block of the generated numerical indicators into the percentage scale. Conclusion. The developed methodology was implemented by a set of laboratory procedures. The new specialized program “Calculation of the relative proportions ratio of ϰ-casein alleles in bulk milk” is on open access. It provides a correct and prompt data interpretation, generated during the analysis of dry milk raw materials of bulk origin.
3636
Abstract
Introduction. Waste management and poorly degradable polymer packaging are one of the main environmental issues. Biodegradable materials based on a composition of native and modified starches can solve the problem of polymer waste in food packaging. They are environmentally friendly and harmless during decomposition. However, the barrier properties of biodegradable films still remain understudied. Study objects and methods. The research featured the safety profile of gelatinous confectionery products during storage in biodegradable and polypropylene films. It focused on moisture transfer and microbiota growth in glazed jelly marmalade. The first sample was wrapped in oriented polypropylene film (40 microns), while the other sample was packaged in a biodegradable film (50 microns). A set of experiments was conducted to measure the mass fraction of moisture, water activity, fatty acid composition of the fat fraction of the glaze, active acidity, microbiological parameters, and lipase activity during storage. Results and discussion. The activity of water during storage remained the same. The specific rate of moisture transfer for the polypropylene film sample was approximately 1.4 times higher than for the biodegradable sample. It equaled 1.16×10–6 g/m2·s for the polypropylene film sample and 0.83×10–6 g/m2·s for the biodegradable sample. The dynamics of growth of QMAFAnM, mold, and yeast was the same in both samples; it did not exceed the regulated indicators of microbiological safety after 12 weeks of storage. The lipase activity of the glazed marmalade samples packed in the polymer film did not increase during storage. Replacing the polypropylene film with a biodegradable film did not significantly affect the safety profile of confectionery products. Conclusion. Research results confirmed the possibility of using a biodegradable film for packaging confectionery products.
3888
Abstract
Introduction. Modern food industry needs composite polymer materials based on natural compounds that accelerate the biodegradability of packaging materials. Starch is one of the most effective organic fillers. It has an excellent compatibility with synthetic polymers during extrusion. The research objective was to perform a comparative assessment of the physical and mechanical characteristics of thermoplastic starch based on enzymatic modified porous corn starch. The starch included samples both purified and unrefined from reducing substances. The samples were tested in biodegradable film production.
Study objects and methods. The research featured porous starch, hybrid compositions with thermoplastic porous starch (TPS), and films based on low density polyethylene (PLD). The study involved various methods for determining biochemical and structural features of starch, e.g. electron microscopy, and physicomechanical properties of compositions and films.
Results and its discussion. Compared to native starch, porous starch had a 1.6 times higher water-binding capacity and a 4 times greater solubility. Its enzymatic attackability was 24% higher, while its dynamic viscosity was a 1.7 times lower. These properties had a positive effect on the biodegradability of the films. The film samples that had the PLD:TPS ratio of 60:40 and the porous starch ratio of 40:60 demonstrated higher indicators of breaking tensile stress than the native starch samples. When the ratio of PLD:TPS was 70:30, the difference reached 14%; with that of 60:40 – 23%. Similar results were obtained for the break elongation: the indicator increased by 74% at the ratio of 70:30, by 65% at the ratio of 60:40, and by 21% at 40:60. The superior tensile stress indicator of the porous starch samples proved its higher strength properties, while the better break elongation results denoted a greater biodegradability.
Conclusion. Modified starch, unrefined from reducing substances, proved more expedient for TPS and PLD film production. Unlike refined starch, it reduced the biodegradability period of the final product. The biodegradability period can be specified in a prospective study of food properties during storage using the new film.
4218
Abstract
Introduction. A unified system of normative and technical regulation can facilitate export of fruit and vegetables. The research objective was to develop a draft of unified standards for marketing regulation and quality control of fruit and vegetable products that participate in foreign trade in the Eurasian Economic Union (EAEU).
Study objects and methods. The study featured draft standards for quality of prepared and packaged food products, classification, size, labeling, packaging, safety indicators, etc. The research also included development programs of interstate standards for technical regulations and objects of technical regulation, i.e. fresh fruit and vegetables. Research methods involved comparison, analysis, synthesis, peer review, comprehensive standardization, and system analysis.
Results and its discussion. The present article provides an analytical review of the world export of fruit and vegetables by EAEU countries. Export to third countries demonstrated a positive growth trend: the export of vegetables increased by 19.3% and that of fruit – by 3.6%, in comparison with 2018. The paper focuses on the structure of the drafts, their main tasks and advantages. It gives a detailed description of drafts that regulate pre-export standards (quality, commodity procedures, packaging, etc.), as well as post-export requirements. The authors developed standards that specify maturity, calibration, labeling, hygienic requirements, contaminants, etc. The draft standards may help to regulate the sale and control of the commercial quality of fresh fruit and vegetables, including organic products.
Conclusion. The new international standards for fresh fruit and vegetables, including organic products, will reduce procedural and documentary barriers between the EAEU and the world market, thus increasing the volume of foreign trade in fruit and vegetables.