Preview

Известия вузов. Прикладная химия и биотехнология

Расширенный поиск

Фототрофы в альтернативной энергетике

https://doi.org/10.21285/2227-2925-2021-11-3-358-371

Аннотация

Резюме: В представленном обзоре рассматривается роль фототрофов в альтернативной энергетике, при этом основной упор сделан на одноклеточные водоросли. Особое внимание уделено применению фототрофов для генерации электроэнергии с использованием биотопливных элементов (обсуждаются растительные и ферментные биотопливные элементы). Главное место отведено микробным топливным элементам (МТЭ), которые наряду с электроэнергией позволяют получать биотопливо и биоводород. Рассматриваются факторы, ограничивающие мощность МТЭ, а также пути их преодоления. Так, например, для снижения убыли мощности МТЭ из-за перенапряжения представляется перспективной разработка различных фотобиореакторов. Использование микрофототрофов в МТЭ привело к разработке фотосинтетических МТЭ (или ФотоМТЭ) посредством конструирования автотрофных фотобиореакторов с принудительным освещением. Они дают возможность генерировать кислород за счет фотосинтеза как in situ, так и ex situ, рециркулируя кислород из фотобиореактора в катодную камеру. Здесь могут быть использованы искусственные редокс-медиаторы, переносящие электроны непосредственно с некаталитического катода на O2, образующийся в результате фотосинтезирующей активности водорослей. Показано, что биологически катализируемые катоды генерируют меньшую мощность по сравнению с химическими катализаторами. Отмечено, что установки МТЭ с микроводорослями позволяют утилизировать широкий круг различных соединений – компонентов сточных вод и отходов: органические кислоты, сахара, спирты, жиры и другие субстраты. Особый раздел представляет использование фототрофов для производства биотоплива. Из микроводорослей можно получить несколько различных видов возобновляемого биотоплива, производство которого может быть объединено с очисткой сточных вод, улавливанием CO2, производством различных соединений.

Об авторах

М. С. Коновалов
Иркутский государственный университет
Россия

Коновалов Михаил Сергеевич, научный сотрудник

664003, г. Иркутск, ул. Карла Маркса, 1



Е. Ю. Коновалова
Иркутский государственный университет
Россия

Коновалова Елена Юрьевна, научный сотрудник

664003, г. Иркутск, ул. Карла Маркса, 1



И. Н. Егорова
Сибирский институт физиологии и биохимии растений СО РАН
Россия

Егорова Ирина Николаевна, к.б.н., старший научный сотрудник

664033, г. Иркутск, ул. Лермонтова, 132



Г. О. Жданова
Иркутский государственный университет
Россия

Жданова Галина Олеговна, научный сотрудник

664003, г. Иркутск, ул. Карла Маркса, 1



Д. И. Стом
Иркутский государственный университет; Байкальский музей ИНЦ
Россия

Стом Дэвард Иосифович, д.б.н., профессор, заведующий лабораторией водной токсикологии; главный научный сотрудник

664003, г. Иркутск, ул. Карла Маркса, 1

664520, п. Листвянка, ул. Академическая, 1



Список литературы

1. Skjånes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process // Critical Reviews in Biotechnology. 2013. Vol. 33. Issue 2. P. 172–215. https://doi.org/10.3109/07388551.2012.681625

2. Vershinin A. Biological functions of carotenoidsdiversity and evolution // Biofactors. 1999. Vol. 10. Issue 2-3. P. 99–104. https://doi.org/10.1002/biof.5520100203

3. Chisti Y. Biodiesel from microalgae // Biotechnology Advances. 2007. Vol. 25. Issue 3. P. 294–306. https://doi.org/10.1016/j.biotechadv.2007.02.001

4. Ullah K., Ahmad M., Sharma V.K., Lu P., Harvey A., Zafar M., et al. Algal biomass as a global source of transport fuels: Overview and development perspectives // Progress in Natural Science: Materials International. 2014. Vol. 24. Issue 4. P. 329–339. https://doi.org/10.1016/j.pnsc.2014.06.008

