
926 

 

 
 AJCS 10(7):926-932 (2016)                                                                                                                            ISSN:1835-2707 
DOI: 10.21475/ajcs.2016.10.07.p7301 
 

Temperature-based solar radiation models for use in simulated soybean potential yield 
 
Valdiney José da Silva1*, Cláudio Ricardo da Silva1, Javier Almorox2, José Alves Júnior3 

 
1Institute of Agricultural Sciences, ICIAG, Federal University of Uberlandia – UFU, MG, Brazil 
2School of Agricultural Engineers, Department of Soil Science and Climatology, Polytechnic University of 
Madrid, Madrid, Spain 
3School of Agronomy, EA, Federal University of Goias – UFG, GO, Brazil 
 
*Corresponding author: neyjosilva@hotmail.com 
 
Abstract 
 
Solar radiation is the main meteorological element required for crop yield simulation. However, it is not widely measured as air 
temperature and rainfall. This study evaluated some temperature-based solar radiation models for estimation of daily solar radiation 
(Rs), and how the estimates may affect soybean yield potential. The evaluated models were Annandale (AN), Hargreaves (HA), 
Modified Hargreaves (HA-1), Hunt (HU), Bristow and Campbell (BC), Chen (CH), Donatelli and Campbell (DC) and De Jong and 
Stewart (JS). This research was carried out using historical data from six sites in the Triangulo Mineiro region, where measured 
values of Rs, minimum and maximum air temperature and rainfall were available. The dataset (2009-2014) was separated into two 
sub-data sets, one for calibration (2009) and the other for evaluation of performance (2010-2014). The Rs estimated data were used 
in SoySim software to estimate potential soybean yield. Statistical indexes: (a) root mean square error (RMSE), (b) relative root 
mean square error (RRMSE), (c) coefficient of determination (R2) and (d) mean error (ME) were used as indicators of the agreement 
between observed and estimated Rs data. After evaluating the performance, Rs estimated values for each model were used to 
simulate the soybean potential yield. Although the eight models have presented similar performance for estimating Rs values, when 
these data were used for simulation of the potential soybean yield, the performances diverged considerably. In this way, only the BC, 
CH, DC and JS models showed satisfactory performance in yield simulation with R2 and RRMSE varying from 0.76 to 0.80 and 3 to 
4%, respectively. Therefore, the findings suggest that, before choosing the model to estimate Rs, it is important to define the purpose 
of use of solar radiation data. 
 
Keywords: air temperature, empirical equations, Bristow and Campbell, performance. 
Abbreviations: ∆T_Daily air temperature range, ∆Ta_ Annual air temperature range, AN_Annandale estimation model, BC_ 
Bristow and Campbell estimation model, CH_Chen estimation model, DC_ Donatelli and Campbell estimation model, 
HA_Hargreaves estimation model, HA-1_ Modified Hargreaves estimation model, HU_Hunt estimation model, JS_ De Jong and 
Stewart estimation model, and Rs_daily solar radiation incident. 
 
Introduction 
 
Daily solar radiation incident (Rs) data are used in crop yield 
simulation (Bellocchi et al., 2003; Abraha and Savage, 2008; 
Mavromatis, 2008; Borges et al., 2010; Wang et al., 2015) 
and evapotranspiration requirements (Bandyopadhyay et al., 
2008; Conceição, 2010; Carvalho et al., 2011; El Nesr et al., 
2011). However, because of instrument cost and calibration 
requirements (Hossain et al. 2014), Rs is not widely 
measured like commonly used air temperature and rainfall 
data (Weiss and Hays, 2004). Even at stations where Rs is 
measured, there are many days when data lie outside the 
expected range due to equipment failure and other problems 
(Hunt et al., 1998). Therefore, in many model simulations, 
the lack of Rs data has often been a significant challenge 
(Trnka et al., 2007). 

The demand for suitable radiation data has in turn, led to 
the development of numerous predictive methods. However, 
those are based on empirical relationships using commonly 
measured meteorological elements such as air temperature 
data are attractive due to lower data requirement and 
computation costs (Liu et al., 2009a, 2009b). In addition, the 
temperature-based solar radiation model can reduce the 

uncertainty of the crop simulations (Hunt et al., 1998; 
Rivington et al., 2006; Abraha and Savage 2008). 

