Back to Journals » International Journal of Nanomedicine » Volume 7

Investigation of nano lipid vesicles of methotrexate for anti-rheumatoid activity

Authors Prabhu P, Shetty, Koland M, Kunhikatta V, Vijayalakshmi K, Nairy H, Nisha G

Received 18 August 2011

Accepted for publication 2 November 2011

Published 9 January 2012 Volume 2012:7 Pages 177—186

DOI https://doi.org/10.2147/IJN.S25310

Review by Single anonymous peer review

Peer reviewer comments 3



Prabhakara Prabhu1, Rakshith Shetty1, Marina Koland1, K Vijayanarayana3, KK Vijayalakshmi2, M Harish Nairy1, GS Nisha1
1Department of Pharmaceutics, Nitte University, NGSM Institute of Pharmaceutical Sciences, Paneer, Deralakatte, Mangalore, Karnataka, India; 2Department of Applied Zoology, Mangalore University, Konaje, Mangalore, Karnataka, India; 3Department of Pharmacy Practice, Manipal University, Manipal College of Pharmaceutical Sciences, Manipal, Karnataka, India

Background: The purpose of this study was to formulate and evaluate nano lipid vesicles of methotrexate (MTX) for its anti-rheumatoid activity.
Methods: In this study the principle of both active as well as passive targeting using MTX-loaded stealth liposomes as per the magic gun approach was followed. Stealth liposomes of MTX were prepared by thin-film hydration method using a PEGylated phospholipid-like DSPE-MPEG 2000. Similarly, conventional liposomes were prepared using phospholipids like DPPC and DSPC. Conventional liposomes were coated with a hydrophilic biocompatible polymer like chitosan. They were investigated for their physical properties and in vitro release profile. Further, in vivo screening of the formulations for their anti-rheumatoid efficacy was carried out in rats. Rheumatoid arthritis was induced in male Wistar-Lewis rats using complete Freund’s adjuvant (1 mg/mL Mycobacterium tuberculosis, heat killed in mineral oil).
Results: It was found that chitosan coating of the conventional liposomes increased the physical stability of the liposomal suspension as well as its entrapment efficiency. The size of the unsonicated lipid vesicles was found to be in the range of 8–10 µm, and the sonicated lipid vesicles in the range of 210–260 nm, with good polydispersity index. Further, chitosan-coated conventional liposomes and the PEGylated liposomes released the drug for a prolonged period of time, compared to the uncoated conventional liposomes. It was found that there was a significant reduction in edema volume in the rat group administered with the test stealth liposomal formulations and chitosan-coated conventional liposomes (PEGylated and chitosan-coated conventional) compared to that of the control and standard (administered with free MTX) group of rats. PEGylated liposomes showed almost equal efficacy as that of the chitosan-coated conventional liposomes.
Conclusion: Lipid nano vesicles of MTX can be administered by intravenous route, whereby the drug selectively reaches the target site with reduced toxicity to other organs.

Keywords: methotrexate, stealth liposomes, conventional liposomes, chitosan coating, targeted delivery, anti-rheumatoid efficacy


Creative Commons License © 2012 The Author(s). This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution - Non Commercial (unported, v3.0) License. By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms.