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1. Introduction

1.1 Background

The lung parenchyma is a highly heterogeneous material composed of alveolar air
sacs ranging from 100–330 µm in diameter1 and connective tissues consisting of
a complex network of collagen and elastin fibers.2 At high rates of strain, such as
those induced by a shock wave, the fibers in lung parenchyma are prone to rupture3

and the remaining stress response percolates through the collagen fibril networks
as the collagen fibers start to extend to their uncoiled lengths. This increases the
stress response of the entire lung parenchyma.4 The complex roles that collagen
and elastin fibers play in the dynamics of the lung parenchyma are discussed by
Freed et al.3 Dynamic influences of the bronchiole tubes, which are stiffer than
the parenchyma, on the response of impacted lung are observed in experiments
by Brannen et al.5 The present focus is on the role that 1-D poro-elasto-dynamics
plays at the mesoscopic level. Outcomes of the current research are intended to
inform macroscopic, single-phase models of the lung for 3-D modeling of much
larger domains.6–11

Mixture theory was first established at finite strain by Truesdell and Toupin.12 Sub-
sequent works by Bowen13–15 and others16–18 applied this rich continuum theory
to porous media. Shock waves in mixtures were studied using analytical methods
by Bowen, Chen, and Wright,19–22 and more recently by Clayton.23 The Theory
of Porous Media (TPM) is an approximation to a more computationally expensive
Fluid-Structure Interaction (FSI) model at the pore length scale. In TPM, interac-
tions are smeared across a continuum material point, simplifying not just the gov-
erning mathematical equations but the discretization of the geometry itself.

Lung parenchyma is a complex heterogeneous material.24 Resolution would require
representation by a detailed 3-D finite-element (FE) mesh to model the explicit FSI.
Resolution could be possible via Computational Fluid Dynamics-Computational
Solid Mechanics with arbitrary Lagrangian-Eulerian modeling. However, such frame-
works would involve costly simulations and mesh generation and bias regarding the
structure of the FE mesh.

Shock waves induce large pressure gradients that are thought to directly cause mi-
crostructural tearing of the lung parenchyma leading to hemorrhaging.24–26 Injury
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propagations through the lung parenchyma at the ultrastructural (tissue fibers) and
microstructural (air sac) levels are not well understood and constitute active re-
search.3,8 The fine-scale approach initiated by Freed et al.3 to model the microstruc-
ture necessitates a multiscale model of the whole lung tissue, which includes the
highly heterogeneous structure of the lung parenchyma. Work is needed to first
accurately simulate the deformation of lung parenchyma using a multiphysics ap-
proach, before addressing damage and injury pathology at the microscale (i.e., alve-
olar regime) and linking that to the macroscale (i.e., parenchymal regime). In the
current program,27,28 we incorporate TPM to take into account the different response
times of the two constituents in the lung parenchyma subjected to shock loading:
solid skeleton (s) (lung parenchyma) and the pore fluid (f) (air) that occupies the
pore space.

In prior work,27,29 we assumed a nearly inviscid stress response of the pore fluid;
viscous effects were accounted for via the “hydraulic conductivity” parameter that
governs the magnitude of the seepage flow (the difference in velocity between the
pore fluid and the solid skeleton). However, total pore fluid Cauchy stress, assuming
a locally homogeneous temperature model between the two constituents (i.e., the
temperature of the pore fluid is assumed to be equal to that of the solid skeleton
at a finite point, even if the temperature of the fluid-solid mixture is allowed to
fluctuate), is written as

σf ..= σf
E − nfpf1 , (1)

where nfpf = pf is the partial pressure contribution, and σf
E is the viscous contri-

bution (hereafter referred to as the pore fluid “extra” stress), which is ignored in the
nearly inviscid assumption. Such an assumption may be invalid at high-strain-rates
where momentum diffusivity of the pore fluid (air) in lung parenchyma may alter
the dynamic response of lung tissue subjected to shock loading. The objective of the
present work is to verify whether or not the nearly inviscid pore fluid assumption is
valid for our 1-D FE model in various strain-rate regimes. This objective is achieved
by comparing numerical simulations between our numerical FE model where the
pore fluid extra stress is assumed to be equal to zero to simulations with a modified
FE model where it is not.
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1.2 Organization

