
International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

Hadoop Ecosystem: An Introduction

Sneha Mehta
1
, Viral Mehta

2

1International Institute of Information Technology, Department of Information Technology, Pune, India

2MasterCard Technology Pvt. Ltd., Pune, India

Abstract: Hadoop a de facto industry standard has become kernel of the distributed operating system for Big data. Hadoop has gained

its popularity due to its ability of storing, analyzing and accessing large amount of data, quickly and cost effectively through clusters of

commodity hardware. But, No one uses kernel alone. “Hadoop” is taken to be a combination of HDFS and MapReduce. To complement

the Hadoop modules there are also a variety of other projects that provide specialized services and are broadly used to make Hadoop

laymen accessible and more usable, collectively known as Hadoop Ecosystem. All the components of the Hadoop ecosystem, as explicit

entities are evident to address particular needs. Recent Hadoop ecosystem consists of different level layers, each layer performing

different kind of tasks like storing your data, processing stored data, resource allocating and supporting different programming

languages to develop various applications in Hadoop ecosystem.

Keywords: HDFS, HBase, MapReduce, YARN, Hive, Pig, Mahout, Avro, Sqoop, Oozie, Chukwa, Flume, Zookeeper

1. Introduction

Hadoop Ecosystem is a framework of various types of

complex and evolving tools and components which have

proficient advantage in solving problems. Some of the

elements may be very dissimilar from each other in terms of

their architecture; however, what keeps them all together

under a single roof is that they all derive their functionalities

from the scalability and power of Hadoop. Hadoop

Ecosystem is alienated in four different layers: data storage,

data processing, data access, data management. Figure 1

depicts how the diverse elements of hadoop [1] involve at

various layers of processing data.

All the components of the Hadoop ecosystem, as explicit

entities are evident. The holistic view of Hadoop architecture

gives prominence to Hadoop common, Hadoop YARN,

Hadoop Distributed File Systems (HDFS) and Hadoop

MapReduce of the Hadoop Ecosystem. Hadoop common

provides all Java libraries, utilities, OS level abstraction,

necessary Java files and script to run Hadoop, while Hadoop

YARN is a framework for job scheduling and cluster

resource management. HDFS in Hadoop architecture

provides high throughput access to application data and

Hadoop MapReduce provides YARN based parallel

processing of large data sets.

The Hadoop ecosystem [15] [18] [19] includes other tools to

address particular needs. Hive is a SQL dialect and Pig is a

dataflow language for that hide the tedium of creating

MapReduce jobs behind higher-level abstractions more

appropriate for user goals. HBase is a column-oriented

database management system that runs on top of HDFS.

Avro provides data serialization and data exchange services

for Hadoop. Sqoop is a combination of SQL and hadoop.

Zookeeper is used for federating services and Oozie is a

scheduling system. In the absence of an ecosystem [11] [12],

developers have to implement separate sets of technologies

to create Big Data [20] solutions.

Figure 1: Hadoop Ecosystem

2. Data Storage Layer

Data Storage is the layer where the data is stored in a

distributed file system; consist of HDFS and HBase

ColumnDB Storage. HBase is scalable, distributed database

that supports structured data storage for large tables.

2.1 HDFS

HDFS, the storage layer of Hadoop, is a distributed,

scalable, Java-based file system adept at storing large

volumes of data with high-throughput access to application

data on the community machines, providing very high

aggregate bandwidth across the cluster. When data is pushed

to HDFS, it automatically splits up into multiple blocks and

stores/replicates the data thus ensuring high availability and

fault tolerance.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 557

http://www.ibm.com/software/data/infosphere/hadoop/hdfs/
http://www-01.ibm.com/software/data/infosphere/hadoop/what-is-hadoop.html

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

HDFS comprises of 2 important components (Fig. 2) –

NameNode and DataNode. HDFS operates on a Master-

Slave architecture model where the NameNode acts as the

master node for keeping a track of the storage cluster and the

DataNode acts as a slave node summing up to the various

systems within a Hadoop cluster.

Figure 2: HDFS Architecture

HDFS works on the write once-read many times approach

and this makes it capable of handling such huge volumes of

data with least possibilities of errors caused by replication of

data. This replication of data across the cluster provides fault

tolerance and resilience against server failure. Data

Replication, Data Resilience, and Data Integrity are the three

key features of HDFS.