Although empirically derived and conceptually simple, air 
temperature-based empirical models are founded on 
theoretical concepts for energy exchange on the surface 
boundary layer (Goodin et al., 1999). These models are based 
on the assumptions that (a) clear skies will increase the daily 
maximum temperature because of the greater short wave 
radiation input, while resulting in decreased minimum air 
temperature due to reduced long wave emission from  the 
atmosphere; and (b) cloudy conditions will decrease the daily 
maximum air temperature due to reduced air transmissivity, 
while resulting in increased minimum air temperature due to 
increased long wave radiation from the clouds (Allen, 1997; 
Donatelli and Campbell, 1998; Almorox et al., 2013). 

Numerous calibrations and evaluations have been made for 
different climatic regions, such as Canada (De Jong and 
Stewart, 1993), China (Liu et al., 2009b) Spain (Almorox, 
2011) and Brazil (Borges et al., 2010; Silva et al., 2012; Dos 
Santos et al., 2014). Depending on the model and calibration 
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the errors can vary between 0.1 (De Jong and Stewart, 1993) 
and 17.8 MJm-2d-1 (Phakamas et al., 2013). 

Beyond the evaluation of these models for a wide range of 
geographical  and climate conditions, it is interesting to 
access how Rs estimated values impact other crop process, as   
evapotranspiration and crop yield. Trnka et al. (2007) found 
significant variations in yield simulations according to the 
errors of the models and concluded that these can 
compromise the accuracy, especially if not properly 
calibrated. Thereby, the aims of this study were to (i) 
calibrate various temperature-based solar radiation models in 
the Triangulo Mineiro region, Brazil and (ii) investigate the 
impact of estimated Rs values on soybean yield potential.  
 
Results  
  
Calibrated coefficients 
 
Table 3 shows the results of calibration models. In general, 
the coefficient values ranged between geographic locations as 
similar to other reports (Meza and Varas, 2000; Chen et al., 
2004; Silva et al., 2012). It should be mentioned that this 
variation was higher for models with a greater number of 
coefficients. Thus, for the HA model, which has only one 
coefficient (a), the values ranged from 0.150 to 0.188 while 
for the BC model with its three coefficients (a, b and c), the 
values were 0.677 to 0.873, 0.012 to 0.039 and 1.304 to 
1.997, respectively. Making a percentage comparison, the 
HA model coefficient showed an average variation of 20%, 
while for the BC model coefficients of variation was 42% on 
average. These results showed that calibration can improve 
the accuracy of estimates (Liu et al., 2009b; Silva et al., 
2012; Phakamas et al., 2013), especially for models with a 
greater number of coefficients. 
 
Performance of Rs estimation models 
 
Upon analysis of the Rs estimated by the models after 
calibration (Table 4), it was found that the RMSE and ME 
values were similar among models. In Sacramento, where the 
greatest difference between the models occurred, the range of 
RMSE was 3.08 to 3.68 MJ m-2. This difference based on the 
daily Rs average (18.64 MJ m-2) was close to 3%. In a similar 
way, in the location with greatest ME variation (Conceicao 
das Alagoas) this difference was close to 5% (-0.02 – 0.85 
MJ m-2).  

Nevertheless, it was possible to identify two groups of 
performances between models. The BC, CH, DC and JS 
models were superior to the AN, HA, HA-1 and HU models. 
Analyzing the values of RMSE, RRMSE and R2 for the CH 
model, we noted variation from 2.84 to 3.78, 14.87 to 19.21 
and 0.59 to 0.70, respectively. Similarly, the BC and DC 
models showed range for RMSE, RRMSE and R2 next to CH. 
On the other hand, the AN, HA and HA-1 models showed 
values of RMSE and R2 ranging of 3.05 to 3.94, 15.57 to 
20.04 and 0.48 to 0.64, respectively. In general, the values 
obtained for RMSE were closely similar to Almorox (2011), 
but the R2 were minor. For the models that use rainfall data 
(JS and HU), the performance were not different from the 
others models that use only ∆T data. Thus, the performance 
of JS model was similar to BC, CH and DC models, and the 
HU was similar to AN, HA and HA-1 models. Then, the 
inclusion of rainfall data did not improve the estimation of 
Rs. However, in contrast, Almorox (2011) found best 
estimates when used the HU model comparing with models 
that use only air temperature data in China. 