5. Olivieri G., Salatino P., Marzocchella A. Advances in photobioreactors for intensive microalgal production: Configurations, operating strategies and applications // Journal of Chemical Technology and Biotechnology. 2013. Vol. 89. Issue 2. P. 178–195. https://doi.org/10.1002/jctb.4218

6. Liu H., Cheng S., Logan B.E. Power generation in fed-batch microbial fuel cells as a function of ionic strength, temperature, and reactor configuration // Environmental Science & Technology. 2005. Vol. 39. Issue 14. P. 5488–5493. https://doi.org/10.1021/es050316c

7. Oh S.E., Min B., Logan B.E. Cathode performance as a factor in electricity generation in microbial fuel cells // Environmental Science & Technology. 2004. Vol. 38. Issue 18. P. 4900–4904. https://doi.org/10.1021/es049422p

8. Pham T.H., Jang J.K., Chang I.S., Kim B.H. Improvement of cathode reaction of a mediator–less microbial fuel cell // Journal of Microbial Biotechnology. 2004. Vol. 14. Issue 2. P. 324–329.

9. Yagishita T., Sawayama S., Tsukahara K.-I., Ogi T. Effects of intensity of incident light and concentrations of Synechococcus sp. and 2-hydroxy-1,4- naphthoquinone on the current output of photosynthetic electrochemical cell // Solar Energy. 1997. Vol. 61. Issue 5. P. 347–353. https://doi.org/10.1016/S0038-092X(97)00069-8

10. Juang D.F., Lee C.H., Hsueh S.C. Comparison of electrogenic capabilities of microbial fuel cell with different light power on algae grown cathode // Bioresource Technology. 2012. Vol. 123. P. 23–29. https:// doi.org/10.1016/j.biortech.2012.07.041

11. Del Campo A.G., Cañizares P., Rodrigo M.A., Fernández F.J., Lobato J. Microbial fuel cell with an algae-assisted cathode: A preliminary assessment // Journal of Power Sources. 2013. Vol. 242. P. 638– 645. https://doi.org/10.1016/j.jpowsour.2013.05.110

12. Singh S.P., Singh P. Effect of CO2 concentration on algal growth: A review // Renewable and Sustainable Energy Reviews. 2014. Vol. 38. P. 172–179. https://doi.org/10.1016/j.rser.2014.05.043

13. Fu C.-C., Hung T.-C., Wu W.-T., Wen T.-C., Su C.-H. Current and voltage responses in instant photosynthetic microbial cells with Spirulina platensis // Biochemical Engineering Journal. 2010. Vol. 52. Issues 2- 3. P. 175–180. https://doi.org/10.1016/j.bej.2010.08.004

14. Meirong M., Xiaoju Sh., Limin C., Zongwu D. The operation of photosynthetic microbial fuel cells powered by Anabaena variabilis. In: Proceedings of 2013 International Conference on Materials for Renewable Energy and Environment. 2013. P. 968–972. https://doi.org/10.1109/ICMREE.2013.6893833

15. Cao Y., Mu H., Liu W., Zhang R., Guo J., Xian M., Liu H. Electricigens in the anode of microbial fuel cells: pure cultures versus mixed communities // Microbial Cell Factories. 2019. Vol. 18. Issue 1. Article number 39. https://doi.org/10.1186/s12934-019-1087-z

16. Aiyer K.S. Synergistic effects in a microbial fuel cell between co-cultures and a photosynthetic alga Chlorella vulgaris improve performance // Heliyon. 2021. Vol. 7. Issue 1. e05935. https://doi.org/10.1016/j.heliyon.2021.e05935

17. Mao L., Verwoerd W.S. Genome-scale stoichiometry analysis to elucidate the innate capability of the cyanobacterium Synechocystis for electricity generation // Journal of Industrial Microbiology and Biotechnology. 2013. Vol. 40. Issue 10. P. 1161–1180. https:// doi.org/10.1007/s10295-013-1308-0

18. Hadiyanto H., Christwardana M., Minasheila T., Wijaya Y.H. Effects of Yeast Concentration and Microalgal Species on Improving the Performance of Microalgal- Microbial Fuel Cells (MMFCs) // International Energy Journal. 2020. Vol. 20. Issue 3. P. 337–344. http://www.rericjournal.ait.ac.th/index.php/reric/article/view/2337

19. Strik D.P.B.T.B., Hamelers H.V.M., Buisman C.J.N. Solar energy powered microbial fuel cell with a reversible bioelectrode // Environmental Science & Technology. 2010. Vol. 44. Issue 1. P. 532–537. https://doi.org/10.1021/es902435v

20. Otadi M., Poormohamadian S., Zabihi F., Goharrokhi M. Microbial fuel cell production with alga // World Applied Sciences Journal. 2011. Vol. 14. P. 91–95.

21. Velasquez-Orta S.B., Curtis T.P., Logan B.E. Energy from algae using microbial fuel cells // Biotechnology and Bioengineering. 2009. Vol. 103. Issue 6. P. 1068–1076. https://doi.org/10.1002/bit.22346

22. Mahesh S., Tadesse D., Melkamu A. Evaluation of photosynthetic microbial fuel cell for bioelectricity production // Indian Journal of Energy. 2013. Vol. 2. Issue 4. P. 116–120.

23. Yadav A.K., Panda P., Rout P., Behara S., Patra A.K., Nayak S.K., et al. Entrapment of algae for waste water treatment and bioelectricity generation in microbial fuel cell. In: Proceedings of XVIIth International Conference on Bioencapsulation. 2009. P. 24–26.

24. Logan B.E. Microbial Fuel Cells. Wiley, 2008. 216 p. https://doi.org/10.1002/9780470258590

25. Powell E.E., Mapiour M.L., Evitts R.W., Hill G.A. Growth kinetics of Chlorella vulgaris and its use as a cathodic half-cell // Bioresource Technology. 2009. Vol. 100. Issue 1. P. 269–274. https://doi.org/10.1016/j.biortech.2008.05.032

26. Jiang H.-M., Luo S.-Ju., Shi X.-S., Dai M., Guo R.-B. A system combining microbial fuel cell with photobioreactor for continuous domestic wastewater treatment and bioelectricity generation // Journal of Central South University. 2013. Vol. 20. Issue 2. P. 488–494. https://doi.org/10.1007/s11771-013-1510-2

27. Pandit S., Ghosh S., Ghangrekar M., Das D. Performance of an anion exchange membrane in association with cathodic parameters in a dual chamber microbial fuel cell // International Journal of Hydrogen Energy. 2012. Vol. 37. Issue 11. P. 9383–9392. https://doi.org/10.1016/j.ijhydene.2012.03.011

28. Lan J.C.-W., Raman K., Huang Ch.-M., Chang Ch.-M. The impact of monochromatic blue and red LED light upon performance of photo microbial fuel cells (PMFCs) using Chlamydomonas reinhardtii transformation F5 as biocatalyst // Biochemical Engineering Journal. 2013. Vol. 78. P. 39–43. https://doi.org/10.1016/j.bej.2013.02.007

29. Strik D.P.B.T.B., Hamelers (Bert) H.V.M., Snel J.F.H., Buisman C.J.N. Green electricity production with living plants and bacteria in a fuel cell // International Journal of Energy Research. 2008. Vol. 32. Issue 9. P. 870–876. https://doi.org/10.1002/er.1397

