Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter April 29, 2020

An evolutionary system of mineralogy. Part I: Stellar mineralogy (>13 to 4.6 Ga)

  • Robert M. Hazen ORCID logo EMAIL logo and Shaunna M. Morison
From the journal American Mineralogist

Abstract

Minerals preserve records of the physical, chemical, and biological histories of their origins and subsequent alteration, and thus provide a vivid narrative of the evolution of Earth and other worlds through billions of years of cosmic history. Mineral properties, including trace and minor elements, ratios of isotopes, solid and fluid inclusions, external morphologies, and other idiosyncratic attributes, represent information that points to specific modes of formation and subsequent environmental histories—information essential to understanding the co-evolving geosphere and biosphere. This perspective suggests an opportunity to amplify the existing system of mineral classification, by which minerals are defined solely on idealized end-member chemical compositions and crystal structures. Here we present the first in a series of contributions to explore a complementary evolutionary system of mineralogy—a classification scheme that links mineral species to their paragenetic modes.

The earliest stage of mineral evolution commenced with the appearance of the first crystals in the universe at >13 Ga and continues today in the expanding, cooling atmospheres of countless evolved stars, which host the high-temperature (T > 1000 K), low-pressure (P < 10-2 atm) condensation of refractory minerals and amorphous phases. Most stardust is thought to originate in three distinct processes in carbon- and/or oxygen-rich mineral-forming stars: (1) condensation in the cooling, expanding atmospheres of asymptotic giant branch stars; (2) during the catastrophic explosions of supernovae, most commonly core collapse (Type II) supernovae; and (3) classical novae explosions, the consequence of runaway fusion reactions at the surface of a binary white dwarf star. Each stellar environment imparts distinctive isotopic and trace element signatures to the micro- and nanoscale stardust grains that are recovered from meteorites and micrometeorites collected on Earth’s surface, by atmospheric sampling, and from asteroids and comets. Although our understanding of the diverse mineral-forming environments of stars is as yet incomplete, we present a preliminary catalog of 41 distinct natural kinds of stellar minerals, representing 22 official International Mineralogical Association (IMA) mineral species, as well as 2 as yet unapproved crystalline phases and 3 kinds of non-crystalline condensed phases not codified by the IMA.

Acknowledgments

Throughout the preparation of this paper, we have benefitted from the generous advice and deep expertise of Larry R. Nittler, a pioneer in astromineralogy, who was an early reviewer of this contribution and a constant adviser during its revisions. We are grateful to Anirudh Prabhu for providing the network diagram of the Evolutionary System of stellar mineralogy. Denton Ebel and an anonymous reviewer offered thoughtful comments and suggestions that have greatly improved this study. In addition, we thank Conel M.O’D. Alexander, Asmaa Boujibar, Carol Cleland, Robert T. Downs, Olivier Gagné, Pierre Haenecour, Peter Heaney, Samantha Howell, Sergey Krivovichev, Chao Liu, Katharina Lodders, Michael Walter, and Shuang Zhang for thoughtful discussions and comments.

  1. Funding

    This publication is a contribution to the Deep Carbon Observatory. Studies of mineral evolution and mineral ecology are supported by the Deep Carbon Observatory, the Alfred P. Sloan Foundation, the W.M. Keck Foundation, the John Templeton Foundation, the NASA Astrobiology Institute, a private foundation, and the Carnegie Institution for Science. Any opinions, findings, or recommendations expressed herein are those of the authors and do not necessarily reflect the views of the National Aeronautics and Space Administration.

References cited

Abel, T., Bryan, G.L., and Norman, M.L. (2002) The formation of the first stars in the universe. Science, 295, 93–98.10.1126/science.1063991Search in Google Scholar

Abia, C., and Isern, J. (2000) The chemical composition of carbon stars. II. The J-type stars. The Astrophysical Journal, 536, 438–449.10.1086/308932Search in Google Scholar

Alexander, C.M.O’D. (1993) Presolar SiC in chondrites: How variable and how many sources? Geochimica et Cosmochimica Acta, 57, 2869–2888.10.1016/0016-7037(93)90395-DSearch in Google Scholar

Alexander, C.M.O’D., and Nittler, L.R. (1999) The galactic evolution of Si, Ti, and O isotopic ratios. The Astrophysical Journal, 519, 222–235.10.1086/307340Search in Google Scholar

Alexander, C.M.O’D., Swan, P., and Walker, R.M. (1990) In situ measurement of interstellar silicon carbide in two CM chondrite meteorites. Nature, 348, 715–717.10.1038/348715a0Search in Google Scholar

Amari, S. (2014) Recent progress in presolar grain research. Mass Spectrometry, 3, 6 pp. 10.5702/massspectrometry.S0042.Search in Google Scholar

Amari, S., Anders, E., Virag, A., and Zinner, E. (1990) Interstellar graphite in meteorites. Nature, 345, 238–240.10.1038/345238a0Search in Google Scholar

Amari, S., Hoppe, P., Zinner, E., and Lewis, R.S. (1992) Interstellar SiC with unusual isotopic compositions: Grains from a supernova? The Astrophysical Journal, 394, L43–L46.10.1086/186468Search in Google Scholar

Amari, S., Lewis, R.S., and Anders, E. (1994) Interstellar grains in meteorites: I. Isolation of SiC, graphite, and diamond; size distributions of SiC and graphite. Geochimica et Cosmochimica Acta, 58, 459–470.10.1016/0016-7037(94)90477-4Search in Google Scholar

Amari, S., Zinner, E., and Lewis, R.S. (1995a) Large 18O excesses in circumstellar graphite grains from Murchison meteorite: Indication of a massive-star origin. The Astrophysical Journal Letters, 447, L147–L150.10.1086/309573Search in Google Scholar

Amari, S., Lewis, R.S., and Anders, E. (1995b) Interstellar grains in meteorites: III. Graphite and its noble gases. Geochimica et Cosmochimica Acta, 59, 1411–1426.10.1016/0016-7037(95)00053-3Search in Google Scholar

Amari, S., Hoppe, P., Zinner, E., and Lewis, R.S. (1995c) Trace-element concentrations in single circumstellar silicon carbide grains from the Murchison meteorite. Meteoritics, 30, 679–693.10.1111/j.1945-5100.1995.tb01165.xSearch in Google Scholar

Amari, S., Zinner, E., and Lewis, R.S. (1999) A singular presolar SiC grain with extreme 29Si and 30Si excesses. The Astrophysical Journal, 517, L59–L62.10.1086/312013Search in Google Scholar

Amari, S., Nittler, L.R., Zinner, E., Gallino, R., Lugaro, M., and Lewis, R.S. (2001a) Presolar SiC grains of type Y: Origin from low metallicity asymptotic giant branch stars. The Astrophysical Journal, 546, 248–266.10.1086/318230Search in Google Scholar

Amari, S., Nittler, L.R., Zinner, E., Lodders, K., and Lewis, R.S. (2001b) Presolar SiC grains of Type A and B: Their isotopic compositions and stellar origins. The Astrophysical Journal, 559, 463–483.10.1086/322397Search in Google Scholar

Amari, S., Gao, X., Nittler, L.R., Zinner, E., José, J., Hernandez, H., and Lewis, R.S. (2001c) Presolar grains from novae. The Astrophysical Journal, 551, 1065–1072.10.1086/320235Search in Google Scholar

Amari, S., Zinner, E., and Lewis, R.S. (2004) Comparison study of presolar graphite separates KE3 and KFA1 from the Murchison meteorite. Lunar and Planetary Science, 35, #2103.Search in Google Scholar

Amari, S., Gallino, R., and Pignatari, M. (2006) Presolar graphite from the Murchison meteorite: Noble gases revisited. Lunar and Planetary Science, 37, #2409.Search in Google Scholar

Bailey, K.D. (1994) Typologies and Taxonomies: An Introduction to Classification Techniques. Studies in Quantitative Applications in the Social Sciences, 102. SAGE Publications.10.4135/9781412986397Search in Google Scholar

Bernatowicz, T.J., Fraundorf, G., Ming, T., Anders, E., Wopenka, B., Zinner, E., and Fraundorf, P. (1987) Evidence for interstellar SiC in the Murray carbonaceous chondrite. Nature, 330, 728–730.10.1038/330728a0Search in Google Scholar

Bernatowicz, T.J., Amari, S., and Lewis, R.S. (1992) TEM studies of a circumstellar rock. Lunar and Planetary Science, 23, 91–92.Search in Google Scholar

Bernatowicz, T.J., Cowsik, R., Gibbons, P., Loddeers, K., Fegley, B., Amari, S., and Lewis, R. (1996) Constraints on stellar grain formation from presolar graphite in the Murchison meteorite. The Astrophysical Journal, 472, 760–782.10.1086/178105Search in Google Scholar

Bernatowicz, T.J., Bradley, J., Amari, S., Messenger, S., and Lewis, R. (1999) New kinds of massive star condensates in a presolar graphite from Murchison. Lunar and Planetary Science Conference, 30, #1392.Search in Google Scholar

Bernatowicz, T.J., Messenger, S., Pravdivtseva, O., Swan, P., and Walker, R.M. (2003) Pristine presolar silicon carbide. Geochimica et Cosmochimica Acta, 67, 4679–4691.10.1016/S0016-7037(03)00461-7Search in Google Scholar

Bernatowicz, T.J., Croat, T.K., and Daulton, T.L. (2006) Origin and evolution of carbonaceous grains in stellar environments. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 109–126. University of Arizona Press.10.2307/j.ctv1v7zdmm.11Search in Google Scholar

Bertulani, C.A. (2013) Nuclei in the Cosmos. World Scientific.10.1142/8573Search in Google Scholar

Bildsten, L. (1998) Thermonuclear burning on rapidly accreting neutron stars. In R. Buccheri, J. van Paradijs, and M.A. Alpar, Eds., The Many Faces of Neutron Stars. Kluwer, pp. 419B.10.1007/978-94-015-9139-3_25Search in Google Scholar