 NameNode: It acts as the master of the system. It

maintains the name system i.e., directories and files and

manages the blocks which are present on the DataNodes.

 DataNodes: They are the slaves which are deployed on

each machine and provide the actual storage and are

responsible for serving read and write requests for the

clients. Additionally, DataNodes communicate with each

other to co-operate and co-ordinate in the file system

operations.

2.2 HBase

HBase is a scalable, distributed database that supports

structured data storage for large tables. Apache HBase

provides Bigtable - like capabilities on top of Hadoop and

HDFS. HBase is a data model that is similar to Google’s big

table designed to provide quick random access to huge

amounts of structured data. HBase facilitates reading/writing

of Big Data randomly and efficiently in real time. It stores

data into tables with rows and columns as in RDBMs.

HBase tables have one key feature called “versioning”

which helps in keeping a track of the changes made in a cell

and allows the retrieval of the previous version of the cell

contents, if required.

HBase [2] also endow with a variety of functional data

processing features, such as consistency, sharding, high

availability, client API and support for IT operations.

3. Data Processing Layer

Scheduling, resource management and cluster management

is premeditated here. YARN job scheduling and cluster

resource management with Map Reduce are located in this

layer.

3.1 MapReduce

MapReduce [8] is a software framework for distributed

processing of large data sets that serves as the compute layer

of Hadoop which process vast amounts of data (multi-

terabyte data-sets) in-parallel on large clusters (thousands of

nodes) of commodity hardware in a reliable, fault-tolerant

manner.

A MapReduce job usually splits the input data-set into

independent chunks which are processed by the map tasks in

a completely parallel manner. The framework sorts the

outputs of the maps, which are then input to the reduce

tasks. The “Reduce” function aggregates the results of the

“Map” function to determine the “answer” to the query. On

average both the input and the output of the job are stored in

a file-system. The framework takes care of scheduling tasks,

monitoring them and re-executing any failed tasks.

The compute nodes and the storage nodes are the same, that

is, the MapReduce framework and the Hadoop Distributed

File System are running on the same set of nodes. This

configuration allows the framework to effectively schedule

task on the nodes where data is already present, resulting in

very high aggregate bandwidth across the cluster.

Figure 3: MapReduce Architecture: Workflow

The MapReduce framework (Fig. 3), [7] consists of a single

master Job Tracker and one slave Task Tracker per cluster-

node. The master is responsible for scheduling the jobs'

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 558

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

component tasks on the slaves, monitoring them and re-

executing the failed tasks. The slaves execute the tasks as

directed by the master.

Although the Hadoop framework is implemented in Java,

MapReduce [25] applications need not be written in Java.

Hadoop Streaming is a utility which allows users to create

and run jobs with any executables (e.g. shell utilities) as the

mapper and/or the reducer. Hadoop Pipes is a SWIG-

compatible C++ API sto implement MapReduce

applications.

3.2 YARN

YARN (Yet Another Resource Negotiator) forms an integral

part of Hadoop 2.0.YARN is great enabler for dynamic

resource utilization on Hadoop framework as users can run

various Hadoop applications without having to bother about

increasing workloads. The inclusion of YARN in hadoop 2

also means scalability provided to the data processing

applications.

YARN [19] [17] is a core hadoop service that supports two

major services:

--Global resource management (ResourceManager)

--Per-application management (ApplicationMaster)

Figure 4: YARN Architecture

Resource Manager: Resource Manager, in YARN

architecture (Figure 4), is supreme authority that controls all

the decisions related to resource management and allocation.

It has a Scheduler Application Programming Interface (API)

that negotiates and schedules resources. However, The

Scheduler API doesn’t monitor or track the status of

applications.

The main purpose of introducing Resource Manager in

YARN is to optimize the utilization of resources all the time

by managing all the restrictions, which involve capacity

guarantees, fairness in allocation of resources etc. Thus,

YARN Resource Manager is responsible for almost all the

tasks. Resource Manager performs all its tasks in integration

with NodeManager and Application Manager.

Application Manager: Every instance of an application

running within YARN is managed by an Application

Manager, which is responsible for the negotiation of

resources with the Resource Manager. Application Manager

also keeps track of availability and consumption of container

resources, and provides fault tolerance for resources.

Accordingly, it is responsible for negotiating for appropriate

resource containers from the Scheduler, monitoring of their

status, and checking the progress.

Node Manager: NodeManager is the per-machine slave,

which is responsible for launching the applications’

containers, monitoring their resource usage, and reporting

the status of the resource usage to the Resource Manager.

NodeManager manages each node within YARN cluster. It

provides per-node services within the cluster. These services

range from managing a container to monitoring resources

and tracking the health of its node.

YARN benefits include efficient resource utilization, highly

scalability, beyond Java, novel programming models and

services and agility.

4. Data Access Layer

The layer, where the request from Management layer is sent

to Data Processing Layer. Some projects have been setup for

this layer, Some of them are: Hive, A data warehouse

infrastructure that provides data summarization and ad hoc

querying; Pig, A high-level data-flow language and

execution framework for parallel computation; Mahout, A

Scalable machine learning and data mining library; Avro,

data serialization system.

4.1 Hive

Hive [5] is a Hadoop-based data warehousing-like

framework originally developed by Facebook, later the

Apache Software Foundation took it up and developed it

further as an open source under the name Apache Hive. It

resides on top of Hadoop to summarize Big Data, and makes

querying and analyzing easy. It allows users to write queries

in a SQL-like language called HiveQL which are then

converted to MapReduce. This allows SQL programmers

with no MapReduce experience to use the warehouse and

makes it easier to integrate with business intelligence and

visualization tools.

Features of Hive:

 It stores schema in a database and processed data into

HDFS.

 It is designed for OLAP.

 It provides SQL type language for querying called

HiveQL or HQL.

 It is familiar, fast, scalable, and extensible.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 559

https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/streaming/package-summary.html
https://hadoop.apache.org/docs/r1.2.1/api/org/apache/hadoop/mapred/pipes/package-summary.html
http://www.swig.org/
https://www.dezyre.com/article/hadoop-2-0-yarn-framework-the-gateway-to-easier-programming-for-hadoop-users/84

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

4.2 Apache Pig

Apache Pig [6] is a platform for analyzing large data sets

that consists of a high-level language for expressing data

analysis programs, coupled with infrastructure for evaluating

these programs. The salient property of Pig programs is that

their structure is amenable to substantial parallelization,

which in turns enables them to handle very large data sets.

At the present time, Pig's infrastructure layer consists of a

compiler that produces sequences of Map-Reduce programs,

for which large-scale parallel implementations already exist

(e.g., the Hadoop subproject). Pig's language layer currently

consists of a textual language called Pig Latin, which has the

following key properties:

 Ease of programming: It is trivial to achieve parallel

execution of simple, "embarrassingly parallel" data

analysis tasks. Complex tasks comprised of multiple

interrelated data transformations are explicitly encoded

as data flow sequences, making them easy to write,

understand, and maintain.

 Optimization Opportunities: The way in which tasks

are encoded permits the system to optimize their

execution automatically, allowing the user to focus on

semantics rather than efficiency.

 Extensibility: Users can create their own functions to do

special-purpose processing.

4.3 Apache Mahout

Apache Mahout [9] [14] is a project of the Apache

Software Foundation to produce free implementations of

distributed or otherwise scalable machine learning

algorithms focused primarily in the areas of collaborative

filtering, clustering and classification and implements them

using the Map Reduce model.

The primitive features of Apache Mahout include:

 The algorithms of Mahout are written on top of Hadoop,

so it works well in distributed environment.

 Mahout uses the Apache Hadoop library to scale

effectively in the cloud.

 Mahout offers the coder a ready-to-use framework for

doing data mining tasks on large volumes of data.

 Mahout lets applications to analyze large sets of data

effectively and in quick time.

 Includes several MapReduce enabled clustering

implementations such as k-means, fuzzy k-means,

Canopy etc.

 Supports Distributed Naive Bayes and Complementary

Naive Bayes classification implementations.

 Comes with distributed fitness function capabilities for

evolutionary programming.

 Includes matrix and vector libraries.

4.4 Avro

Avro [10] is a data serialization system that allows for

encoding the schema of Hadoop files. It is adept at parsing

data and performing removed procedure calls.

It was developed by Doug Cutting, the father of Hadoop.

Since Hadoop writable classes lack language portability,

Avro has become quite helpful, as it deals with data formats

that can be processed by multiple languages. Avro is a

preferred tool to serialize data in Hadoop.