30. Greenman J., Gajda I., Ieropoulos I. Microbial fuel cells (MFC) and microalgae; photo microbial fuel cell (PMFC) as complete recycling machines // Sustainable Energy & Fuels. 2019. Vol. 3. Issue 10. P. 2546–2560. https://doi.org/10.1039/C9SE00354A

31. Lu A., Li Y., Jin S., Ding H., Zeng C., Wang X., et al. Microbial fuel cell Equipped with a photocatalytic rutilecoated cathode // Energy & Fuels. 2010. Vol. 24. Issue 2. P. 1184-1190. https://doi.org/10.1021/ef901053j

32. Wang S., Yang X., Zhu Yi., Sua Yu., Li C. Solarassisted dual chamber microbial fuel cell with a CuInS2 photocathode. // RSC Advances. 2014. Vol. 4. Issue 45. P. 23790–23796. https://doi.org/10.1039/C4RA02488e

33. Kim H.-W., Lee K.-S., Razzaq A., Lee S.H., Grimes C.A., In S.-I. Photocoupled bioanode: A new approach for Improved microbial fuel cell performance // Energy Technology. 2017. Vol. 6. Issue 2. P. 257– 262. https://doi.org/10.1002/ente.201700465

34. Kaku N., Yonezawa N., Kodama Yu., Watanabe K. Plant/microbe cooperation for electricity generation in a rice paddy field // Applied Microbiology and Biotechnology. 2008. Vol. 79. Issue 1. P. 43–49. https://doi.org/10.1007/s00253-008-1410-9

35. Lee D.-J., Chang J.-S., Lai J.-Y. Microalgaemicrobial fuel cell: A mini review // Bioresource Technology. 2015. Vol. 198. P. 891–895. https://doi.org/10.1016/j.biortech.2015.09.061

36. Lobato J., del Campo A.G., Fernández F.J., Cañizares P., Rodrigo M.A. Lagooning microbial fuel cells: A first approach by coupling electricity-producing microorganisms and algae // Applied Energy. 2013. Vol. 110. P. 220–226. https://doi.org/10.1016/j.apenergy.2013.04.010

37. Rodrigo M.A., Cañizares P., García H., Linares J.J., Lobato J. Study of the acclimation stage and of the effect of the biodegradability on the performance of a microbial fuel cell // Bioresource Technology. 2009. Vol. 100. Issue 20. P. 4704–4710. https://doi.org/10.1016/j.biortech.2009.04.073

38. Wang X., Feng Yu., Liu J., Lee H., Li C., Li N., et al. Sequestration of CO2 discharged from anode by algal cathode in microbial carbon capture cells (MCCs) // Biosensors and Bioelectronics. 2010. Vol. 25. Issue 12. P. 2639–2643. https://doi.org/10.1016/j.bios.2010.04.036

39. Nishio K., Hashimoto K., Watanabe K. Light/electricity conversion by a self-organized photosynthetic biofilm in a single-chamber reactor // Applied Microbiology and Biotechnology. 2010. Vol. 86. Issue 3. P. 957–964. https://doi.org/10.1007/s00253-009-2400-2

40. Zou Y., Pisciotta J., Billmyre R.B., Baskakov I.V. Photosynthetic microbial fuel cells with positive light response // Biotechnology and Bioengineering. 2009. Vol. 104. Issue 5. P. 939–946. https://doi.org/10.1002/bit.22466

41. Gajda I., Greenman J., Melhuish C., Ieropoulos I. Photosynthetic cathodes for Microbial Fuel Cells // International Journal of Hydrogen Energy. 2013. Vol. 38. Issue 26. P. 11559–11564. https://doi.org/10.1016/j.ijhydene.2013.02.111

42. Thorne R., Hu H., Schneider K., Bombelli P., Fisher A., Peter L.M., et al. Porous ceramic anode materials for photo-microbial fuel cells // Journal of Materials Chemistry. 2011. Vol. 21. Issue 44. P. 18055–18060. https://doi.org/10.1039/C1JM13058G