Bose, M., Floss, C., and Stadermann, F.J. (2010a) An investigation into the origin of Fe-rich presolar silicates in Acfer 094. The Astrophysical Journal, 714, 1624–1636.10.1088/0004-637X/714/2/1624Search in Google Scholar

Bose, M., Zhao, X., Floss, C., Stadermann, F.J., and Lin, Y. (2010b) Stardust material in the paired enstatite chondrites: SAH 97096 and SAH 97159. Proceedings of Science, (NIC-XI) 138.10.22323/1.100.0138Search in Google Scholar

Boulanger, F., Joblin, C., Jones, A., Madden, S., and Tielens, A.G.G.M. (2009) Infrared spectroscopy of interstellar dust. European Astronomical Society Publications Series, 35, 33–56.10.1051/978-2-7598-2482-3.c043Search in Google Scholar

Bowman, J.D., Rogers, A.E.E., Monsalve, R.A., Mozdzen, T.J., and Mahesh, N. (2018) An absorption profile centred at 78 megahertz in the sky-averaged spectrum. Nature, 555, 67–70.10.1038/nature25792Search in Google Scholar PubMed

Boyd, R. (1991) Realism, anti-foundationalism and the enthusiasm for natural kinds. Philosophical Studies, 61, 127–148.10.1007/BF00385837Search in Google Scholar

Boyd, R. (1999) Homeostasis, species, and higher taxa. In R. Wilson, Ed., Species: New Interdisciplinary Essays, pp. 141–186. Cambridge University Press.Search in Google Scholar

Brucato, J.R., Strazzulla, G., Baratta, G., and Colangeli, L. (2004) Forsterite amorphisation by ion irradiation: Monitoring by infrared spectroscopy. Astronomy & Astrophysics, 413, 395–401.10.1051/0004-6361:20031574Search in Google Scholar

Bruno, C.G., Scott, D.A., Aliotta, M., Fortmicola, A., Best, A., and 30 others (2016) Improved direct measurement of the 65 keV resonance strength in the 17O(p,alpha)14N reaction at LUNA. Physical Review Letters, 117, 142502.10.1103/PhysRevLett.117.142502Search in Google Scholar PubMed

Burbidge, E.M., Burbidge, G.R., Fowler, W.A., and Hoyle, F. (1957) Synthesis of the elements in stars. Review of Modern Physics, 29, 547–650.10.1103/RevModPhys.29.547Search in Google Scholar

Burke, E.A.J. (2006) The end of CNMMN and CCM—Long live the CNMNC! Elements, 2, 388.10.2113/gselements.2.6.388Search in Google Scholar

Busemann, H., Nguyen, A.N., Cody, G.D., Hoppe, P., Kilcoyne, A.L.D., Stroud, R.M., Zega, T., and Nittler, L.R. (2009) Ultra-primitive interplanetary dust particles from the comet 26P/Grigg-Skjellerup dust strean collection. Earth and Planetary Science Letters, 288, 44–57.10.1016/j.epsl.2009.09.007Search in Google Scholar

Caffee, M.W., Hohenberg, C.M., Swindle, T.D., and Goswami, J.N. (1987) Evidence in meteorites for an active early sun. The Astrophysical Journal Letters, 313, L31–L35.10.1086/184826Search in Google Scholar

Cameron, A.G.W. (1957) Nuclear reactions in stars and nucleogenesis. Publications of the Astronomical Society of the Pacific, 69, 201–222.10.1086/127051Search in Google Scholar

Carrez, P., Demyk, K., Cordier, P., Gengembre, L., Grimblot, J., D’Hendecourt, L., Jones, A.P., and Leroux, H. (2002a) Low-energy helium ion irradiation-induced amorphization and chemical changes in olivine: Insights for silicate dust evolution in the interstellar medium. Meteoritics & Planetary Science, 37, 1599–1614.10.1111/j.1945-5100.2002.tb00814.xSearch in Google Scholar

Carrez, P., Demyk, K., Leroux, H., Cordier, P., Jones, A.P., and D’Hendecourt, L. (2002b) Low-temperature crystallisation of MgSiO3 glasses under electron irradiation: Possible implications for silicate dust evolution in circumstellar environments. Meteoritics & Planetary Science, 37, 1615–1622.10.1111/j.1945-5100.2002.tb00815.xSearch in Google Scholar

Carroll, B.W., and Ostlie, D.A. (2017) An Introduction to Modern Astrophysics, ed. 2. Cambridge University Press.10.1017/9781108380980Search in Google Scholar

Chandrasekhar, S. (1931) The maximum mass of ideal white dwarfs. The Astrophysical Journal, 74, 81–82.10.1086/143324Search in Google Scholar

Cheung, R. (2006) Silicon Carbide Microelectromechanical Systems for Harsh Environments. Imperial College Press.10.1142/p426Search in Google Scholar

Chigai, T., Yamamoto, T., and Kozasa, T. (2002) Heterogeneous condensation of presolar titanium carbide core-graphite mantle spherules. Meteoritics & Planetary Science, 37, 1937–1951.10.1111/j.1945-5100.2002.tb01175.xSearch in Google Scholar

Choi, B.-G., Huss, G.R., Wasserburg, G.J., and Gallino, R. (1998) Presolar corundum and spinel in ordinary chondrites: Origins from AGB stars and a supernova. Science, 282, 1284–1289.10.1126/science.282.5392.1284Search in Google Scholar PubMed

Choi, B.-G., Wasserburg, G.J., and Huss, G.R. (1999) Circumstellar hibonite and corundum and nucleosynthesis in asymptotic giant branch stars. The Astrophysical Journal, 522, L133–L136.10.1086/312239Search in Google Scholar

Christy, A.G. (2015) Causes of anomalous mineralogical diversity in the Periodic Table. Mineralogical Magazine, 79, 33–49.10.1180/minmag.2015.079.1.04Search in Google Scholar

Clayton, D.D. (1975) Extinct radioactivities: Trapped residuals of presolar grains. The Astrophysical Journal, 199, 765.10.1086/153750Search in Google Scholar

Clayton, D.D. (1978) Precondensed matter: Key to the early solar system. Moon and Planets, 19, 109–137.10.1007/BF00896983Search in Google Scholar

Clayton, D.D. (1983) Principles of Stellar Evolution and Nucleosynthesis. University of Chicago Press.Search in Google Scholar

Clayton, D.D. (1997) Placing the sun and mainstream SiC particles in galactic chemodynamic evolution. The Astrophysical Journal, 484, L67–L70.10.1086/310768Search in Google Scholar

Clayton, D.D. (2003) Presolar galactic merger spawned the SiC mainstream. The Astrophysical Journal, 598, 313–324.10.1086/378889Search in Google Scholar

Clayton, D.D., and Nittler, L.R. (2004) Astrophysics with presolar stardust. Annual Review of Astronomy & Astrophysics, 42, 39–78.10.1146/annurev.astro.42.053102.134022Search in Google Scholar

Clayton, D.D., and Ward, R.A. (1978) S-process studies: Xenon and krypton isotopic abundances. The Astrophysical Journal, 224, 1000–1006.10.1086/156449Search in Google Scholar

Clayton, D.D., Meyer, B.S., Sanderson, C.I., Russell, S.S., and Pillinger, C.T. (1995) Carbon and nitrogen isotopes in type II supernova diamonds. The Astrophysical Journal, 447, 894–905.10.1086/175927Search in Google Scholar

Coulter, D.A., Foley, R.J., Kilpatrick, C.D., Drout, M.R., Piro, A.L., Shappee, B.J., Siebert, M.R., Simon, J.D., Ulloa, N., Kasen, D., and others. (2017) Swope Supernova Survey 2017a (SSS17a), the optical counterpart to a gravitational wave source. Science, 358, 1556–1558.10.1126/science.aap9811Search in Google Scholar

Croat, T.K., Bernatowicz, T., Amari, S., Messenger, S., and Stadermann, F.J. (2003) Structural, chemical and isotopic microanalytical investigations of graphite from supernovae. Geochimica et Cosmochimica Acta, 67, 4705–4725.10.1016/S0016-7037(03)00463-0Search in Google Scholar

Croat, T.K., Stadermann, F.J., and Bernatowicz, T.J. (2005) Presolar graphite from AGB stars: Microsctructure and s-process enrichment. The Astrophysical Journal, 631, 976–987.10.1086/432598Search in Google Scholar

Croat, T.K., Stadermann, F.J., and Bernatowicz, T.J. (2008) Correlated isotopic and microstructural studies of turbostratic presolar graphites from the Murchison meteorite. Meteoritics & Planetary Science, 43, 1497–1516.10.1111/j.1945-5100.2008.tb01024.xSearch in Google Scholar

Croat, T.K., Stadermann, F.J., and Bernatowicz, T.J. (2010) Unusual 29,30Si-rich SiCs of massive star origin found within graphites from the Murchison meteorite. The Astronomical Journal, 139, 2159–2169.10.1088/0004-6256/139/6/2159Search in Google Scholar

Croat, T.K., Jadhav, M., Lebsack, E., and Bernatowicz, T.J. (2011) TiC and rutile within a supernova graphite. Meteoritics & Planetary Science, 46, A51.Search in Google Scholar

Croat, T.K., Berg, T., Bernatowicz, T.J., and Jadhav, M. (2013) Refractory metal nuggets within presolar graphite: First condensates from a circumstellar environment. Meteoritics & Planetary Science, 48, 686–699.10.1111/maps.12093Search in Google Scholar

Dai, Z.R., Bradely, J.P., Joswiak, D.J., Brownlee, D.E., Hill, H.G.M., and Genge, M.J. (2002) Possible in situ formation of meteoritic nanodiamonds in the early solar system. Nature, 418, 157–159.10.1038/nature00897Search in Google Scholar

Dana, E.S. and Ford, W.E. (1947) Dana’s Textbook of Mineralogy, 4th ed. Wiley.Search in Google Scholar

Dana, J.D. (1850) A System of Mineralogy, Comprising the Most Recent Discoveries, Including Full Descriptions of Species and their Localities, Chemical Analyses and Formulas, Tables for the Determination of Minerals, and a Treatise on Mathematical Crystallography and the Drafting of Figures of Crystals, 3rd ed., Rewritten, Rearranged, and Enlarged. George P. Putnam.Search in Google Scholar

Dana, J.D., Dana, E.S., Palache, C., Berman, H., and Frondel, C. (1973) Dana’s System of Mineralogy, 7th ed., complete in 3 volumes. Wiley.Search in Google Scholar

Daulton, T.L., Eisenhour, D.D., Bernatowicz, T.J., Lewis, R.S., and Buseck, P.R. (1996) Genesis of presolar diamonds: Comparative high-resolution transmission electron microscopy study of meteoritic and terrestrial nano-diamonds. Geochimica et Cosmochimica Acta, 60, 4853–4872.10.1016/S0016-7037(96)00223-2Search in Google Scholar

Daulton, T.L., Bernatowicz, T.J., Lewis, R.S., Messenger, S., Stadermann, F.J., and Amari, S. (2002) Polytype distribution in circumstellar silicon carbide. Science, 296, 1852–1855.10.1126/science.1071136Search in Google Scholar

Daulton, T.L., Bernatowicz, T.J., Lewis, R.S., Messenger, S., Stadermann, F.J., and Amari, S. (2003) Polytype distribution in circumstellar silicon carbide: Micro-structural characterization by transmission electron microscopy. Geochimica et Cosmochimica Acta, 67, 4743–4767.10.1016/S0016-7037(03)00272-2Search in Google Scholar

Davidson, J., Busemann, H., Nittler, L.R., Alexander, C.M.O’D., Orthous-Daunay, F.-R., Franchi, I.A., and Hoppe, P. (2014) Abundances of presolar silicon carbide grains in primitive meteorites determined by nanoSIMS. Geochimica et Cosmochimica Acta, 139, 248–266.10.1016/j.gca.2014.04.026Search in Google Scholar

Davis, A.M. (2011) Stardust in meteorites. Proceedings of the National Academy of Sciences, 108, 19142–19146.10.1073/pnas.1013483108Search in Google Scholar

Davis, A.M. (2014) Meteorites and Cosmochemical Processes: Treatise on Geochemistry, vol. 1, 2nd ed. Elsevier-Pergamon.Search in Google Scholar

Demyk, K., Dartois, E., Wiesemeyer, H., Jones, A.P., and d’Hendecourt, L. (2000) Structure and chemical composition of the silicate dust around OH/IR stars. Astronomy & Astrophysics, 364, 170–178.Search in Google Scholar

DePew, K., Speck, A., and Dijkstra, C. (2006) Astromineralogy of the 13 micrometer feature in the spectra of oxygen-rich asymptotic giant branch stars. I. corundum and spinel. The Astrophysical Journal, 640, 971–981.10.1086/500173Search in Google Scholar

Dermott, S.F. and Liou, J.C. (1994) Detection of asteroidal dust particles from known families in near-Earth orbits. In M. Zolensky, T. Wilson, F. Rietmeijer, and G. Flynn, Eds., Analysis of Interplanetary Dust, pp.13–22. American Institute of Physics.10.1063/1.46530Search in Google Scholar

Ebel, D.S. (2006) Condensation of rocky materials in astrophysical environments. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp. 253–277. University of Arizona Press, Tucson.10.2307/j.ctv1v7zdmm.18Search in Google Scholar

Ebel, D.S., and Grossman, L. (2000) Condensation in dust-rich systems. Geochimica et Cosmochimica Acta, 65, p. 469–477.10.1016/S0016-7037(00)00550-0Search in Google Scholar

Everitt, B. (2011) Cluster Analysis. Wiley.10.1002/9780470977811Search in Google Scholar

Fahey, A.J., Goswami, J.N., McKeegan, K.D., and Zinner, E. (1987) 26Al, 244Pu, 50Ti, REE and trace element abundances in hibonite grains from CM and CV meteorites. Geochimica et Cosmochimica Acta, 51, 329–350.10.1016/0016-7037(87)90245-6Search in Google Scholar

Feigelson, E.D., Broos, P., Gaffney, J.A. III, Garmire, G., Hillenbrand, L.A., Pravdo, S.H., Townsley, L., and Tsuboi, Y. (2002) X‑ray emitting young stars in the Orion Nebula. The Astrophysical Journal, 574, 258–292.10.1086/340936Search in Google Scholar

Feltzing, S., and Gonzales, G. (2001) The nature of super-metal-rich stars. Detailed abundance analysis of 8 super metal-rich star candidates. Astronomy & Astrophysics, 367, 253–265.10.1051/0004-6361:20000477Search in Google Scholar

Floss, C., and Stadermann, F. (2009) Auger Nanoprobe analysis of presolar ferromagnesian silicate grains from primitive CR chondrites QUE 99177 and MET 00426. Geochimica et Cosmochimica Acta, 73, 2415–2440.10.1016/j.gca.2009.01.033Search in Google Scholar

Floss, C., and Stadermann, F. (2012) Presolar silicate and oxide abundances and compositions in the ungrouped carbonaceous chondrite Adelaide and the K chondrite Kakangari: The effects of secondary processing. Meteoritics & Planetary Science, 47, 992–1009.10.1111/j.1945-5100.2012.01366.xSearch in Google Scholar

Floss, C., Stadermann, F.J., and Bose, M. (2008) Circumstellar Fe oxide from the Acfer 094 carbonaceous chondrite. The Astrophysical Journal, 672, 1266–1271.10.1086/523792Search in Google Scholar

Forrest, W.J., Gillett, F.C., and Stein, W.A. (1975) Circumstellar grains and the intrinsic polarization of starlight. The Astrophysical Journal, 195, 423–440.10.1086/153342Search in Google Scholar

Fraundorf, P., and Wackenhut, M. (2002) The core structure of presolar graphite onions. The Astrophysical Journal Letters, 578, L153–L156.10.1086/344633Search in Google Scholar

Frebel, A., Johnson, J.L., and Bromm, V. (2009) The minimum stellar metallicity observable in the Galaxy. Monthly Notices of the Royal Astronomical Society, 392, L50–L54.10.1111/j.1745-3933.2008.00587.xSearch in Google Scholar

Fujiya, W., Hoppe, P., Zinner, E., Pignatari, M., and Herwig, F. (2013) Evidence for radiogeneic sulfur-32 in type AB presolar silicon carbide grains? The Astrophysical Journal Letters, 776, L29 (6 pp).10.1088/2041-8205/776/2/L29Search in Google Scholar

Gaines, R.V., Skinner, H.C.W., Foord, E.E., Mason, B., and Rosenzweig, A. (1997) Dana’s New Mineralogy: The System of Mineralogy of James Dwight Dana and Edward Salisbury Dana, 8th ed. Wiley.Search in Google Scholar

Ghirlanda, G., Salafia, O.S., Paragi, Z., Giroletti, M., and 32 others (2019) Compact radio emission indicates a structured jet was produced by a binary neutron star merger. Science, 363, 968–971.10.1126/science.aau8815Search in Google Scholar PubMed

Gillett, F.C., Low, F.J., and Stein, W.A. (1968) Stellar spectra from 2.8 to 14 microns. The Astrophysical Journal, 154, 677.10.1086/149789Search in Google Scholar

Gobrecht, D., Cherchneff, I., Sarang, A., Piene, J.M.C., and Bromley, S.T. (2016) Dust formation in the oxygen-rich AGB star 1K Tauri. Astronomy & Astrophysics, 585, Article A6, 15 p.10.1051/0004-6361/201425363Search in Google Scholar

Grew, E.S., Dymek, R.F., De Hoog, J.C.M., Harley, S.L., Boak, J.M., Hazen, R.M., and Yates, M.G. (2015) Boron isotopes in tourmaline from the 3.7–3.8 Ga Isua Belt, Greenland: Sources for boron in Eoarchean continental crust and seawater. Geochimica et Cosmochimica Acta, 163, 156–177.10.1016/j.gca.2015.04.045Search in Google Scholar

Groopman, E., and Nittler, L.R. (2018) Correlated XANES, TEM, and NanoSIMS of presolar graphite grains. Geochimica et Cosmochimica Acta, 221, 219–236.10.1016/j.gca.2017.02.011Search in Google Scholar

Groopman, E., Bernatowicz, T., and Zinner, E. (2012) C, N, and O isotopic heterogeneities in low-density supernova graphite grains from Orgueil. The Astrophysical Journal Letters, 754, L8 (6 pp).10.1088/2041-8205/754/1/L8Search in Google Scholar

Grossman, L. (1972) Condensation in the primitive solar nebula. Geochimica et Cosmochimica Acta, 36, 597–619.10.1016/0016-7037(72)90078-6Search in Google Scholar

Gyngard, F., Amari, S., Zinner, E., and Ott, U. (2009) Interstellar exposure age of large presolar SiC grains from the Murchison meteorite. The Astrophysical Journal, 694, 359–366.10.1088/0004-637X/694/1/359Search in Google Scholar

Gyngard, F., Zinner, E., Nittler, L.R., Morgand, A., Stadermann, F.J., and Hynes, K.M. (2010a) Automated nanoSIMS measurements of spinel stardust from the Murray meteorite. The Astrophysical Journal, 717, 107–120.10.1088/0004-637X/717/1/107Search in Google Scholar

Gyngard, F., Nittler, L.R., and Zinner, E. (2010b) Presolar SiC grains of Type C. Meteoritics & Planetary Sciences, 45, A72.Search in Google Scholar

Gyngard, F., Nittler, L.R., Zinner, E., José, J., and Cristallo, S. (2011) New reaction rates and implications for nova nucleosynthesis and presolar grains. Lunar and Planetary Science, 42, #2675.Search in Google Scholar