Avro has a schema-based system. A language-independent

schema is associated with its read and writes operations.

Avro serializes the data which has a built-in schema. Avro

serializes the data into a compact binary format, which can

be deserialized by any application.

Avro uses JSON format to declare the data structures.

Presently, it supports languages such as Java, C, C++, C#,

Python, and Ruby. Below are some of the prominent

features of Avro:

 Avro is a language-neutral data serialization system. It

can be processed by many languages (currently C, C++,

C#, Java, Python, and Ruby).

 Avro creates binary structured format that is both

compressible and splittable. Hence it can be efficiently

used as the input

 to Hadoop MapReduce jobs.

 Avro provides rich data structures. For example, you can

create a record that contains an array, an enumerated

type, and a sub record. These data types can be created

in any language can be processed in Hadoop, and the

results can be fed to a third language.

 Avro schemas defined in JSON facilitate

implementation in the languages that already have JSON

libraries.

 Avro creates a self-describing file named Avro Data

File, in which it stores data along with its schema in the

metadata section.

4.5 Apache Sqoop

“SQL to Hadoop and Hadoop to SQL”

Sqoop [11] is a connectivity tool for moving data from non-

Hadoop data stores – such as relational databases and data

warehouses into Hadoop. It allows users to specify the target

location inside of Hadoop and instruct Sqoop to move data

from Oracle, Teradata or other relational databases to the

target.

Sqoop is a tool designed to transfer data between Hadoop

and relational database servers. It is used to import data from

relational databases such as MySQL, Oracle to Hadoop

HDFS, and export from Hadoop file system to relational

databases. It is provided by the Apache Software

Foundation.

--Sqoop Import

The import tool imports individual tables from RDBMS to

HDFS. Each row in a table is treated as a record in HDFS.

All records are stored as text data in text files or as binary

data in Avro and Sequence files.

--Sqoop Export

The export tool exports a set of files from HDFS back to an

RDBMS. The files given as input to Sqoop contain records,

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 560

https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Machine_learning
https://en.wikipedia.org/wiki/Collaborative_filtering
https://en.wikipedia.org/wiki/Collaborative_filtering

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

which are called as rows in table. Those are read and

parsed into a set of records and delimited with user-

specified delimiter.

5. Data Management Layer

A layer that meets, user. User access the system through this

layer which has the components like: Chukwa, A data

collection system for managing large distributed system and

Zookeeper, high-performance coordination service for

distributed applications.

5.1 Oozie

Oozie is a workflow processing system that lets users define

a series of jobs written in multiple languages – such as Map

Reduce, Pig and Hive -- then intelligently link them to one

another. Oozie allows users to specify, for example, that a

particular query is only to be initiated after specified

previous jobs on which it relies for data are completed.

Oozie is a scalable, reliable and extensible system.

Oozie workflow is a collection of actions (i.e. Hadoop

Map/Reduce jobs, Pig jobs) arranged in a control

dependency DAG (Direct Acyclic Graph), specifying a

sequence of actions execution. This graph is specified in

hPDL (a XML Process Definition Language).

Benefits of Oozie are as follows:

 Complex workflow action dependencies – The Oozie

workflow contains actions and dependencies among

these actions. At runtime, Oozie manages dependencies

and executes actions when dependencies identified in

DAG are satisfied.

 Frequency Execution – Oozie workflow specification

supports both data and time triggers.

 Native Hadoop stack integration – Oozie supports all

types of hadoop jobs and is integrated with Hadoop

stack.

 Reduces Time-To-Market (TTM) – The DAG

specification enables users to specify the workflow,

which saves time to build and maintain custom solutions

for dependency and workflow management.

 Mechanism to manage a variety of complex data

Analysis – Oozie is integrated with the yahoo!

Distribution of Hadoop with security and is a primary

mechanism to manage a variety of complex data analysis

workloads across Yahoo!

5.2 Apache Chukwa

Chukwa [24] aims to provide a flexible and powerful

platform for distributed data collection and rapid data

processing. It is an open source data collection system for

monitoring large distributed system and is built on top of the

Hadoop Distributed File System (HDFS) and Map/Reduce

framework that inherits Hadoop’s scalability and robustness.