An important observation is that all models showed better 
performances (Table 4) in sites with higher annual mean air 
temperature range (Ta) (Table 1). While Conceicao das 
Alagoas, with higher Ta (13.48), showed best performance, 
Uberlandia, with lower Ta (10.30), was the worst. These 
results agreed with those obtained by Liu et al. (2009b) in 
China. However, despite of similar comportment between the 
models, some were more dependent to T. The linear 
regressions between the Ta and values of RMSE confirm 
this dependency (Fig 1). For the AN, HA and HA-1 models 
the values of R2 ranged from 0.54 to 0.57. In the BC, CH and 
DC, models ranged from 0.26 to 0.43 and in the JS and HU 
models, which also used rainfall data, the range was 0.04 and 
0.23, respectively.  
 
Application of the estimated Rs values on soybean potential 
yield simulation 
 
When the Rs values estimated by the models were used in the 
simulation of the soybean potential yield, the BC, CH, DC 
and JS models showed R2> 0.75 for the locations and years 
under evaluation (Fig 2). On the other hand, the AN, HA, 
HA-1 and HU models showed R2  0.35. It can also be 
verified that all the models showed a general tendency to 
overestimate the potential soybean yield, as shown by the 
positive values of ME. However, for the AN, HA, HA-1 and 
HU models, this tendency was higher than the other models 
with values ranging between 0.22 – 0.25 Mg ha-1, while the 
BC, CH, DC and JS models presented values from 0.04 – 
0.11 Mg ha-1. A lower R2 combining with a higher ME 
indicates poor performance, since in a certain location or 
year, errors in the simulations can be higher. Thus, while the 
errors for the BC, CH, DC and JS models do not exceeded 
10%, in the AN, HA, HA-1 and HU models came close to 
35% in Ituiutaba for the 2009/2010 crop season. 

Abraha and Savage (2008) verified an overestimation of 
total dry corn biomass with the HA-1 model. However, these 
authors recommend the referred model due to its simplicity 
and the relative easiness in obtaining the coefficients for a 
given location. Moreover, Bandyopadhyay et al. (2008) and 
El Nesr et al. (2011) found minor effect of Rs estimated 
values by this model in estimating the reference 
evapotranspiration. 
 
Discussion 
 
In general, the performance of models in estimating Rs 
values  was similar,  although it was possible to recognise 
that BC, CH, DC and JS models had a better performance, 
when compared to AN, HA, HA-1 and HU models. One of 
the explanations for this variation of performance between 
the models can be attributed to the manner, in which each 
coefficient is inserted into the equation. The solar radiation is 
the primary source of energy for the change of weather 
elements and various processes occurring on the surface and 
in the atmosphere (Pereira et al., 2007; Wu, et al., 2007). 
Therefore, the greater the amount of energy used for the 
change of a particular element, the greater the representation 
on the total amount available and vice versa. As reported by 
Bristow and Campbell (1984), the balance of daily radiation 
can be expressed by the Bowen ratio (sensible heat/latent 
heat) and provides valuable microclimate information. 
According to these authors, in the BC model the b and c 
coefficients indicate the energy partition and the coefficient a 
is related to atmospheric transmissivity (altitude and air 
pollution, mainly). This feature is important for locations that 
dominate two distinct annual seasons (one predominantly dry  
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Table 1. Meteorological station sites, period of evaluation, percentage of data omission, annual mean temperature air range (ΔTa), 
mean, minimum, maximum daily solar radiation incident on surface (Rs, Rsmin, Rsmax). 

Location Latitude Longitude Altitude 
(m) 

Period Omission
(%) 

ΔTa 
(°C) 

Rsmin Rsmax Rsm 

   ---------(MJ m-2 d-1)--------- 
Araxa -19.60° -46.93° 1.020 2009-2014 4.93 10.53 2.28 35.74 19.74 
Conc. das 
Alagoas 

-19.99° -48.15° 568 2009-2014 5.16 13.38 1.85 33.08 18.33 

Ituiutaba -18.95° -49.52° 560 2009-2014 1.41 13.48 2.52 30.20 18.90 
Patrocinio -19.00° -46.99° 963 2009-2014 1.00 13.46 2.56 31.76 18.98 
Sacramento -19.88° -47.43° 912 2009-2014 1.87 11.53 1.78 30.79 18.64 
Uberlandia -18.92° -48.25° 869 2009-2014 3.88 10.30 1.90 35.76 18.86 

 
Fig 1. Analysis of regression between annual temperature range (Ta) and root mean square error (RMSE) of Rs estimation models 
calculated on six sites for each model: AN–Annandale, BC–Bristow and Campbell, CH–Chen, DC–Donatelli and Campbell, HA–
Hargreaves, HA-1–modified Hargreaves, HU–Hunt, and JS–De Jong and Stewart. 
 
 
and the other rainy), such as the locations in this study. 
Therefore, for the rainy season, a larger portion of the daily 
radiation balance is spent on latent heat rather than with 
sensible heat and the coefficients b and c of the BC model 
control this partition during the year. Bellocchi et al. (2003) 
found better answers to the simulation of crop biomass for 
models that include seasonal effects on Rs estimates, when 
evaluating three Rs estimation models in different locations. 
On the other hand, the AN, HA, HA-1 and HU models do not 
have coefficients that indicate such partition of energy. The 
coefficients in these models are more related to atmospheric 
transmissivity, leaving important information as to 
microclimate aside. 

Other consideration is about how the air temperature range 
(ΔT) is calculated. These models do not use a 2-day 
averaging minimum air temperature to obtain ΔT, which 
could help to reduce the effect of large scale clouds moving 
through the study area in a day, reducing Rs but not ΔT. 
Therefore, this may explain the strong trend of these models 
in overestimating Rs in rainy summer. When the average Rs 
values were close to 5 MJ m-2d-1, the estimated values for 
these models were more than double. However, this is not a 
problem verified in many studies. Liu et al. (2009b), in 
China, observed only a moderate effect of ΔT scheme and for 
most locations, ΔT used by these models was even more 
precise. 

When the Rs estimated data were used in SOYSIM software, 
the BC, CH, DC and JS models showed greater efficiency, 
having estimates close to those obtained with Rs measured at 
the location. With the Rs estimated by these models, the 
potential yield did not exceed by 7%. On the other hand, the 
AN, HA, HA-1 and HU models overestimated the yield up to 
34%. Probably, one reason was that as the yield estimates 
were carried out for a relatively short period of the year (105 
days on average) and under rainy summer, the overestimated 
Rs values were used by An, HA, HA-1 models. As biomass 
accumulation is proportional to the amount of light in the 
photosynthetically active radiation (PAR) domain that the 
plant intercepts over a period of time (Monteith, 1977), 
another reason could be the major impact of these values in 
potential soybean yield simulated by SOYSIM software.  

It is noteworthy that the statistical indices are widely used 
to evaluate performances of Rs estimation models. However, 
depending on the application of the estimated data, small 
differences in these performances can reduce efficiency in 
dependent applications, as crop yield simulation. This work 
showed that when the estimated Rs data were used to 
simulate the potential yield, the performances of some 
models decreased considerably.  

Another observation is about the importance of model 
calibration. Wang et al. (2015) found no significant 
differences between the estimations obtained with
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 Table 2.  Summary of the studied models. 
Model Equation  Coefficient Source 

AN 
 

a Annandale et al. (2002) 

BC 
 

a, b, c Bristow and Campbell (1984) 

CH 
 

a, b,  Chen et al. (2004) 

JS 
 

a, b, c, d De Jong and Stewart (1993) 

DC 

 

a, b, c Donatelli and Campbell (1998) 

HA 
 

a Hargreaves (1981) 

HA-1 
 

a, b Hunt et al. (1998) 

HU 
 

a, b, c, d, e Hunt et al. (1998) 

Where: Rs, daily solar radiation incident on the surface (MJ m-2 d-1); Ra, daily extraterrestrial solar radiation (MJ m-2 d-1), calculated according to the latitude and the 
number of day of the year (Allen et al., 1998); Alt, altitude (meters); ΔT1, difference between the maximum and minimum air temperature of the day (°C); ΔT2, difference 
between the maximum and the average of the minimum air temperature of the two consecutive days (°C); ΔTm, monthly mean of the ΔT2, and; P, daily rainfall (mm). 
 
 

 
Fig 2. Analysis of regression between yield simulations with Rs measured and estimated by the models to Triangulo Mineiro region: 
AN–Annandale, BC–Bristow and Campbell, CH–Chen, DC–Donatelli and Campbell, HA–Hargreaves, HA-1–modified Hargreaves, 
HU–Hunt, and JS–De Jong and Stewart. 
 
 
calibrated and uncalibrated models, when evaluating Rs 
models based on insolation. However, they noted that the Rs 
data estimated without local calibration used in the crop 
simulation models significantly affected the results.  
 
Materials and Methods 
 
Data 
 
Meteorological data were obtained from six weather stations 
localized in the Triangulo Mineiro region and listed in Table 
1. The stations are part of the National Meteorology Institute 
(INMET) network. In these stations, for Rs daily 
measurements, a CM6B pyranometer (Kipp and Zonen, 
Delft, Netherlands, 5% of accuracy) was used. The air 
temperature was measured with QMH102 (Vaisala, Finland, 
0.1ºC of accuracy) and daily rainfall was measured with 
QMR102 tipping-bucket rain gauge (Vaisala, Finland, 0.2 
mm of accuracy). All data were available at the web site 
http://www.inmet.gov.br 

The data recorded at hourly intervals were processed to get 
daily values of maximum (Tmax) and minimum air 
temperature (Tmin); solar radiation (Rs), and rainfall (P). 
Data were checked for outliers by elimination criteria 
proposed by Liu et al. (2009b): (a) missing measurements for 
any Tmax, Tmin or Rs; (b) Tmax ≤ Tmin and (c) Rs/Ra ≥ 1. 
Omission of data (Table 1) was calculated dividing missing 
data with total available. Daily extraterrestrial solar radiation 
was calculated according to the latitude and the number day 
of the year (Allen et al., 1998) 
 
Solar radiation models 
 
Table 2 shows the models used to estimate Rs. Hargreaves 
(1981) was the first to propose a model for estimating Rs 
from the difference between maximum and minimum air 
temperatures. Since then, Hargreaves’s model has been 
widely used due to its simplicity. The original Hargreaves 
model had only one coefficient, but some authors have cited 
it as having two (Hunt et al., 1998; Chen et al., 2004). Over 
time, modifications have been proposed to the model.  

5
1(1 2,7 10 )Rs a Alt T Ra  

  21 exp cR a b Rs aT   
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 2
1 1bR a T c Rs P P ad   

21 exp
c

s a
m

T
R a b R

T
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Table 3. Models coefficients calibrated in the studied sites. 
 Models* 
 AN BC CH JS 
Stations  a a b c a b a b c d 
Araxa 0.183 0.862 0.017 1.861 0.513 -0.575 0.076 0.903 -5.90E-3 6.02E-5 

Conc. das alagoas 0.150 0.695 0.019 1.767 0.373 -0.387 0.079 0.763 -9.66E-4 -6.60E-7 

Ituiutaba 0.152 0.677 0.012 1.997 0.391 -0.436 0.085 0.733 -8.70E-5 -2.20E-5 

Patrocinio 0.153 0.873 0.039 1.304 0.383 -0.401 0.076 0.787 3.95E-3 -1.11E-4 

Sacramento 0.155 0.796 0.019 1.711 0.436 -0.504 0.059 0.923 -3.93E-3 6.31E-5 

Uberlandia 0.165 0.732 0.015 1.976 0.452 -0.492 0.073 0.885 -1.13E-2 1.33E-4 

Mean 0.160 0.772 0.020 1.769 0.425 -0.466 0.075 0.832 --- --- 

Models DC HA HA-1 HU 

Stations  a b c a a b a b c d e 

Araxa 0.758 0.064 2.413 0.188 0.179 0.983 0.131 0.543 -0.236 0.003 -7.899 

Conc. das alagoas 0.654 0.115 2.067 0.153 0.175 -2.639 0.154 0.168 -0.117 0.002 -5.017 

Ituiutaba 0.687 0.084 2.182 0.153 0.201 -5.914 0.172 0.286 -0.086 0.001 -10.982 

Patrocínio 0.688 0.152 1.961 0.157 0.162 -0.593 0.141 0.211 -0.082 0.001 -3.730 

Sacramento 0.671 0.066 2.340 0.159 0.159 0.019 0.134 0.287 -0.222 0.004 -4.688 

Uberlandia 0.649 0.030 2.812 0.169 0.154 1.611 0.120 0.468 -0.265 0.004 -7.415 

Mean 0.686 0.089 2.251 0.163 0.172 -1.089 0.142 0.327 -0.168 0.003 -6.622 

* 
Models: AN–Annandale, BC–Bristow and Campbell, CH–Chen, DC–Donatelli and Campbell, HA–Hargreaves, HA-1–modified Hargreaves, HU–Hunt, and JS–De Jong 

and Stewart. 

 
 
Table 4. Performance of the solar radiation estimation models in the six sites of Triangulo Mineiro region: Coefficient of 
determination (R2), Mean bias error (ME), root mean square error (RMSE) and relative root mean square error (RRMSE). 