Gyngard, F., Jadhav, M., Nittler, L.R., Stroud, R.M., and Zinner, E. (2018) Bonanza: An extremely large dust grain from a supernova. Geochimica et Cosmochimica Acta, 221, 60–86.10.1016/j.gca.2017.09.002Search in Google Scholar

Haenecour, P., Floss, C., Jose, J., Amari, S., Lodders, K., Jadhav, M., Wang, A., and Gyngard, F. (2016) Coordinated analysis of two graphite grains from the CO3.0 LAP031117 meteorite: First identification of a CO nova graphite and a presolar iron sulfide subgrain. The Astrophysical Journal, 825, 88 (9 pp).10.3847/0004-637X/825/2/88Search in Google Scholar PubMed PubMed Central

Han, J., Brearley, A.J., and Keller, L.P. (2015) Microstructural evidence for a disequilibrium condensation origin for hibonite-spinel inclusions in the ALHA77307 CO3.0 chondrite. Meteoritics & Planetary Science, 50, 2121–2136.10.1111/maps.12563Search in Google Scholar

Hazen, R.M. (1984) Mineralogy: A historical review. Journal of Geological Education, 32, 288–298.10.5408/0022-1368-32.5.288Search in Google Scholar

Hazen, R.M. (2019) An evolutionary system of mineralogy: Proposal for a classification of planetary materials based on natural kind clustering. American Mineralogist, 104, 810–816.10.2138/am-2019-6709CCBYNCNDSearch in Google Scholar

Hazen, R.M., and Ferry, J.M. (2010) Mineral evolution: Mineralogy in the fourth dimension. Elements, 6, 9–12.10.2113/gselements.6.1.9Search in Google Scholar

Hazen, R.M., Papineau, D., Bleeker, W., Downs, R.T., Ferry, J.M., McCoy, T.L., Sverjensky, D.A., and Yang, H. (2008) Mineral evolution. American Mineralogist, 93, 1693–1720.10.2138/am.2008.2955Search in Google Scholar

Hazen, R.M., Hystad, G., Downs, R.T., Golden, J.J., Pires, A.J., and Grew, E.S. (2015) Earth’s “missing” minerals. American Mineralogist, 100, 2344–2347.10.2138/am-2015-5417Search in Google Scholar

Heck, P.R., Amari, S., Hoppe, P., Baur, H., Lewis, R.S., and Wieler, R. (2009a) Ne isotopes in individual presolar graphite grains from the Murchison meteorite together with He, C, O, Mg-Al isotopic analyses as tracers of their origins. The Astrophysical Journal, 701, 1415–1425.10.1088/0004-637X/701/2/1415Search in Google Scholar

Heck, P.R., Gyngard, F., Ott, U., Meier, M.M.M., Ávila, J.N., Amari, S., Zinner, E.K., Lewis, R., Baur, H., and Wieler, R. (2009b) Interstellar residence times of presolar SiC dust grains from the Murchison carbonaceous chondrite. The Astrophysical Journal, 698, 1155–1173.10.1088/0004-637X/698/2/1155Search in Google Scholar

Heck, P.R., Stadermann, F.J., Isheim, D., Auciello, O., Daulton, T.L., Davis, A.M., Elam, J.W., Floss, C., Hiller, J., Larson, D.J., Lewis, J.B., Mane, A., Pellin, M.J., Savina, M.R., Seidman, D.N., and Stephan, T. (2014) Atom-probe analyses of nanodiamonds from Allende. Meteoritics & Planetary Science, 49, 453–467.10.1111/maps.12265Search in Google Scholar

Herwig, F., Pignatari, M., Woodward, P.R., Porter, D.H., Rockefeller, G., Fryer, C.L., Bennett, M., and Hirschi, R. (2011) Convective-reactive proton-12C combustion in Sakurai’s object (V4334 Sagittarii) and implications for the evolution and yields from the first generations of stars. The Astrophysical Journal, 727, 89–111.10.1088/0004-637X/727/2/89Search in Google Scholar

Hinton, R.W., Davis, A.M., Scatena-Wachel, D.E., Grossman, L., and Draus, R.J. (1988) A chemical and isotopic study of hibonite-rich refractory inclusions in primitive meteorites. Geochimica et Cosmochimica Acta, 52, 2573–2598.10.1016/0016-7037(88)90028-2Search in Google Scholar

Hodge, P.W. (1961) Sampling dust from the stratosphere. Smithsonian Contributions to Astrophysics, 5, 145–152.10.5479/si.00810231.5-10.145Search in Google Scholar

Höfner, S. (2008) Winds of M-type AGB stars driven by micron-sized grains. Astronomy & Astrophysics, 491, L1–L4.10.1051/0004-6361:200810641Search in Google Scholar

Hohenberg, C.M., Nichols, R.H. Jr., Olinger, C.T., and Goswami, J.N. (1990) Cosmogenic neon from individual grains of CM meteorites: Extremely long pre-compaction exposure histories or an enhanced early particle flux. Geochimica et Cosmochimica Acta, 54, 2133–2140.10.1016/0016-7037(90)90276-QSearch in Google Scholar

Hong, Y., and Fegley, B. Jr. (1998) Experimental studies of magnetite formation in the solar system. Meteoritics & Planetary Science, 33, 1101–1112.10.1111/j.1945-5100.1998.tb01715.xSearch in Google Scholar

Hoppe, P., Amari, S., Zinner, E., Ireland, T., and Lewis, R.S. (1994) Carbon, nitrogen, magnesium, silicon, and titanium isotopic compositions of single interstellar silicon carbide grains from the Murchison meteorite. The Astrophysical Journal, 430, 870–890.10.1086/174458Search in Google Scholar

Hoppe, P., Amari, S., Zinner, E., and Lewis, R.S. (1995) Isotopic compositions of C, N, O, Mg, and Si, trace element abundances, and morphologies of single circumstellar graphite grains in four density fractions from the Murchison meteorite. Geochimica et Cosmochimica Acta, 59, 4029–4056.10.1016/0016-7037(95)00280-DSearch in Google Scholar

Hoppe, P., Strebel, R., Eberhardt, P., Amari, S., and Lewis, R.S. (1996) Small SiC grains and a nitride grain of circumstellar origin from the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta, 60, 883–907.10.1016/0016-7037(95)00435-1Search in Google Scholar

Hoppe, P., Annen, P., Strebel, R., Eberhardt, P., Gallino, R., Lugaro, M., Amari, S., and Lewis, R.S. (1997) Meteoritic silicon carbide grains with unusual Si-isotopic compositions: Evidence for an origin in low-mass, low-metallicity asymptotic giant branch stars. The Astrophysical Journal, 487, L101–L104.10.1086/310869Search in Google Scholar

Hoppe, P., Strebel, R., Eberhardt, P., Amari, S., and Lewis, R.S. (2000) Isotopic properties of silicon carbide X grains from the Murchison meteorite in the size range 0.5–1.5 microns. Meteoritics & Planetary Sciences, 35, 1157–1176.10.1111/j.1945-5100.2000.tb01505.xSearch in Google Scholar

Hoppe, P., Leitner, J., Gröner, E., Marhas, K.K., Meyer, B.S., and Amari, S. (2010) NanoSIMS isotopic analysis of small presolar SiC grains: New insights into supernova nucleosynthesis, chemistry, and dust formation. The Astrophysical Journal, 719, 1370–1384.10.1088/0004-637X/719/2/1370Search in Google Scholar

Huss, G.R., Fahey, A.J., Galilino, R., and Wasserburg, G.J. (1994) Oxygen isotopes in circumstellar Al2O3 grains from meteorites and stellar nucleosynthesis. The Astrophysical Journal Letters, 430, L81–L84.10.1086/187443Search in Google Scholar

Huss, G.R., Hutcheon, I.D., and Wasserburg, G.J. (1997) Isotopic systematics of presolar silicon carbide from the Orgueil (CI) carbonaceous chondrite: Implications for solar system formation and stellar nucleosynthesis. Geochimica et Cosmochimica Acta, 61, 5117–5148.10.1016/S0016-7037(97)00299-8Search in Google Scholar

Hutcheon, I.D., Huss, G.R., Fahey, A.J., and Wasserburg, G.J. (1994) Extreme 26Mg and 17O enrichments in an Orgueil corundum: Identification of a presolar oxide grain. The Astrophysical Journal Letters, 425, L97–L100.10.1086/187319Search in Google Scholar

Hynes, K.M. (2010) Microanalytical investigations of presolar SiC grains as probes of condensation conditions in astrophysical environments. Ph.D. thesis, Washington University, St. Louis, Missouri.Search in Google Scholar

Hynes, K.M., and Gyngard, F. (2009) The presolar grain database. Lunar and Planetary Science Conference, 42, #1595.Search in Google Scholar

Hynes, K.M., Croat, T.K., Amari, S., Mertz, A.F., and Bernatowicz, T.J. (2010) Structural and isotopic microanalysis of presolar SiC from supernovae. Meteoritics & Planetary Sciences, 45, 596–614.10.1111/j.1945-5100.2010.01045.xSearch in Google Scholar

Hynes, K.M., Amari, S., Bernatowicz, T.J., Lebsack, E., Gyngard, F., and Nittler, L.R. (2011) Combined TEM and NanoSIMS analysis of subgrains in a SiC AB grain. Lunar and Planetary Science, 42, #2332.Search in Google Scholar

Iliadis, C., Downen, L.N., Jose, J., Nittler, L.R., and Starrfield, S. (2018) On presolar stardust grains from CO classical novae. The Astrophysical Journal, 855, 76 (14 pp).10.3847/1538-4357/aaabb6Search in Google Scholar

Iocco, F., Mangano, G., Miele, G., Pisanti, O., and Serpico, P.D. (2008) Primordial nucleosynthesis: from precision cosmology to fundamental physics. Physics Reports, 472, 1–76.10.1016/j.physrep.2009.02.002Search in Google Scholar