Chukwa also includes a flexible and powerful toolkit for

displaying, monitoring and analyzing results to make the

best use of the collected data. In order to maintain this

flexibility, Chukwa is structured as a pipeline of collection

and processing stages, with clean and narrow interfaces

between stages.

Chukwa has four primary components:

 Agents that run on each machine and emit data and

Collectors that receive data from the agent and write it to

stable storage.

 MapReduce jobs for parsing and archiving the data.

 HICC, the Hadoop Infrastructure Care Center; a web-

portal style interface for displaying data.

5.3 Apache Flume

Flume [23] is a distributed, reliable, and available service for

efficiently collecting, aggregating, and moving large

amounts of log data. It has a simple and flexible architecture

based on streaming data flows. It is robust and fault tolerant

with tunable reliability mechanisms and many failover and

recovery mechanisms. It uses a simple extensible data model

that allows for online analytic application.

Features of Flume

 Flume ingests log data from multiple web servers into a

centralized store (HDFS, HBase) efficiently.

 Using Flume, we can get the data from multiple servers

immediately into Hadoop.

 Along with the log files, Flume is also used to import

huge volumes of event data produced by social

networking sites.

 Flume supports a large set of sources and destinations

types and can be scaled horizontally.

 Flume supports multi-hop flows, fan-in and fan out

flows, contextual routing, etc.

5.4 Apache Zookeeper

Apache Zookeeper [22] is a coordination service for

distributed application that enables synchronization across a

cluster. Zookeeper in Hadoop can be viewed as centralized

repository where distributed applications can put data and

get data out of it. It is used to keep the distributed system

functioning together as a single unit, using its

synchronization, serialization and coordination goals. For

simplicity's sake Zookeeper can be thought of as a file

system where we have znodes that store data instead of files

or directories storing data. Zookeeper is a Hadoop Admin

tool used for managing the jobs in the cluster.

Features of Zookeeper includes managing configuration

across nodes, implementing reliable messaging,

implementing redundant services and to synchronize process

execution.

Benefits of Zookeeper

 Simple distributed coordination process.

 Synchronization, Reliability and Ordered Messages −
Mutual exclusion and co-operation between server

processes. This process helps in Apache HBase for

configuration management.

 Serialization − Encode the data according to specific

rules. Ensure your application runs consistently.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 561

https://www.dezyre.com/Hadoop-Administration/28?from=zookeeper1tutorial

International Journal of Science and Research (IJSR)
ISSN (Online): 2319-7064

Index Copernicus Value (2013): 6.14 | Impact Factor (2015): 6.391

Volume 5 Issue 6, June 2016

www.ijsr.net
Licensed Under Creative Commons Attribution CC BY

 Atomicity − Data transfer either succeed or fail

completely, but no transaction is partial.

6. Conclusion

With a rapid pace in evolution of Big Data, its processing

frameworks also seem to be evolving in a full swing mode.

The huge data giants on the web has adopted Apache

Hadoop had to depend on the partnership of Hadoop HDFS

with the resource management environment and MapReduce

programming. Hadoop ecosystem has introduced a new

processing model that lends itself to common big data use

cases including interactive SQL over big data, machine

learning at scale, and the ability to analyze big data scale

graphs. Apache Hadoop is not actually single product but

instead a collection of several components. When all these

components are merged, it makes the Hadoop very user

friendly. The Hadoop ecosystem and its commercial

distributions continue to evolve, with new or improved

technologies and tools emerging all the time.

7. Acknowledgment

We express our gratitude to our parents, family members,

Prof. (Dr). Vijay Patil (principal) and Prof. Vilas Mankar

(HOD IT Dept.) I
2
IT, Pune, for his constant encouragement

and motivation throughout this work.

References

[1] Hadoop - Apache Software Foundation project home

page. http://hadoop.apache.org.

[2] HBase - Apache Software Foundation project home

page http://hbase.apache.org.

[3] Kiran kumara Reddi & Dnvsl Indira “Different

Technique to Transfer Big Data: survey” IEEE

Transactions on 52(8) (Aug.2013) 2348 {2355}.

[4] Konstantin Shvachko, et al., “The Hadoop Distributed

File System, ”Mass Storage Systems and Technologies

(MSST), IEEE 26th Symposium on IEEE,

2010,http://storageconference.org/2010/Papers/MSST/S

hvachko.pdf.

[5] Hive - Apache Software Foundation project home page

http://hive.apache.org.