The remainder of this report is organized in the following manner. Section 2 sum-
marizes a brief history of the validity of including the pore fluid extra stress in
the framework of TPM. Discussion continues with the associated difficulties with
modeling this term in a FE framework, and concludes with the modeling approach
employed in the current work. Section 3 presents the modified variational forms
of the balance equations from those reported in Irwin et al.,29,30 wherein we apply
the standard Bubnov-Galerkin spatial-discretization procedure for the FE model to
solve for the variables of interest: lung parenchyma displacement (and velocity and
acceleration), pore fluid pressure and pore fluid displacement (and velocity and ac-
celeration). A review of the numerical time integration schemes from Irwin et al.29,30

then follows, with modifications for the pore fluid extra stress presented as needed.
Section 4 presents a comparison of the Darcy (i.e., nearly inviscid pore fluid flow)
and Darcy-Brinkman (i.e., viscous pore fluid flow) numerical simulation results.

2. Theory

2.1 The Fluid Extra Stress Tensor: Background and Challenges

An extensive background of TPM is provided by Bowen,13–15 Coussy,17 Ehlers16

and de Boer,18 and originally in Truesdell and Toupin.12 For truncated derivations
disclosed in the aforementioned works, refer to Irwin et al.27 We continue to follow
the notation of Holzapfel31 (for solid mechanics) and de Boer.18

We assume that the porous solid continuum body constitutes a control space B
(current configuration of the solid skeleton) and that only liquids or gases in the
pores can leave this control space. Rather than modeling the exact microstructure
of the porous solid, we assume that the pores are modeled in a statistical sense
such that their specific locations are arbitrary. This concept of volume fraction is
illustrated in Fig. 1a. The volume fractions nα are defined such that they relate the
“real” differential volumes dvα of each constituent, or phase, α to the smeared (i.e.,
homogenized) total differential volume dv:

nα(x, t) =
dvα(x, t)

dv(x, t)
, (2)

where x is the position vector in the current configuration B (see Fig. 1(b)), and t
is current time. Thus, for any mixture, the constituents α occupying some control
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volume dv in the control space B must satisfy∑
α

nα(x, t) = 1 ,
∑
α

dvα(x, t) = dv(x, t) . (3)

(a)

Soft Biological Tissues Treated as Biphasic Porous Media 5Soft Biological Tissues Treated as Biphasic Porous Media 3

Bs
0
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0

Bs
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Xf
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XXX f

YYY f xxx

vvvs
vvvf

χs(Xs)

χf(Xf)
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Figure 2: Kinematics of a biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue. The continuum assumption of mixture theory
is evident in the assumption that solid (s) and fluid (f) constituents coexist at the
current position xxx, although their velocities vvvs and vvvf may be different; i.e., vvvf �= vvvs,
in general.

solid

fluid

mixture

dVf

dVs

dvFFF f

FFFs

Figure 3: Volumetric deformation of solid and fluid constituents in a biphasic mix-
ture (solid skeleton composed of alveolar tissue of the lung parenchyma).

Figure 2: Kinematics of a biphasic (solid-fluid) mixture theory, showing solid
skeleton composed of alveolar tissue. The continuum assumption of mixture theory
is evident in the assumption that solid (s) and fluid (f) constituents coexist at the
current position xxx, although their velocities vvvs and vvvf may be different; i.e., vvvf 6= vvvs,
in general.

volumes dVf and dVs in their respective reference configurations Bf
0 and Bs

0, both
map to the same differential volume dv in the current configuration B, through
their deformation gradients FFF f and FFFs.

The Jacobian of deformation for the two constituents is written as,

Js = detFFFs > 0 ; Jf = detFFF f > 0 (2)

dv = JsdVs = JfdVf (3)

dvα = nαdv = nαJαdVα (4)

dVf ⊂Bf
0 , dVs ⊂Bs

0 (5)

where we will typically drop the s superscripts and subscripts because the theory
of porous media assumes we follow the motion of the solid skeleton.

