29May 2017

MEASUREMENT OF EFFECTIVE ATOMIC NUMBER AND ELECTRON DENSITY OF CARBOHYDRATES BY USING NIST, Geant4 AND NaI(Tl) : A COMPARATIVE STUDY.

  • Department of Physics, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, 431004 India.
Crossref Cited-by Linking logo
  • Abstract
  • Keywords
  • References
  • Cite This Article as
  • Corresponding Author

The Monte Carlo simulation applying for calculation of mass attenuation coefficient, total attenuation cross section, electronic cross section, effective atomic number (Zeff), effective electron density (Neff) at incident photon energy 122 keV, 360 keV, 511 keV, 662 keV, 840 keV, 1170 keV, 1275 keV and 1330 keV of Fructose, Maltose, Cellulose, Sorbitol, Raffinose, Xylose carbohydrates. We used narrow beam geometry NaI(Tl) scintillation detector with 8K multichannel analyser having resolution 8.2 % at 662 keV. The Zeff and Neff results experimentally by NaI(Tl) scintillation detector compared with Geant4 monte carlo simulation observed less uncertainties. We observed that Geant4 simulation important toolkit of radiation measurement for biological material and especially medical diagnosis.


  1. Gounhalli S, Shantappa A, Hanagodimath SM. Studies on Mass Attenuation Coefficient, Effective Atomic Numbers and Electron Densities of Some Narcotic Drugs in the Energy Range 1KeV -100GeV. IOSR J App Phys. 2012; 2(4): 40-48.
  2. Manjunatha, H.C., A study of gamma attenuation parameters in poly methyl methacrylate and Kapton. Radiat Phys Chem. 2016, http://dx.doi.org/10.1016/j.radphyschem.2016.01.024
  3. El-Khayatt A, Ali A, Singh VP and Badiger NM. Determination of mass attenuation coefficient of low-Z dosimetric materials. Radiat Effects and Defects in Solids. 2014; 169(12): 1038-1044.
  4. Pires L and Medhat M. Different methods of mass attenuation coefficient evaluation: Influences in the measurement of some soil physical properties. Applied Radiat and Isotopes. 2016; 111, 66-74.
  5. Manohara S, Hanagodimath S. Studies on effective atomic numbers and electron densities of essential amino acids in the energy range 1 keV?100 GeV. Instrum. Methods Phys Res B. 2007; 258: 321?328.
  6. Gowda S, Krishnaveni S, Yashoda T, Umesh T and Gowda R. Photon mass attenuation coefficients, effective atomic numbers and electron densities of some thermoluminescent dosimetric compounds. Pramana - J Phys. 2004; 63(3): 529-541.
  7. Otto B. and G?r A. Determination of mass attenuation coefficients of concretes containingtincal concentrator waste. International J of Phys Sci. 2012; 7(44): 5861-5864.
  8. Biswas R, Sahadath H, Mollah A. and Huq M. Calculation of gamma-ray attenuation parameters for locally developed shielding material: Polyboron. J Radiat Res Applied Sci. 2016; 9(1): 26-34.
  9. Ekinci N, and Astam N (2007) Measurement of mass attenuation coefficients of biological materials by energy dispersive X-ray fluorescence spectrometry. Radiat Meas. 2007; 42(3): 428-430.
  10. Berger MJ, Hubbell JH. (1987/1999) ?XCOM: Photon Cross Section Database,? Web Version 1.2, available at http:// Physics.nist.gov/XCOM. National Institute of Standards and Technology, Gaithersburg, MD 20899, USA (1999). Originally published as NBSIR87-3597 ?XCOM: Photon Cross Section on a personal computer .\"
  11. Agostinelli S et. al. Geant4?A simulation toolkit. Nucl Instrum. Methods Phys Res A. 2003; 506: 250?303.
  12. Singh VP, Medhat ME, Badiger NM. Photon energy absorption coefficients for nuclear track detectors using Geant4 Monte Carlo simulation. Radiat Phys Chem. 2015; 106: 83?87.
  13. Singh VP, Medhat ME, Shirmardi SP. Comparative studies on shielding properties of some steel alloys using Geant4, MCNP, WinXCOM and experimental results. Radiat Phys Chem. 2015; 106: 255?260.
  14. Medhat ME and Singh VP. Geant4 monte carlo code application in photon interaction parameter of composite materials and composition with XCOM and experimental data. Indian J pure and applied phys. 2016; 54: 137-143.
  15. Hurtado S, Garc!ıa-Le!on M, Garc!ıa-Tenorio R. GEANT4 code for simulation of a germanium gamma-ray detector and its application to efficiency calibration. Nucl Instrum Methods Phys Res A. 2004; 518: 764?774.
  16. Amako k, Guatelli S, Ivanchenko VN, Maire M, Mascialino B, Murakami K, Nieminen P, Pandola L, Parlati S, Pia MG, Piergentili M, Sasaki T and Urban L. Comparison of Geant4 Electromagnetic physics models against the NIST reference data. IEEE Trans Nucl Sci 2005; 52: 910-918.
  17. Pawar PP and Bichile GK. Studies on mass attenuation coefficient, effective atomic number and electron density of some amino acids in the energy range 0.122?1.330MeV. Radiat Phys Chem. 2013; 92: 22?27.
  18. Kerur BR, Manjula VT, Lagare MT, Anil Kumar S. Mass attenuation coefficient of saccharides for X-rays in the energy range from 8 keV to 32 keV. Radiat Meas. 2009; 44: 63?67.
  19. Gowda S, Krishnaveni S and Gowda R. Studies on effective atomic numbers and electron densities in amino acids and sugars in the energy range 30?1333keV. Instrum. Methods Phys Res B. 2005; 239(4): 361-369.
  20. Hine GJ. The effective atomic number of materials for various gamma ray process.\" Phys Rev. 1952; 85: 725.
  21. Creagh D. The resolution of discrepancies in tables of photon attenuation coefficients. .\" Nucl Instrum Methods Phys Res A. 1987; 255(1-2): 1-16.
  22. Ka?al M, Han I and Akman F. Measurement of mass attenuation coefficients by Si(Li), NaI(Tl) and Cd(Tl) detectors. Nucl Sci Tech. 2012; 59-69.
  23. Bursalıoğlu E, Balkan B, Kavanoz H, Okutan M, E?elli O, and Ya?in Z. Energy Absorption and Exposure Buildup Factors of Essential Amino Acids.\" BioMed Research International. 2014;
  24. Bursalıoğlu E, İ?elli O, Balkan B, Kavanoz H and Okutan M. Photon Atomic Parameters of Nonessential Amino Acids for Radiotherapy and Diagnostics. J Amino Acids. 2014; 1-10.

[Rajkumar M. Lokhande, Bharat S. Surung and Pravina P. Pawar. (2017); MEASUREMENT OF EFFECTIVE ATOMIC NUMBER AND ELECTRON DENSITY OF CARBOHYDRATES BY USING NIST, Geant4 AND NaI(Tl) : A COMPARATIVE STUDY. Int. J. of Adv. Res. 5 (May). 1733-1740] (ISSN 2320-5407). www.journalijar.com


Rajkumar M. Lokhande


DOI:


Article DOI: 10.21474/IJAR01/4303      
DOI URL: http://dx.doi.org/10.21474/IJAR01/4303