43. Lakshmidevi R., Gandhi N.N., Muthukumar K. Bioelectricity and bioactive compound production in an algal-assisted microbial fuel cell with immobilized bioanode // Biomass Conversion and Biorefinery. 2020. https://doi.org/10.1007/s13399-020-00916-6

44. Kondaveeti S., Mohanakrishna G., Lee J.-K., Kalia V.C. Methane as a substrate for energy generation using microbial fuel cells // Indian Journal of Microbiology. 2019. Vol. 59. Issue 1. P. 121–124. https://doi.org/10.1007/s12088-018-0765-6

45. He Z., Kan J., Mansfeld F., Angenent L.T., Nealson K.H. Self-sustained phototrophic microbial fuel cells based on the synergistic cooperation between photosynthetic microorganisms and heterotrophic bacteria // Environmental Science & Technology. 2009. Vol. 43. Issue 5. P. 1648–1654. https://doi.org/10.1021/es803084a

46. Xu C., Poon K., Choi M.M.F., Wang R. Using live algae at the anode of a microbial fuel cell to generate electricity // Environmental Science and Pollution Research. 2015. Vol. 22. Issue 20. P. 15621– 15635. https://doi.org/10.1007/s11356-015-4744-8

47. Bolognesi S., Cecconet D., Callegari A., Capodaglio A.G. Combined microalgal photobioreactor/ microbial fuel cell system: Performance analysis under different process conditions // Environmental Research. 2021. Vol. 12. Issue 7. 110263. https://doi.org/10.1016/j.envres.2020.110263

48. Dasgupta C.N., Gilbert J.J., Lindblad P., Heidorn T., Borgvang S.A., Skjånes K., et al. Recent trends on the development of photobiological processes and photobioreactors for the improvement of hydrogen production // International Journal of Hydrogen Energy. 2010. Vol. 35. Issue 19. P. 10218–10238. https://doi.org/10.1016/j.ijhydene.2010.06.029

49. Dubini A., Ghirardi M.L. Engineering photosynthetic organisms for the production of biohydrogen // Photosynthesis Research. 2015. Vol. 123. Issue 3. P. 241–253. https://doi.org/10.1007/s11120-014-9991-x

50. Limongi A.R., Viviano E., de Luca M., Radice R.P., Bianco G., Martelli G. Biohydrogen from microalgae: production and applications // Applied Sciences. 2021. Vol. 11. Issue 4. 1616. https://doi.org/10.3390/app11041616

51. Philipps G., Happe T., Hemschemeier A. Nitrogen deprivation results in photosynthetic hydrogen production in Chlamydomonas reinhardtii // Planta. 2012. Vol. 235. Issue 4. P. 729–745. https://doi.org/10.1007/s00425-011-1537-2

52. Batyrova K., Gavrisheva A., Ivanova E., Liu J., Tsygankov A. Sustainable hydrogen photoproduction by phosphorus-deprived marine green microalgae Chlorella sp. // International Journal of Molecular Sciences. 2015. Vol. 16. Issue 2. P. 2705–2716. https://doi.org/10.3390/ijms16022705

53. Volgusheva A.A., Jokel M., Allahverdiyeva Y., Kukarskikh G.P., Lukashev E.P., Lambreva M.D., et al. Comparative analyses of H2 photoproduction in magnesium- and sulfur-starved Chlamydomonas reinhardtii cultures // Physiologia Plantarum. 2017. Vol. 161. Issue 1. P. 124–137. https://doi.org/10.1111/ppl.12576

54. Fakhimi N., Dubini A., Tavakoli O., González-Ballester D. Acetic acid is key for synergetic hydrogen production in Chlamydomonas-bacteria co-cultures // Bioresource Technology. 2019. Vol. 289. 121648. https://doi.org/10.1016/j.biortech.2019.121648