(b)

Fig. 1 Concept of volume fraction for biphasic (solid(s)-fluid(f)) mixture theory (a), showing
solid skeleton composed of alveolar tissue. Note that in the theory of porous media, it is as-
sumed that the control space is that of the solid phase B ..= Bs, also known as “solid skeleton.”
Kinematics (b) of a biphasic (solid-fluid) mixture theory.

We furthermore assume that the constituents are immiscible (following the principle
of phase separation16) such that we can relate the partial mass density ρα, that is, the
mass density of constituent α occupying the total differential volume dv containing
multiple constituents, to the real mass density ραR, the mass density of constituent
α occupying the differential volume dvα containing only constituent α, as follows:

mα(x, t) =

∫
Bα

ραR(x, t)dvα(x, t)

=

∫
B
ραR(x, t)nα(x, t)dv(x, t) =

∫
B
ρα(x, t)dv(x, t) ,

(4)

where mα is the mass of constituent α in the control space B. Hereafter we assume
that variables written in the current configuration B are dependent on position x at
time t so as to simplify the notation. Similarly, variables written in the reference
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configuration B0 are dependent on position X at time t.

For a materially incompressible solid (s) phase and compressible fluid (f) phase,
the balance of mass of the mixture expressed in the reference configuration B0 is
written as27

Jsn
f

Kη
f

Ds
tpf +Ds

tJs

+
Js
Kη

f

GRADs(pf) · F−1
s · (nf ṽf) + Js GRADs(n

f ṽf)
.. F−T

s =
Jsρ̂

f

ρfR ,

(5)

where Js denotes the Jacobian of deformation F s of the solid (s) phase, Kη
f is the

isentropic bulk modulus of the fluid (f) phase, pf is the pore fluid pressure, ṽf is the
difference in velocities of the fluid (f) and solid (s) phase, that is, ṽf

..= vf − vs,
and ρ̂f is the mass supply to the fluid phase from the other phase(s), which we
typically assume to be negligible. In present work, the (nf ṽf) term is modeled using
an appropriate constitutive law, for example, Darcy’s law:

nf ṽf = −k̂
(
gradpf + ρfR(af − g)

)
. (6)

However, when the pore fluid extra stress σf
E is to be accounted for, we use the

extension of Eq. 6, the Darcy-Brinkman equation:

nf ṽf = −k̂
(
gradpf + ρfR(af − g)− 1

nf
divσf

E

)
. (7)

Furthermore, it can be shown that the balance of momenta of the mixture and the
fluid phase under the assumptions laid out in Irwin et al.27 (namely: locally homoge-
neous temperatures, negligible mass supplies of solid and fluid phases, materially
incompressible solid phase and compressible fluid phase and gravity as the only
active body force), may be written as follows:

DIVs P s + ρ0(s)g = ρs0(s)as + ρf0(s)af , P s = P s
E(s) + P f

E(s) − JspfF−T
s ,

ρf0(s)af + Jsn
f GRADs pf · F−1

s −DIVs P
f
E(s) + Js

(nf)2

k̂
(vf − vs)− ρf0(s)g = 0 .

(8)

P s denotes the mixture first Piola-Kirchhoff stress, P α
E denotes the extra stress
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of phase α (i.e., material stress described by an appropriate constitutive model),
aα is the acceleration of phase α and k̂ is the deformation dependent hydraulic
conductivity:

k̂ ..=
κ
ηf

F
(
nf
)

F
(
nf
0

) , (9)

where ηf is the pore fluid shear viscosity (assumed constant), κ is the intrinsic
permeability of the solid skeleton (assumed constant), andF is a nonlinear function
of porosity nf accounting for change in hydraulic permeability due to change in
porosity (e.g., the Kozeny-Carman relation):

F
(
nf
)

..=

(
nf
)3

1− (nf)2
. (10)

In prior work,27–30 it was assumed that the pore fluid first Piola-Kirchhoff extra
stress