[6] Pig - Apache Software Foundation project home page.

http://pig.apache.org.

[7] Jens Dittrich, Jorge-Arnulfo Quiane-Ruiz “Efficient Big

Data Processing in Hadoop MapReduce”, 2014.

[8] Jeffrey Dean, Sanjay Ghemawat, “MapReduce:

simplified data processing on large clusters”,

Communications of the ACM, v.51 n.1, January 2008

[doi>10.1145/1327452.1327492].

[9] Mahout - Apache Software Foundation project home

page http://mahout.apache.org

[10] Avro - Apache Software Foundation project home page

http://avro.apache.org

[11] J. Yates Monteith, John D. McGregor, and John E.

Ingram, “Hadoop and its evolving ecosystem”,

IWSECO@ ICSOB, Citeseer, 2013.

[12] Monteith, J.Y., McGregor, J.D.: “A three viewpoint

model for software ecosystems”, In: Proceedings of

Software Engineering and Applications’, 2012.

[13] Ivanilton Polato, Reginaldo Ré, Alfredo Goldman,

Fabio Kon, “ A comprehensive view of hadoop research

– A systematic literature review”, Journal of network

and computer applications, volume 46, november 2014.

[14] Arantxa Duque Barrachina, Aisling O’Driscoll, “A big

data methodology for categorising technical support

requests using Hadoop and Mahout”, Journal of Big

Data, February 2014 [DOI: 10.1186/2196-1115-1-1].

[15] Mr.NileshVishwasrao Patil, Mr.Tanvir Patel, “Apache

Hadoop: Resourceful Big Data Management”, IJRSET,

Volume 3, Special Issue 4, April 2014.

[16] Shilpa Manjit Kaur,” BIG Data and Methodology- A

review” ,International Journal of Advanced Research in

Computer Science and Software Engineering, Volume

3, Issue 10, October 2013.

[17] Varsha B.Bobade, “Survey Paper on Big Data and

Hadoop”, IRJET, Volume: 03 Issue: 01, Jan-2016.

[18] A Katal, M. Wazid, R.H. Goudar, "Big Data: Issues,

Challenges, tools and Good practices," Aug. 2013.

[19] Deepika P, Anantha Raman G R,” A Study of Hadoop-

Related Tools and Techniques”, IJARCSSE, Volume 5,

Issue 9, September 2015.

[20] Anand Loganathan, Ankur Sinha, Muthuramakrishnan

V., and Srikanth Natarajan, “A Systematic Approach to

Big Data Exploration of the Hadoop Framework”,

International Journal of Information & Computation

Technology, Volume 4, 2014.

[21] Andrew Pavlo, “A comparison of approaches to large

scale data Analysis”, SIGMOD, 2009.

[22] Zookeeper - Apache Software Foundation project home

page https://zookeeper.apache.org.

[23] Flume - Apache Software Foundation project home

page https://flume.apache.org.

[24] Chukwa - Apache Software Foundation project home

page https://chukwa.apache.org.

[25] J. Dean and S. Ghemawat, “MapReduce: A Flexible

Data Processing Tool”. CACM, 53(1):72–77, 2010.

Paper ID: NOV164121 http://dx.doi.org/10.21275/v5i6.NOV164121 562

http://hadoop.apache.org/
http://hbase.apache.org/
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://storageconference.org/2010/Papers/MSST/Shvachko.pdf
http://hive.apache.org/
http://pig.apache.org/
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://dl.acm.org/citation.cfm?id=1327492&CFID=784421157&CFTOKEN=46267265
http://doi.acm.org/10.1145/1327452.1327492
http://mahout.apache.org/
http://avro.apache.org/
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/article/pii/S1084804514001635
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045
http://www.sciencedirect.com/science/journal/10848045/46/supp/C
http://link.springer.com/article/10.1186/2196-1115-1-1#author-details-1
http://link.springer.com/article/10.1186/2196-1115-1-1#author-details-2
http://link.springer.com/journal/40537
http://link.springer.com/journal/40537
http://www.rroij.com/open-access/apache-hadoop-resourceful-big-datamanagement.php?aid=49715
http://www.rroij.com/open-access/apache-hadoop-resourceful-big-datamanagement.php?aid=49715
https://zookeeper.apache.org/
https://flume.apache.org/
https://chukwa.apache.org/