Ireland, T.R. (1988) Correlated morphological, chemical, and isotopic characteristics of hibonites from the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta, 52, 2827–2839.10.1016/0016-7037(88)90150-0Search in Google Scholar

Ireland, T.R. (1990) Presolar isotopic and chemical signatures in hibonite-bearing refractory inclusions from the Murchison carbonaceous chondrite. Geochimica et Cosmochimica Acta, 54, 3219–3237.10.1016/0016-7037(90)90136-9Search in Google Scholar

Jadhav, M., Amari, S., Marhas, K.K., Zinner, E., Maruoka, T., and Gallino, R. (2008) New stellar sources for high-density, presolar graphite grains. The Astrophysical Journal, 682, 1479–1485.10.1086/589139Search in Google Scholar

Jadhav, M., Zinner, E., Amari, S., Maruoka, T., Marhas, K.K., and Gallino, R. (2013) Multi-element isotopic analyses of presolar graphite grains from Orgueil. Geochimica et Cosmochimica Acta, 113, 193–224.10.1016/j.gca.2013.01.018Search in Google Scholar

Jiang, B.W., Zhang, K., Li, A., and Lisse, C.M. (2013) Crystalline silicates in evolved stars. I. Spitzer/infrared spectrograph spectroscopy of IRAS 16456-3542, 183540638, and 23239+5754. The Astrophysical Journal, 765, 72 (7 pp).10.1088/0004-637X/765/1/72Search in Google Scholar

Johnson, J.A. (2019) Populating the periodic table: nucleosynthesis of the elements. Science, 363, 474–478.10.1126/science.aau9540Search in Google Scholar

Jones, A.P. (2007) The mineralogy of cosmic dust: astromineralogy. European Journal of Mineralogy, 19, 771–782.10.1127/0935-1221/2007/0019-1766Search in Google Scholar

Jones, A.P., Tielens, A.G.G.M., Hollenbach, D.J., and McKee, C.F. (1994) Grain destruction in shocks in the interstellar medium. The Astrophysical Journal, 433, 797–810.10.1086/174689Search in Google Scholar

Jones, L.V. (2009) Stars and Galaxies. ABC-CLIO.Search in Google Scholar

Jones, T.W., and Merrill, K.M. (1976) Model dust envelopes around late-type stars. The Astrophysical Journal, 209, 509–524.10.1086/154746Search in Google Scholar

Jones, O.C., Kemper, F. Sargent, B.A., McDonald, I., Gielen, C., Woods, P.M., Sloan, G.C., Boyer, M.L., Zijlstra, A.A., Clayton, G.C., and others. (2012) On the metallicity dependence of crystalline silicates in oxygen-rich asymptotic giant branch stars and red supergiants. Monthly Notices of the Royal Astronomical Society, 427, 3209–3229.10.1111/j.1365-2966.2012.21978.xSearch in Google Scholar

Jones, S., Côte, B., Röpke, F.K., and Wanajo, S. (2019a) A new model for electron-capture supernovae in galactic chemical evolution. The Astrophysical Journal, 882, 170–179.10.3847/1538-4357/ab384eSearch in Google Scholar

Jones, S., Röpke, F.K., Freyer, C., Ruiter, A.J., Seitenzahl, I.R., Nittler, L.R., Ohlmann, S.T., Reifarth, R., Pignatari, M., and Belczynski, K. (2019b) Remnants and ejecta of thermonuclear electron-capture supernovae: Constraining oxygen-neon deflagrations in high-density white dwarfs. Astronomy & Astrophysics, 622, A74 (22 p.).10.1051/0004-6361/201834381Search in Google Scholar

José, J., and Hernandez, M. (2007) The origin of presolar nova grains. Meteoritics & Planetary Science, 42, 1135–1143.10.1111/j.1945-5100.2007.tb00565.xSearch in Google Scholar

Käppeler, F. (1999) The origin of the heavy elements: the s process. Progress in Particle and Nuclear Physics, 43, 419–483.10.1016/S0146-6410(99)00098-8Search in Google Scholar

Karakas, A.I., and Lattanzio, J.C. (2014) The Dawes Review 2: Nucleosynthesis and the stellar yields of low and intermediate-mass single stars. Publications of the Astronomical Society of Australia, 31, e030.10.1017/pasa.2014.21Search in Google Scholar

Karttunen, H., and Oja, H. (2007) Fundamental Astronomy, 5th edition. Springer.10.1007/978-3-540-34144-4Search in Google Scholar

Kasen, D., Metzger, B., Barnes, J., Quataert, E., and Ramirez-Ruiz, E. (2017) Origin of the heavy elements in binary neutron star mergers from a gravitational-wave event. Nature, 551, 80–84.10.1038/nature24453Search in Google Scholar PubMed

Kelly, J.F., Fisher, G.R., and Barnes, P. (2005) Correlation between layer thickness and periodicity of long polytypes in silicon carbide. Materials Research Bulletin, 40, 249–255.10.1016/j.materresbull.2004.10.008Search in Google Scholar

Kemper, F., Vriend, W.J., and Tielens, A.G.G.M. (2004) The absence of crystalline silicates in the diffuse interstellar medium. The Astrophysical Journal, 609, 826–837.10.1086/421339Search in Google Scholar

Kemper, F., Markwick, A.J., and Woods, P.M. (2011) The crystalline fraction of interstellar silicates in starburst galaxies. Monthly Notices of the Royal Astronomical Society, 413, 1192–1199.10.1111/j.1365-2966.2011.18204.xSearch in Google Scholar

Khokhlov, A. Müller, E., and Höflich, P. (1993) Light curves of Type 1a supernova models with different explosion mechanisms. Astronomy & Astrophysics, 270, 223–248.Search in Google Scholar

Kööp, L., Heck, P.R., Busemann, H., Davis, A.M., Greer, J., Maden, C., Meier, M.M.M., and Wieler, R. (2018) High early solar activity inferred from helium and neon excesses in the oldest meteorite inclusions. Nature Astronomy, 2, 709–713.10.1038/s41550-018-0527-8Search in Google Scholar

Lauretta, D.S., Lodders, K., and Fegley, B. Jr. (1998) Kamacite sulfurization in the solar nebula. Meteoritics & Planetary Science, 33, 821–834.10.1111/j.1945-5100.1998.tb01689.xSearch in Google Scholar

Leitner, J., Vollmer, C., Hoppe, P., and Zipfel, J. (2012a) Characterization of presolar material in the CR chondrite Northwest Africa 852. The Astrophysical Journal, 745, 38–52.10.1088/0004-637X/745/1/38Search in Google Scholar

Leitner, J., Kodolányi, J., Hoppe, P., and Floss, C. (2012b) Laboratory analysis of presolar silicate stardust from a nova. The Astrophysical Journal Letters, 754, L41.10.1088/2041-8205/754/2/L41Search in Google Scholar

Leitner, J., Hoppe, P., Floss, C., Hillion, F., and Henkel, T. (2018) Correlated nanoscale characterization of a unique complex oxygen-rich stardust grain: Implications for circumstellar dust formation. Geochimica et Cosmochimica Acta, 221, 255–274.10.1016/j.gca.2017.05.003Search in Google Scholar

Lewis, R.S., Ming, T., Wacker, J.F., Anders, E., and Steel, E. (1987) Interstellar diamonds in meteorites. Nature, 339, 117–121.10.1038/326160a0Search in Google Scholar

Lewis, R.S., Amari, S., and Anders, E. (1990) Meteoritic silicon carbide: Pristine material from carbon stars. Nature, 348, 293–298.10.1038/348293a0Search in Google Scholar

Lewis, R.S., Amari, S., and Anders, E. (1994) Interstellar grains in metorites: II. SiC and its noble gases. Geochimica et Cosmochimica Acta, 58, 471–494.10.1016/0016-7037(94)90478-2Search in Google Scholar

Lewis, J.B., Floss, C., and Gyngard, F. (2018) Origin of nanodiamonds from Allende constrained by statistical analysis of C isotopes from small clusters of acid residue by NanoSIMS. Geochimica et Cosmochimica Acta, 221, 237–254.10.1016/j.gca.2017.06.008Search in Google Scholar

Limongi, M., and Chieffi, A. (2012) Evolution, explosion, and nucleosynthesis of corecollapse supernovae. The Astrophysical Journal Supplement Series, 199, 38–46.10.1088/0067-0049/199/2/38Search in Google Scholar

Lin, Y., Gyngard, F., Zinner, E. (2010) Isotopic analysis of supernova SiC and Si3N4 grains from the Qingzhen (EH3) chondrite. The Astrophysical Journal, 709, 1157–1173.10.1088/0004-637X/709/2/1157Search in Google Scholar

Little-Marenin, I.R., and Little, S.J. (1990) Emission features in IRAS low-resolution spectra of MS,S and SC stars. The Astrophysical Journal, 333, 305–315.10.1086/166747Search in Google Scholar

Liu, N., Nittler, L.R., Alexander, C.M.O’D., Wang, J., Pignatari, M., José, J., and Nguyen, A.N. (2016) Stellar origins of extremely 13C- and 15N-enriched presolar SiC grains: Novae or supernovae? The Astrophysical Journal, 820, 140 (14 pp).10.3847/0004-637X/820/2/140Search in Google Scholar

Liu, N., Stephan, T., Boehnke, P., Nittler, L.R., Alexander, C.M.O’D., Wang, J., Davis, A.M., Trappitsch, R., and Pellin, M.J. (2017a) J-type carbon stars: A dominant source of 14N-rich presolar SiC grains of type AB. The Astrophysical Journal Letters, 844, L12.10.3847/2041-8213/aa7d4cSearch in Google Scholar

Liu, N., Steele, A., Nittler, L.R., Stroud, R.M, De Gregorio, B.T., Alexander, C.M.O’D., and Wang, J. (2017b) Coordinated EDX and micro-Raman analysis of presolar silicon carbide: A novel, nondestructive method to identify rare subgroup SiC. Meteoritics & Planetary Science, 52, 1–20.10.1111/maps.12954Search in Google Scholar