P f
E(s)

..= Jsσ
f
EF

−T
s ≈ 0 . (11)

In the present work, this assumption is not made, and a Newtonian fluid law is
assumed,31 such that

σf
E

..= nfκf tr(df)1+ 2ηfdf , (12)

where κf denotes the constant bulk viscosity of the compressible pore fluid and

df
..=

1

2
(gradvf + gradTvf) . (13)

Thus, taking the divergence of Eq. 12 as required by Eq. 83 and insertion of Eq. 7
into Eq. 5, introduces a porosity gradient as well as a Laplacian of the pore fluid
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velocity (shown in red):

∂σf
ij(E)

∂XJ

F−1
Jj(s) =

(
κf
∂vk(f)
∂XK

F−1
Kk(s)F

−1
Ji(s) + ηf

[∂vi(f)
∂XK

F−1
Kj(s) +

∂vj(f)
∂XK

F−1
Ki(s)

]
F−1
Jj(s)

) ∂nf

∂XJ

+ nfκf
∂2vk(f)
∂XJ∂XK

F−1
Kk(s)F

−1
Ji(s)

+ nfηf

( ∂2vi(f)
∂XJ∂XK

F−1
Kj(s)F

−1
Jj(s) +

∂2vj(f)
∂XJ∂XK

F−1
Ki(s)F

−1
Jj(s)

)
,

(14)

where the porosity gradient, under the assumption of a mechanically incompressible
solid (s) constituent, can be expressed as

∂nf

∂xj
=

∂nf

∂XJ

F−1
Jj(s) = −

∂ns

∂XJ

F−1
Jj(s) =

∂

∂XJ

(ns
0

Js

)
F−1
Jj(s) =

ns
0

J2
s

∂Js
∂XJ

F−1
Jj(s)

=
ns
0

J2
s

∂ det(1 + ∂ui(s)/∂XI)

∂XJ

F−1
Jj(s) =

ns
0

Js

∂2ui(s)
∂XI∂XJ

F−1
Ii(s)F

−1
Jj(s) . (15)

The terms highlighted in red in Eqs. 14 and 15 possess second derivatives and thus
convergence is not guaranteed for standard FE implementations if not weakened
appropriately. In other words, they would require finite elements (for the respective
fields) that possess C1 continuity rather than the standard C0 continuity (e.g., a
typical Lagrange element). We will proceed to show that such a weakening of these
terms will be very difficult.

Dropping now the (·)s and (·)s superscripts and subscripts for notational conve-
nience, the strong form of the balance of mass for the biphasic mixture under
the assumption of locally homogeneous temperatures and barotropic constituents
is written as

Jnf

Kη
f

Dtpf +DtJ +
J

Kη
f

GRAD(pf) · F−1 · (nf ṽf) + J GRAD(nf ṽf)
.. F−T = 0 ,

pf(X, t) = gp(X, t) ∀X ∈ Γp
0 ,

− [JF−1 · (nf ṽf)] ·N = Qf(X, t) ∀X ∈ ΓQf
0 ,

(16)

where gp is the prescribed pore fluid pressure on Γp
0 (typically set for the “drained”

boundary condition), and Qf is the prescribed fluid flux (positive inward) on ΓQf
0 ,

where we have assumed that the mass supply of the pore fluid (f) constituent is

7



negligible.

LetH(u,uf , pf , w
pf ) be the variational form of Eq. 16, and let wpf be a set of scalar

valued weighting (test) functions associated with pore fluid pressure pf . We may
then rewrite Eq. 16 in indicial notation as

H(ui, ui(f), pf , wpf ) =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV

+

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV

+

∫
B0

wpfJ
∂
(
nf ṽi(f)

)
∂XI

F−1
Ii dV = 0 . (17)

Using chain rule, the last term in Eq. 17 can be rewritten as follows:∫
B0

wpfJ
∂
(
nf ṽi(f)

)
∂XI

F−1
Ii dV =

∫
B0

∂
(
wpfJ

(
nf ṽi(f)