Sitesa 
Modelsb 
AN HA HA-1 HU BC CH DC JS 

 R2 
1 0.54 0.54 0.54 0.65 0.67 0.66 0.66 0.68 
2 0.64 0.64 0.64 0.68 0.72 0.70 0.74 0.67 
3 0.63 0.63 0.63 0.66 0.71 0.68 0.74 0.63 
4 0.58 0.58 0.58 0.63 0.68 0.67 0.67 0.65 
5 0.55 0.55 0.55 0.57 0.67 0.68 0.66 0.66 
6 0.48 0.48 0.48 0.60 0.59 0.59 0.59 0.62 
 ME (MJm-2d-1) 
1 +0.96 +0.96 +0.96 +1.15 +1.34 +1.12 +0.76 +1.43 
2 +0.28 +0.28 +0.34 +0.27 +0.62 +0.64 -0.02 +0.85 
3 +0.05 -0.16 -0.06 -0.04 -0.05 +0.07 -0.40 +0.19 
4 +0.28 +0.28 +0.29 +0.33 +0.79 +0.46 -0.13 +0.71 
5 -0.63 -0.63 -0.63 -0.34 -0.12 -0.28 -0.80 +0.10 
6 -0.66 -0.66 -0.66 -0.49 -0.20 -0.13 -0.76 -0.08 
 RMSE (MJm-2d-1) 
1 3.94 3.94 3.93 3.55 3.76 3.78 3.60 3.68 
2 3.29 3.29 3.26 3.07 2.92 3.02 2.76 3.23 
3 3.05 3.06 3.09 2.98 2.67 2.84 2.60 3.02 
4 3.33 3.33 3.33 3.12 3.03 3.04 3.03 3.18 
5 3.68 3.68 3.68 3.50 3.08 3.09 3.26 3.13 
6 3.61 3.61 3.61 3.15 3.25 3.27 3.37 3.14 
 RRMSE (%) 
1 20.04 20.04 19.99 18.04 19.12 19.21 18.34 18.72 
2 17.80 17.80 17.64 16.62 15.78 16.34 14.93 17.45 
3 15.94 15.99 16.18 15.57 13.98 14.87 13.62 15.87 
4 17.46 17.46 17.45 16.35 15.91 15.94 15.86 16.64 
5 19.47 19.47 19.47 18.50 16.29 16.36 17.27 16.58 
6 18.93 18.93 18.92 16.53 17.03 17.16 17.68 16.45 

a Sites: 1–Araxa, 2–Conceicao das Alagoas, 3–Ituiutaba, 4–Patrocinio, 5–Sacramento, and 6–Uberlandia. 
 b Models: AN–Annandale, BC–Bristow and Campbell, CH–Chen, DC–Donatelli and Campbell, HA–Hargreaves, HA-1–modified Hargreaves, HU–Hunt, and JS–De Jong 
and Stewart. 
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Chen et al. (2004) replaced the exponential function by a 
logarithmic function. De Jong and Stewart (1993) and Hunt 
et al. (1998) introduced more coefficients for corrections of 
rainfall effect. Annandale et al. (2002) introduced a 
correction factor for altitude. Another air temperature 
empirical model with more physics was involved in the 
relationship proposed by Bristow and Campbell (1984). The 
model has three coefficients, where a represents the 
maximum transmissivity expected for one clear day, which 
will vary with altitude air pollution and, b and c, control the 
rate as to how soon the maximum Rs is achieved as ∆T 
increases. To reduce the effect of large-scale hot or cold air 
masses, which may move through the area, the range of air 
temperature was calculated as the difference between 
maximum and average minimum air temperature of the two 
consecutive days. Donatelli and Campbell (1998) proposed a 
correction to reduce the seasonal effect on Rs, dividing the 
temperature range by the month average. 
 
Calibration  
 
The dataset (2009-2014) was separated into two sub-datasets, 
one for calibration (2009) and the other for evaluating the 
performance (2010-2014). Nonlinear least square method 
(RMSE) was used to calibrate model coefficients by the 
solver tool of EXCEL software.  
 
Potential Soybean yield with Rs estimated values 
 
After calibration, Rs estimated values for each model were 
used to simulate the potential soybean yield in five 
consecutive seasons using SoySim (version 2009.1.0). The 
software simulated the potential soybean yield through Rs, 
maximum and minimum air temperature, photoperiod and 
sowing densities (Setiyono et al., 2010). Default crop 
parameters for soybean were used. The emergence date at 
each location was set 15th of November using a soybean 
cultivar of semi-determinate growth, and 7.0 maturity group. 
 