Liu, N., Nittler, L.R., Pignatari, M., Alexander, C.M.O’D., and Wang, J. (2017c) Stellar origin of 15N-rich presolar SiC grains of Type AB: Supernovae with explosive hydrogen burning. Astrophysical Journal Letters, 842, L1.10.3847/2041-8213/aa74e5Search in Google Scholar

Liu, N., Nittler, L.R., Alexander, C.M.O’D., and Wang, J. (2018) Late formation of silicon carbide in type II supernovae. Science Advances, 4, eaao1054.10.1126/sciadv.aao1054Search in Google Scholar PubMed PubMed Central

Lodders, K. (2003) Solar system abundance and condensation temperatures of the elements. The Astrophysical Journal, 591, 1220–1247.10.1086/375492Search in Google Scholar

Lodders, K., and Amari, S. (2005) Presolar grains from meteorites: Remnants from the early times of the solar system. Chemie der Erde, 65, 93–166.10.1016/j.chemer.2005.01.001Search in Google Scholar

Lugaro, M. (2005) Stardust from Meteorites: An Introduction to Presolar Grains. World Scientific.10.1142/5705Search in Google Scholar

Lugaro, M., Zinner, E., Gallino, R., and Amari, S. (1999) Isotopic ratios in mainstream presolar SiC grains revisited. The Astrophysical Journal, 527, 369–394.10.1086/308078Search in Google Scholar

Lugaro, M., Karakas, A.I., Bruno, C.G., Aliotta, M., Nittler, L.R., and 32 others (2017) Origin of meteoritic stardust unveiled by a revised proton-capture rate of 17O. Nature Astronomy, 1, 0027.10.1038/s41550-016-0027Search in Google Scholar

Ma, C., Krot, A.N., and Bizzarro, M. (2013) Discovery of dmisteinbergite (hexagonal CaAl2Si2O8) in the Allende meteorite: A new member of refractory silicates formed in the solar nebula. American Mineralogist, 98, 1368–1371.10.2138/am.2013.4496Search in Google Scholar

Ma, C., Krot, A.N., and Nagashima, K. (2017) Addibischoffite, CaAl6Al6O20, a new calcium aluminate mineral from the Acfer 214 CH carbonaceous chondrite: A new refractory phase from the solar nebula. American Mineralogist, 102, 1556–1560.10.2138/am-2017-6032Search in Google Scholar

Matteucci, F. (2003) The Chemical Evolution of the Galaxy. Kluwer Academic.10.1007/978-94-010-0967-6Search in Google Scholar

Mazzali, P.A., Röpke, F.K., Benetti, S., and Hillebrandt, W. (2007) A common explosion mechanism for type 1a supernovae. Science, 315, 825–828.10.1126/science.1136259Search in Google Scholar PubMed

McAdam, M.M., Sunshine, J.M., Howard, K.T., Alexander, C.M.O’D., McCoy, T.J., and Bus, S.J. (2018) Spectral evidence for amorphous silicates in least-processed CO meteorites and their parent bodies. Icarus, 306, 32–49.10.1016/j.icarus.2018.01.024Search in Google Scholar

McKeegan, K.D., Aleon, J., Bradley, J., Brownlee, D., Busemann, H., Butterworth, A., Chaussidon, M., Fallon, S., and 39 others (2006) Isotopic compositions of cometary matter returned by Stardust. Science, 314, 1724–1728.10.1126/science.1135992Search in Google Scholar PubMed

Meier, M.M.M., Heck, P.R., Amari, S., Baur, H., and Wieler, R. (2012) Graphite grains in supernova ejecta—Insights from a noble gas study of 91 individual KFC1 presolar graphite grains from the Murchison meteorite. Geochimica et Cosmochimica Acta, 76, 147–160.10.1016/j.gca.2011.10.027Search in Google Scholar

Messenger, S. (2002) Opportunities for the stratospheric collection of dust from short-period comets. Meteoritics & Planetary Science, 37, 1491–1505.10.1111/j.1945-5100.2002.tb00806.xSearch in Google Scholar

Messenger, S., Keller, L.P., Stadermann, F.J., Walker, R.M., and Zinner, E. (2003) Samples of stars beyond the solar system: Silicate grains in interplanetary dust. Science, 300, 105–108.10.1126/science.1080576Search in Google Scholar PubMed

Messenger, S., Keller, L.P., and Lauretta, D.S. (2005) Supernova olivine from cometary dust. Science, 309, 737–741.10.1126/science.1109602Search in Google Scholar PubMed

Meyer, B.S., Clayton, D.D., and The, L.-S. (2000) Molybdenum and zirconium isotopes from a supernova neutron burst. The Astrophysical Journal, 540, L49–L52.10.1086/312865Search in Google Scholar

Millikan, R.G. (1999) Historical kinds and the special sciences. Philosophical Studies, 95, 45–65.10.1023/A:1004532016219Search in Google Scholar

Mills, S.J., Hatert, F., Nickel, E.H., and Ferrais, G. (2009) The standardization of mineral group hierarchies: Application to recent nomenclature proposals. European Journal of Mineralogy, 21, 1073–1080.10.1127/0935-1221/2009/0021-1994Search in Google Scholar

Morgan, D.H., Cannon, R.D., Hatzidimitriou, D., and Croke, B.F.W. (2003) J-type carbon stars in the Large Magellanic Cloud. Monthly Notices of the Royal Astronomical Society, 341, 534–550.10.1046/j.1365-8711.2003.06424.xSearch in Google Scholar

Morrison, S.M., Liu, C., Eleish, A., Prabhu, A., Li, C., Ralph, J., Downs, R.T., Golden, J.J., Fox, P., and Hazen, R.M. (2017) Network analysis of mineralogical systems. American Mineralogist, 102, 1588–1596.10.2138/am-2017-6104CCBYNCNDSearch in Google Scholar

Mostefouai, S., and Hoppe, P. (2004) Discovery of abundant in situ silicate and spinel grains from red giant stars in a primitive meteorite. The Astrophysical Journal, 613, L149–L152.10.1086/424842Search in Google Scholar

Nagashima, K., Krot, A.N., and Yurimoto, H. (2004) Stardust silicates from primitive meteorites, Nature, 428, 921–924.10.1038/nature02510Search in Google Scholar PubMed

Neugebauer, G., Habing, H.J., van Duinen, R., Aumann, H.H., Baud, B., Beichman, C.A., Beintema, D.A., Boggess, N., Clegg, P.E., de Jong, T., and others. (1984) The Infrared Astronomical Satellite (IRAS) mission. The Astrophysical Journal, Part 2, 278, L1–L6.10.1086/184209Search in Google Scholar

Nguyen, A.N. and Messenger, S. (2014) Resolving the stellar sources of isotopically rare presolar silicate grains through Mg and Fe isotopic analysis. The Astrophysical Journal, 784, 149 (15 pp).10.1088/0004-637X/784/2/149Search in Google Scholar

Nguyen, A.N., and Zinner, E. (2004) Discovery of ancient silicate stardust in a meteorite. Science, 303, 1496–1499.10.1126/science.1094389Search in Google Scholar PubMed

Nguyen, A.N., Stadermann, F.J., Zinner, E., Srtroud, R.M., Alexander, C.M.O’D., and Nittler, L.R. (2007) Characterization of presolar silicate and oxide grains in primitive carbonaceous chondrites. The Astrophysical Journal, 656, 1223–1240.10.1086/510612Search in Google Scholar

Nguyen, A.N., Nittler, L.R., Stadermann, F.J., Stroud, R.M., and Alexander, C.M.O’D. (2010) Coordinated analyses of presolar grains in the Allan Hills 77307 and Queen Elizabeth Range 99177 meteorites. The Astrophysical Journal, 719, 166–189.10.1088/0004-637X/719/1/166Search in Google Scholar

Nguyen, A.N., Keller, L.P., and Messenger, S. (2016) Mineralogy of presolar silicate and oxide grains of diverse stellar origins. The Astrophysical Journal, 818, 51 (17 pp).10.3847/0004-637X/818/1/51Search in Google Scholar

Nguyen, A.N., Nittler, L.R., Alexander, C.M.O’D., and Hoppe, P. (2018) Titanium isotopic compositions of rare presolar SiC grain types from the Murchison meteorite. Geochimica et Cosmochimica Acta, 221, 162–181.10.1016/j.gca.2017.02.026Search in Google Scholar

Nittler, L.R., and Alexander, C.M.O’D. (2003) Automated isotopic measurements of micron-sized dust: Application to meteoritic presolar silicon carbide. Geochimica et Cosmochimica Acta, 67, 4961–4980.10.1016/S0016-7037(03)00485-XSearch in Google Scholar

Nittler, L.R., and Ciesla, F. (2016) Astrophysics with extraterrestrial materials. Annual Review of Astronomy & Astrophysics, 54, 53–93.10.1146/annurev-astro-082214-122505Search in Google Scholar

Nittler, L.R. and Dauphas, N. (2006) Meteorites and the chemical evolution of the Milky Way. In D.S. Lauretta and H.Y. McSween Jr., Eds., Meteorites and the Early Solar System II, pp.127–146. University of Arizona Press.10.2307/j.ctv1v7zdmm.12Search in Google Scholar

Nittler, L.R., Alexander, C.M.O’D., Gao, X., Walker, R.M., and Zinner, E. (1994) Interstellar oxide grains from the Tieschitz ordinary chondrite. Nature, 370, 443–446.10.1038/370443a0Search in Google Scholar

Nittler, L.R., Hoppe, P., Alexander, C.M.O’D., Amari, S., Eberhardt, P., Gao, X., Lewis, R.S., Strebel, R., Walker, R.M., and Zinner, E. (1995) Silicon nitride from supernovae. The Astrophysical Journal, 453, L25–L28.10.1086/309743Search in Google Scholar