55. Fakhimi N., Gonzalez-Ballester D., Fernández E., Galván A., Dubini A. Algae-Bacteria Consortia as a Strategy to Enhance H2 Production // Cells. 2020. Vol. 9. Issue 6. 1353. https://doi.org/10.3390/cells9061353

56. Markov S.A., Protasov E.S., Bybin V.A., Eivazova E.R., Stom D.I. Using immobilized cyanobacteria and culture medium contaminated with ammonium for H2 production in a hollow-fiber photobioreactor // International Journal of Hydrogen Energy. 2015. Vol. 40. Issue 14. P. 4752–4757. https://doi.org/10.1016/j.ijhydene.2015.02.053

57. Mata T.M., Martins A.A., Caetano N.S. Microalgae for biodiesel production and other applications: a review // Renewable and Sustainable Energy Reviews. 2010. Vol.14. Issue 1. P. 217–232. https://doi.org/10.1016/j.rser.2009.07.020

58. Avagyan A.B., Singh B. Biodiesel from Algae. In: Biodiesel: Feedstocks, Technologies, Economics and Barriers. Springer, 2019. P.77–112.

59. Farooq A., Khan A.U., Yasar A. Transesterification of oil extracted from different species of algae for biodiesel production // African Journal of Environmental Science and Technology. 2013. Vol. 7. Issue 6. P. 358–364. https://doi.org/10.5897/AJEST12.167

60. Mohammadi M., Azizollahi-Aliabadi M. Biodiesel production from microalgae // Journal of Biology and Today's World. 2013. Vol. 2 Issue 2. P. 38–42. https://doi.org/10.15412/J.JBTW.01020204

61. Blinová L., Bartošová A., Gerulová K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production // Research Papers Faculty of Materials Science and Technology Slovak University of Technology. 2015. Vol. 23. Issue 36. P. 87–95. https://doi.org/10.1515/rput-2015-0010

62. Chader S, Hacene H., Agathos S.N. Study of hydrogen production by three strains of Chlorella isolated from the soil in the Algerian Sahara // International Journal of Hydrogen Energy. 2009. Vol. 34. Issue 11. P. 4941-4946. https://doi.org/10.1016/j.ijhydene.2008.10.058

63. Tsygankov A.A., Hall D.O., Liu J., Rao K.K. An automated helical photo bioreactor incorporating cyanobacteria for continuous hydrogen production. In: Zaborsky O.R. (ed.) Biohydrogen. London: Plenum Press, 1998. P. 431–440. https://doi.org/10.1007/978-0-585-35132-2_52

64. Barros A.I., Gonçalves A.L., Simões M., Pires J.C.M. Harvesting techniques applied to microalgae: A review // Renewable and Sustainable Energy Reviews. 2015. Vol. 41. P. 1489–1500. https://doi.org/10.1016/j.rser.2014.09.037

65. Atabani A.E., Silitonga A.S., Badruddin I.A., Mahlia T.M.I., Masjuki H.H., Mekhilef S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics // Renewable and Sustainable Energy Reviews. 2012. Vol. 16. Issue 4. P. 2070–2093. https://doi.org/10.1016/j.rser.2012.01.003


Рецензия

Для цитирования:


Коновалов М.С., Коновалова Е.Ю., Егорова И.Н., Жданова Г.О., Стом Д.И. Фототрофы в альтернативной энергетике. Известия вузов. Прикладная химия и биотехнология. 2021;11(3):358-371. https://doi.org/10.21285/2227-2925-2021-11-3-358-371

For citation:


Konovalo M.S., Konovalova E.Yu., Egorova I.N., Zhdanova G.O., Stom D.I. Phototrophs in alternative energy. Proceedings of Universities. Applied Chemistry and Biotechnology. 2021;11(3):358-371. (In Russ.) https://doi.org/10.21285/2227-2925-2021-11-3-358-371

Просмотров: 362


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2227-2925 (Print)
ISSN 2500-1558 (Online)