Statistical analysis 
 
 To perform an  evaluation of the models for estimating Rs 
statistical indexes such as: (a) root mean square error 
(RMSE), (b) relative root mean square error (RRMSE), (c) 
coefficient of determination (R2), and (d) mean bias error 
(ME) or BIAS, by equations 1, 2, 3 and 4 were used. The 
impact of Rs estimated values on potential yield of soybean 
was also analyzed by these statistical indexes. 
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Where,  
Mi – potential soybean yield with Rs observed values, Mg ha-

1; Ei – potential soybean yield with Rs estimated values, Mg 
ha-1; n –total data; –mean potential soybean yield with Rs 
measured values, Mg ha-1. 
 
 
 

Conclusion 
 
Daily solar radiation estimation data based on air temperature 
and/or rainfall were used in Soybean crop yield simulation. 
After calibration, although the Rs estimated by the eight 
models presented similar performance, when these data were 
used in the simulation of the potential soybean yield, the 
performances diverged considerably. Thus, all the models 
showed a general tendency to overestimate the potential 
soybean yield, but in AN, HA, HA-1 and HU models this 
tendency was higher than other models. In this way, only BC, 
CH, DC and JS models showed satisfactory performance in 
yield simulation with R2 and RRMSE varying from 0.76 to 
0.80 and 3 to 4%, respectively. Therefore, this study showed 
that, before choosing the model to estimate Rs, it is important 
to define the purpose of the results obtained considering the 
range of data available for their calibration. 
 
Acknowledgements 
 
The authors thank INMET (National Institute of 
Meteorology) by availability of data used in this study. 
 
References  
 
Abraha MG, Savage MJ (2008) Comparison of estimates of 

daily solar radiation from air temperature range for 
application in crop simulations. Agr For Meteorol. 148(3): 
401–416. 

Allen RG, Pereira LS, Raes D, Smith M (1998) Crop 
evapotranspiration: guidelines for computing crop water 
requirements. The FAO Irrigation and Drainage Paper 56. 
Rome, Italy. 

Allen RG (1997) Self-calibrating method for estimating solar 
radiation from air temperature. J Hydrol Eng. 2: 56–67. 

Almorox J, Bocco M, Willington E (2013) Estimation of daily 
global solar radiation from measured temperatures at 
Cañada de Luque, Córdoba, Argentina. Renew Energ. 60: 
382–387. 

Almorox J (2011) Estimating global solar radiation from 
common meteorological data in Aranjuez, Spain. Turk J 
Phys. 35: 53–64. 

Annandale JG, Jovanic NZ, Benade N, Allen RG (2002) 
Software for missing data error analysis of Penman–
Monteith reference evapotranspiration. Irrigation Sci. 21: 
57–67. 

Bandyopadhyay A, Bhadra A, Raghuwanshi NS, Singh R 
(2008) Estimation of monthly solar radiation from 
measured air temperature extremes. Agr Forest Meteorol. 
148(11): 1707–1718. 

Bellocchi G, Donatelli M, Fila G (2003) Evaluation of 
estimated radiation data for calculating evapotranspiration 
and crop biomass. Ital J Agron. 7: 95–102. 

Borges VP, Oliveira AS, Coelho Filho MA, Silva TSM, 
Pamponet BM (2010) Evaluating models for estimation of 
incoming solar radiation in Cruz das Almas, Bahia, Brazil. 
Rev Bras Eng Agríc Ambient. 14(1): 74–80. 

Bristow KL, Campbell GS (1984) On the relationship between 
incoming solar radiation and daily maximum and minimum 
temperature. Agr Forest Meteorol. 31(2): 159–166. 

Carvalho DF, Silva DG, Souza AP, Gomes DP, Rocha HS 
(2011) Coefficients of the Angström-Prescott equation and 
its influence on evapotranspiration in Seropedica, Rio de 
Janeiro State, Brazil. Rev Bras Eng Agríc Ambient. 15(8): 
838–844. 

 

M̄



932 

 

Chen RS, Ersi K, Yang JP, Lu SH, Zhao WZ (2004) 
Validation of five global radiation models with measured 
daily data in China. Energ Convers Manage. 45: 1759–
1769. 

Conceição MAF (2010) Reference evapotranspiration based 
on solar radiation estimated by the Bristow-Campbell 
model. Agr Eng. 30(4): 619–626. 

De Jong R, Stewart DW (1993) Estimating global solar 
radiation from common meteorological observations in 
western Canada. Can J Plant Sci. 73: 509–518. 

Donatelli M, Campbell GS (1998) A simple model to estimate 
global solar radiation.  The 5th European Society of 
Agronomy Congress. Nitra, Slovak Republic. 