Nittler, L.R., Amari, S., Zinner, E., Woosley, S.E., and Lewis, R.S. (1996) Extinct 44Ti in presolar graphite and SiC: Proof of a supernova origin. The Astrophysical Journal Letters, 462, L31–L34.10.1088/1538-4357/462/1/L31Search in Google Scholar

Nittler, L.R., Alexander, C.M.O’D., Gao, X., Walker, R.M., and Zinner, E. (1997) Stellar sapphires: The properties and origins of presolar Al2O3 in meteorites. The Astrophysical Journal, 483, 475–495.10.1086/304234Search in Google Scholar

Nittler, L.R., Alexander, C.M.O’D., Stadermann, F.J., and Zinner, E.K. (2005) Presolar chromite in Orgueil. Meteoritics & Planetary Science, 40, A114.Search in Google Scholar

Nittler, L.R., Alexander, C.M.O’D., Gallino, R., Hoppe, P., Nguyen, A.N., Stadermann, F.J., and Zinner, E.K. (2008) Aluminum-, calcium-, and titanium-rich oxide stardust in ordinary chondrite meteorites. The Astrophysical Journal, 682, 1450–1478.10.1086/589430Search in Google Scholar

Nittler, L.R., Gyngard, F., Zinner, E., and Stroud, R.M. (2011) Mg and Ca isotopic anomalies in presolar oxides: Large anomalies in a group 3 hibonite grain. Lunar and Planetary Science, 42, #1872.Search in Google Scholar

Nittler, L.R., Alexander, C.M.O’D., Liu, N., and Wang, J. (2018a) Extremely 54Cr- and 50Ti-rich presolar oxide grains in a primitive meteorite: Formation in rare types of supernovae and implications for the astrophysical context of Solar System birth. The Astrophysical Journal Letters, 856, L24 (7 pp).10.3847/2041-8213/aab61fSearch in Google Scholar PubMed PubMed Central

Nittler, L.R., Alexander, C.M.O’D., Davidson, J., Riebe, M.E.I., Stroud, R.M., and Wang, J. (2018b) High abundances of presolar grains and 15N-rich organic matter in CO3.0 chondrite Dominion Range 08006. Geochimica et Cosmochimica Acta, 226, 107–131.10.1016/j.gca.2018.01.038Search in Google Scholar PubMed PubMed Central

Nollett, K.M., Busso, M., and Wasserburg, G.J. (2003) Cool bottom processing on the thermally pulsing asymptotic giant branch and the isotopic composition of circumstellar dust grains. The Astrophysical Journal, 582, 1036–1058.10.1086/344817Search in Google Scholar

Nuth, J.A. III, and Allen, J.E. Jr. (1992) Supernovae as sources of interstellar diamonds. Astrophysics and Space Science, 196, 117–123.10.1007/BF00645245Search in Google Scholar

Onaka, T., de Jong, T., and Willems, F.J. (1989) A study of M Mira variables based on IRAS LRS observations. I—dust formation in the circumstellar shell. Astronomy & Astrophysics, 18, 169–179.Search in Google Scholar

Ozima, M., and Mochizuki, K. (1993) Origin of nanodiamonds in primitive chondrites:(1) Theory. Meteoritics, 28, 416–417.Search in Google Scholar

Pagel, B.E.J. (1997) Nucleosynthesis and Chemical Evolution of Galaxies. Cambridge University Press.Search in Google Scholar

Peeples, M.S., and Somerville, R.S. (2013) An empirical prediction for stellar metallicity distributions in nearby galaxies. Monthly Notices of the Royal Astronomical Society, 428, 1766–1773.10.1093/mnras/sts158Search in Google Scholar

Prialnik, D. (2001) Novae. In P. Murdin, Ed., Encyclopedia of Astronomy and Astrophysics, pp. 1846–1856. Institute of Physics Publishing, Washington, D.C.Search in Google Scholar

Rauscher, T., Heger, A., Hoffman, R.D., and Woosley, S.E. (2002) Nucleosynthesis in massive stars with improved nuclear and stellar physics. The Astrophysical Journal, 576, 323–348.10.1086/341728Search in Google Scholar

Rieke, G.H. (2009) History of infrared telescopes and astronomy. Experimental Astronomy, 25, 125–141.10.1007/978-90-481-2233-2_9Search in Google Scholar

Richter, S., Ort, U., and Begemann, F. (1998) Tellurium in pre-solar diamonds as an indicator of rapid separation of supernova ejecta. Nature, 391, 261–263.10.1038/34605Search in Google Scholar

Robertson, B.E., Ellis, R.S., Furlanetto, S.R., and Dunlop, J.S. (2015) Cosmic reionization and early star-forming galaxies: A joint analysis of new constraints from Planck and the Hubble Space Telescope. The Astrophysical Journal, 802, L19–L23.10.1088/2041-8205/802/2/L19Search in Google Scholar

Rolfs, C.E., and Rodney, W.S. (2005) Cauldrons in the Cosmos: Nuclear Astrophysics. University of Chicago Press.Search in Google Scholar

Rubin, A.E., and Ma, C. (2017) Meteoritic minerals and their origins. Chemie der Erde, 77, 325–385.10.1016/j.chemer.2017.01.005Search in Google Scholar

Russell, S.S., Arden, J.W., and Pillinger, C.T. (1991) Evidence for multiple sources of diamond from primitive chondrites. Science, 254, 1188–1191.10.1126/science.254.5035.1188Search in Google Scholar PubMed

Russell, S.S., Arden, J.W., and Pillinger, C.T. (1996) A carbon and nitrogen isotope study of diamond from primitive chondrites. Meteoritics & Planetary Science, 31, 343–355.10.1111/j.1945-5100.1996.tb02071.xSearch in Google Scholar

Salpeter, E.E. (1977) Formation and destruction of dust grains. Annual Review of Astronomy & Astrophysics, 15, 267–293.10.1146/annurev.aa.15.090177.001411Search in Google Scholar

Santana, C. (2019) Mineral misbehavior: why mineralogists don’t deal in natural kinds. Frontiers of Chemistry, https//doi.org/10.1007/s10698-019-09338-310.1007/s10698-019-09338-3Search in Google Scholar

Sarangi, A., and Cherchneff, I. (2015) Condensation of dust in the ejecta of Type II supernovae. Astronomy & Astrophysics, 575, A95 (20 pp).10.1051/0004-6361/201424969Search in Google Scholar

Schatz, H. (2010) The evolution of elements and isotopes. Elements, 6, 13–17.10.2113/gselements.6.1.13Search in Google Scholar

Schertl, H.-P., Mills, S.J., and Maresch, W.V. (2018) A Compendium of IMA-Approved Mineral Nomenclature. International Mineralogical Association, Melbourne, Australia.Search in Google Scholar

Schröder, K.-P., and Connon Smith, R. (2008) Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society, 386, 155–163.10.1111/j.1365-2966.2008.13022.xSearch in Google Scholar

Sloan, G.C., and Price, S.D. (1998) The infrared spectral classification of oxygen-rich dust shells. The Astrophysical Journal Supplement Series, 119, 141–158.10.1086/313156Search in Google Scholar

Sloan, G.C., Kraemer, K.E., McDonald, I., Groenewegen, M.A.T., Wood, P.R., Zijlstra, A.A., Lagadec, E., Boyer, M.L., Kemper, F., Matsuura, M., Sahai, R., Sargent, B.A., Srinivasan, S., van Loon, J.T., and Volk, K. (2016) The infrared spectral properties of Magellanic carbon stars. The Astrophysical Journal, 826, 44 (19 pp).10.3847/0004-637X/826/1/44Search in Google Scholar

Sneden, C., Cowan, J.J., and Gallino, R. (2008) Neutron-capture elements in the early galaxy. Annual Review of Astronomy & Astrophysics, 46, 241–288.10.1146/annurev.astro.46.060407.145207Search in Google Scholar

Soker, N., and Harpaz, A. (1999) Stellar structure and mass loss on the upper asymptotic giant branch. Monthly Notices of the Royal Astronomical Society, 310, 1158–1164.10.1046/j.1365-8711.1999.03062.xSearch in Google Scholar

Sossi, P.A., Moynier, F., Chaussidon, M., Villeneuve, J., Kato, C., and Gounelle, M. (2017) Early solar system irradiation quantified by linked vanadium and beryllium isotope variations in meteorites. Nature Astronomy, 1, article 55.10.1038/s41550-017-0055Search in Google Scholar

Speck, A.K., Barlow, M.J., Sylvester, R.J., and Hofmeister, A.M. (2000) Dust features in the 10-micrometer infrared spectra of oxygen-rich evolved stars. Astronomy & Astrophysics, 146, 437–464.Search in Google Scholar

Stadermann, F.J., Croat, T.K., Bernatowiicz, T.J., Amario, S., Messenger, S., Walker, R.M., and Zinner, E. (2005) Supernova graphite in the NanoSIMS: Carbon, oxygen and titanium isotopic compositions of a spherule and its TiC sub-components. Geochimica et Cosmochimica Acta, 69, 177–188.10.1016/j.gca.2004.06.017Search in Google Scholar

Stadermann, F.J., Hoppe, P., Floss, C., Heck, P.R., Hörz, F., Huth, J., Kearsley, A.T., Leitner, J., Marhas, K.K., McKeegan, K.D., and Stephan, T. (2008) Stardust in Stardust—The C, N, and O isotopic compositions of Wild 2 cometary matter in Al foil impacts. Meteoritics & Planetary Science, 43, 299–313.10.1111/j.1945-5100.2008.tb00624.xSearch in Google Scholar

Stein, W.A., Gaustad, J.E., Gillett, F.C., and Knacke, R.F. (1969) The spectrum of Cygnus from 7.5 to 14 microns. The Astrophysical Journal, 155, L177–L179.10.1086/180330Search in Google Scholar

Stroud, R.M., and Bernatowicz, T.J. (2005) Surface and internal structure of pristine presolar silicon carbide. Lunar and Planetary Science Conference, 36, #2010.Search in Google Scholar

Stroud, R.M., Nittler, L.R., and Hoppe, P. (2004a) Microstructures and isotopic compositions of two SiC X grains. Meteoritics & Planetary Science, 39, A101.Search in Google Scholar

Stroud, R.M., Nittler, L.R., and Alexander, C.M.O’D. (2004b) Polymorphism in presolar Al2O3 Grains from asymptotic giant branch stars. Science, 305, 1455–1457.10.1126/science.1101099Search in Google Scholar PubMed

Stroud, R.M., Chisholm, M.F., Heck, P.R., Alexander, C.M.O’D., and Nittler, L.R. (2011) Supernova shock-wave-induced co-formation of glassy carbon and nanodiamond. The Astrophysical Journal, 738, L27 (5 pp).10.1088/2041-8205/738/2/L27Search in Google Scholar

Takigawa, A., Tachibana, S., Huss, G.R., Nagashima, K., Makide, K., Krot, A.N., and Nagahara, H. (2014) Morphology and crystal structures of solar and presolar Al2O3 in unequilibrated ordinary chindrites. Geochimica et Cosmochimica Acta, 124, 309–327.10.1016/j.gca.2013.09.013Search in Google Scholar

Takigawa, A., Tachibana, S., Nagahara, H., and Ozawa, K. (2015) Evaporation and condensation kinetics of corundum: The origin of the 13-micrometer feature of oxygen-rich AGB stars. The Astrophysical Journal Supplement Series, 218, (16 pp). 10.1088/0067-0049/218/1/2.Search in Google Scholar

Takigawa, A., Stroud, R.M., Nittler, L.R., and Alexander, C.M.O’D. (2018) High-temperature dust condensation around an AGB star: evidence from a highly pristine presolar corundum. The Astrophysical Journal Letters, 862, L13. 10.3847/2041-8213/aadlf5.Search in Google Scholar

Taylor, B.J. (1996) Supermetallicity at the quarter-century mark: A conservative statistician’s review of the evidence. The Astrophysical Journal Supplement, 102, 105.10.1086/192253Search in Google Scholar

Timmes, F.X., Woosley, S.E., and Weaver, T.A. (1995) Galactic chemical evolution: Hydrogen through zinc. The Astrophysical Journal Supplement Series, 98, 617–658.10.1086/192172Search in Google Scholar

Timmes, F.X., Woosley, S.E., Hartmann, D.H., and Hoffman, R.D. (1996) The production of 44Ti and 60Co in supernovae. The Astrophysical Journal, 464, 332–341.10.1086/177323Search in Google Scholar

Tominga, N., Umeda, H., and Nomoto, K. (2007) Supernova nucleosynthesis in population III 13-50 Msolar stars and abundance patterns of extremely metal-poor stars. The Astrophysical Journal, 660, 516–540.10.1086/513063Search in Google Scholar

Travaglio, C., Gallino, R., Amari, S., Zinner, E., Woosley, S., and Lewis, R.S. (1999) Low-density graphite grains and mixing in type II supernovae. The Astrophysical Journal, 510, 325–354.10.1086/306551Search in Google Scholar

Treffers, R., and Cohen, M. (1974) High-resolution spectra of cool stars in the 10- and 20-micron regions. The Astrophysical Journal, 188, 545–552.10.1086/152746Search in Google Scholar

Truran, J.W. and Heger, A. (2003) Origin of the elements. In H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, 1st ed., 1, 1–15. Elsevier.10.1016/B0-08-043751-6/01059-8Search in Google Scholar

Verchovsky, A.B., Fisenko, A.V., Semjonova, L.F., Bridges, J., Lee, M.R., and Wright, I.P. (2006) Nanodiamonds from AGB stars: A new type of presolar grain in meteorites. The Astrophysical Journal, 651, 481–490.10.1086/507176Search in Google Scholar

Vollmer, C., Hoppe, P., Brenker, F.E., and Hozapfel, C. (2007) Stellar MgSiO3 perovskite: A shock-transformed stardust silicate found in a meteorite. The Astrophysical Journal, 666, L49–L52.10.1086/521623Search in Google Scholar

Vollmer, C., Hoppe, P., Stadermann, F.J., Floss, C., and Brenker, F.E. (2009) NanoSIMS analysis and Auger electron spectroscopy of silicate and oxide stardust from the carbonaceous chondrite Acfer 094. Geochimica et Cosmochimica Acta, 73, 7127–7149.10.1016/j.gca.2009.08.015Search in Google Scholar

Vollmer, C., Hoppe, P., and Brenker, F.E. (2013) Transmission electron microscopy of Al-rich silicate stardust from asymptotic giant branch stars. The Astrophysical Journal, 769, 61 (8 pp).10.1088/0004-637X/769/1/61Search in Google Scholar

Waters, L.B.F.M., Molster, F.J., de Jong, T., Beintema, D.A., Waelkens, C., and 32 others (1996) Mineralogy of oxygen-rich dust shells. Astronomy & Astrophysics, 315, L361-L364.Search in Google Scholar

Wood, J.A., and Hashimoto, A. (1993) Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 2377–2388.10.1016/0016-7037(93)90575-HSearch in Google Scholar

Woolf, N.J., and Ney, E.P. (1969) Circumstellar infrared emission from cool stars. The Astrophysical Journal, 155, L181.10.1086/180331Search in Google Scholar

Wopenka, B., Jadhav, M., and Zinner, E. (2011a) Raman analysis of high-density presolar graphite grains from the Orgueil carbonaceous chondrite. Lunar and Planetary Science Conference, 42, #1162.Search in Google Scholar

Wopenka, B., Groopman, E., and Zinner, E. (2011b) Orgueil low-density presolar carbon ain’t graphite but glassy carbon. Meteoritics & Planetary Science, 46, A252.Search in Google Scholar

Yada, T., Floss, C., Stadermann, F.J., Zinner, E., Nakamura, T., Noguchi, T., and Lea, A.S. (2008) Stardust in Antarctic micrometeorites. Meteoritics & Planetary Science, 43, 1287–1298.10.1111/j.1945-5100.2008.tb00698.xSearch in Google Scholar

Yoneda, S., and Grossman, L. (1995) Condensation of CaO-MgO-Al2O3-SiO2 liquids from cosmic gases. Geochimica et Cosmochimica Acta, 59, 3413–3444.10.1016/0016-7037(95)00214-KSearch in Google Scholar

Zega, T.J., Alexander, C.M.O’D., Nittler, L.R., and Stroud, R.M. (2011) A transmission electron microscopy study of presolar hibonite. The Astrophysical Journal, 730, 83–93.10.1088/0004-637X/730/2/83Search in Google Scholar

Zega, T.J., Nittler, L.R., Gyngard, F., Alexander, C.M.O’D., Stroud, R.M., and Zinner, E.K. (2014a) A transmission electron microscopy study of presolar spinel. Geochimica et Cosmochimica Acta, 124, 152–169.10.1016/j.gca.2013.09.010Search in Google Scholar

Zega, T.J., Haenecour, P., Floss, C., and Stroud, R.M. (2014b) Extraction and analysis of presolar grains from the LAP 031117 CO3.0 chondrite. Lunar and Planetary Science Conference, 45, #2256.10.1088/0004-637X/808/1/55Search in Google Scholar

Zega, T.J., Haenecour, P., Floss, C., and Stroud, R.M. (2015) Circumstellar magnetite from the LAP 031117 C03.0 chondrite. The Astrophysical Journal, 808, 55.10.1088/0004-637X/808/1/55Search in Google Scholar

Zinner, E.K. (2014) Presolar grains. In A.M. Davis, H.D. Holland and K.K. Turekian, Eds., Treatise on Geochemistry, vol. 1., Meteorites, Comets, and Planets, 2nd ed., pp. 17–39. Oxford.Search in Google Scholar

Zinner, E.K., Fahey, A.J., Goswami, J.N., Ireland, T.R., and McKeegan, K.D. (1986) Large 48Ca anomalies associated with 50Ti anomalies in Murchison and Murray hibonites. The Astrophysical Journal Letters, 311, L103–L107.10.1086/184807Search in Google Scholar

Zinner, E.K., Ming, T., and Anders, E. (1987) Large isotopic anomalies of Si, C, N, and noble gases in interstellar silicon carbide from the Murray meteorite. Nature, 330, 730–732.10.1038/330730a0Search in Google Scholar

Zinner, E.K., Amari, S., Wopenka, B., and Lewis, R.S. (1995) Interstellar graphite in meteorites: Isotopic compositions and structural properties of single graphite grains from Murchison. Meteoritics, 30, 209–226.10.1111/j.1945-5100.1995.tb01115.xSearch in Google Scholar

Zinner, E.K., Nittler, L.R., Gallino, R., Karakas, A.I., Lugaro, M., Straniero, O., and Lattanzio, J.C. (2006) Silicon and carbon isotopic ratios in AGB stars: SiC grain data, models, and the Galactic evolution of the Si isotopes. The Astrophysical Journal, 650, 350–373.10.1086/506957Search in Google Scholar

Zinner, E.K., Amari, S., Guinness, R., Jennings, C., Mertz, A.F., Nguyen, A.N., Gallino, R., Hoppe, P., Lugaro, M., Nittler, L.R., and Lewis, R.S. (2007) NanoSIMS isotopic analysis of small presolar grains: Search for Si3N4 grains from AGB stars and Al and Ti isotopic compositions of rare presolar SiC grains. Geochimica et Cosmochimica Acta, 71, 4786–4813.10.1016/j.gca.2007.07.012Search in Google Scholar

Zinner, E.K., Moyniuer, F., and Stroud, R.M. (2011) Laboratory technology and cosmochemistry. Proceedings of the National Academy of Sciences, 108, 19,135–19,141.10.1073/pnas.1015118108Search in Google Scholar PubMed PubMed Central

Received: 2019-06-23
Accepted: 2019-12-02
Published Online: 2020-04-29
Published in Print: 2020-05-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 13.6.2024 from https://www.degruyter.com/document/doi/10.2138/am-2020-7173/html
Scroll to top button