Dos Santos CM, De Souza JL, Ferreira Junior RA, Tiba C, 
Melo RO, Lyra GB, Teodoro I, Lyra GB, Lemes MAM 
(2014) On modeling global solar irradiation using air 
temperature for Alagoas State, Northeastern, Brazil. 
Energy. 71: 388–398. 

El Nesr MN, Alazba AA, Amin MT (2011) Modified 
Hargreaves’ method as an alternative to the Penman-
Monteith method in Kingdom of Saudi Arabia. Aust J Basic 
Appl Sci. 5: 1058–1069. 

Goodin DG, Hutchinson JMS, Vanderlip RL, Knapp MC 
(1999) Estimating solar irradiance for crop modeling using 
daily air temperature data. Agron J. 91: 845–851. 

Hargreaves GH (1981) Responding to tropical climates, the 
food and climate review. The Food and Climate Forum, 
Aspen Institute for Humanistic Studies. Boulder, USA. 

Hossain S, Homma K, Shiraiwa T (2014) Decadal and 
monthly change of an empirical coefficient in the relation 
between solar radiation and the daily range of temperature 
in Japan: implication for the estimation of solar radiation 
based on temperature. Plant Prod Sci. 17: 333–341. 

Hunt, L.A., Kucharb, L., Swanton, C.J., (1998). Estimation of 
solar radiation for use in crop modeling. Agr Forest 
Meteorol. 91: 293–300. 

Liu X, Mei X, Li Y, Wang Q, Zhang Y, Porter JR (2009a) 
Variation in reference crop evapotranspiration caused by 
the Angström-Prescott coefficient: locally calibrated versus 
the FAO recommended. Agr Water Manage. 96: 1137–
1145. 

Liu X, Mei X, Li Y, Wang Q, Jensen RJ, Zhang Y, Porter JR 
(2009b) Evaluation of temperature-based global solar 
radiation models in China. Agr Forest Meteorol. 149(9): 
1433–1446. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Mavromatis T (2008) Estimation of solar radiation and its 
application to crop simulation models in Greece. Clim Res. 
36: 219–230. 

Meza F, Varas E (2000) Estimation of mean monthly solar 
global radiation as a function of temperature. Agr Forest 
Meteorol. 100(2-3): 231–241. 

Monteith JL (1977) Climate and the efficiency of crop 
production in Britain. Philos T Roy Soc B. 28: 277–294. 

Pereira RA, Angelocci LR, Sentelhas PC (2007) Meteorologia 
agrícola. Departamento de Ciências Exatas, Esalq-USP, 
Piracicaba, 192. 

Phakamas N, Jintrawet A, Patanothai A, Sringam P, 
Hoogenboom G (2013) Estimation of solar radiation based 
on air temperature and application with the DSSAT v4.5 
peanut and rice simulation models in Thailand. Agr Forest 
Meteorol. 180(10): 182–193. 

Rivington M, Matthews KB, Bellocchi G, Buchan K (2006) 
Evaluating uncertainty introduced to process-based 
simulation model estimates by alternative sources of 
meteorological data. Agr Syst. 88: 451–471. 

Setiyono TD, Cassman KG, Specht JE, Dobermann A, Weiss 
A, Yang H, Conley SP, Robinson AP, Pedersen P, De Bruin 
JL (2010) Simulation of soybean growth and yield in near-
optimal growth conditions. Field Crop Res. 119: 161–174. 

Silva CR, Silva VJ, Alves Jr J, Carvalho HP (2012) 
Estimation of solar radiation by air temperature models for 
three regions of Minas Gerais. Rev Bras Eng Agríc 
Ambient. 16: 281–288. 

Trnka M, Eitzinger J, Kapler P, Dubrovský M, Semerádová 
D, Zalud Z, Formayer H (2007) Effect of estimated daily 
global solar radiation data on the results of crop growth 
models. Sensors. 7: 2330–2362. 

Wang J, Wang E, Yin H, Feng L, Zhao Y (2015). Differences 
between observed and calculated solar radiations and their 
impact on simulated crop yields. Field Crop Res. 176: 1–10. 

Weiss A, Hays CJ (2004) Simulation of daily solar irradiance. 
Agr Forest Meteorol. 123(3-4): 187–199. 

Wu G, Liu Y, Wang T (2007) Methods and strategy for 
modeling daily global solar radiation with measured 
meteorological data – A case study in Nanchang station, 
China. Energ Convers Manage. 48: 2447–2452. 