)
F−1
Ii

)
∂XI

dV

−
∫
B0

∂wpf

∂XI

J
(
nf ṽi(f)

)
F−1
Ii dV

−
∫
B0

wpf
(
nf ṽi(f)

) ∂(JF−1
Ii )

∂XI

dV , (18)

wherein the last term goes to zero because of the Piola identity (as shown in Holzapfel31

p. 146). Substitution of Eq. 18 into Eq. 17 gives

H(ui, ui(f), pf , wpf ) =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV

+

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV

+

∫
B0

∂
(
wpfJ

(
nf ṽi(f)

)
F−1
Ii

)
∂XI

dV

−
∫
B0

∂wpf

∂XI

J
(
nf ṽi(f)

)
F−1
Ii dV = 0 . (19)

Applying the divergence theorem to the third term in Eq. 19, using the boundary

8



conditions in Eq. 162 (where wpf → 0 on Γp
0) and Eq. 163, the variational form for

the balance of mass of the biphasic mixture becomes

H(ui, ui(f), pf , wpf ) =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV

+

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV

−
∫
B0

∂wpf

∂XI

J
(
nf ṽi(f)

)
F−1
Ii dV −

∫
Γ
Qf
0

wpfQf dA = 0 . (20)

Given the Darcy-Brinkman equation (Eq. 7), for notational simplicity, we will de-
note the separate terms as

H = HINT
1 +HINT

2 +HINT
3 +HINT

4 +HINT
5 −HEXT = 0 , (21)

where

HINT
1 =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV ,

HINT
2 =

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV ,

HINT
3 =

∫
B0

∂wpf

∂XI

JF−1
Ii k̂

∂pf
∂XK

F−1
Ki dV ,

HINT
4 =

∫
B0

∂wpf

∂XI

JF−1
Ii k̂ρ

fR (ai(f) − gi) dV ,

HINT
5 = −

∫
B0

∂wpf

∂XI

k̂

nf
JF−1

Ii

∂σf
ij(E)

∂XJ

F−1
Jj dV ,

HEXT =

∫
Γ
Qf
0

wpfQf dA .

(22)
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ConsideringHINT
2 , we have, upon expanding the Darcy-Brinkman term:

HINT
2 = −

∫
B0

wpf
Jk̂

Kη
f

∂pf
∂XI

F−1
Ii

∂pf
∂XK

F−1
Kk dV −

∫
B0

wpf
Jk̂

Kη
f

∂pf
∂XI

F−1
Ii ρ

fR(ai(f) − gi) dV

+

∫
B0

wpf
Jk̂

Kη
f

∂pf
∂XI

F−1
Ii

(
1

nf

(
κf
∂vk(f)
∂XK

F−1
KkF

−1
Ji + ηf

[∂vi(f)
∂XK

F−1
Kj +

∂vj(f)
∂XK

F−1
Ki

]
F−1
Jj

) ∂nf

∂XJ

+ κf
∂2vk(f)
∂XJ∂XK

F−1
KkF

−1
Ji + ηf

( ∂2vi(f)
∂XJ∂XK

F−1
KjF

−1
Jj +

∂2vj(f)
∂XJ∂XK

F−1
Ki F

−1
Jj

))
dV .

(23)

The first two terms can be integrated normally; however, the last cannot be inte-
grated by parts to reduce continuity requirements of the solid skeleton (s) displace-
ment and pore fluid (f) displacement given that a gradient is also applied to pore
fluid pressure pf (i.e., weakening continuity requirements on the displacements in
turn strengthens the continuity requirement on pore fluid pressure). This problem
also arises inHINT

5 , although there the gradient is applied to the weighting function
wpf :

HINT
5 = −

∫
B0

∂wpf

∂XI

JF−1
Ii

(
1

nf

(
κf
∂vk(f)
∂XK

F−1
KkF

−1
Ji + ηf

[∂vi(f)
∂XK

F−1
Kj +

∂vj(f)
∂XK

F−1
Ki

]
F−1
Jj

) ∂nf

∂XJ

+ κf
∂2vk(f)
∂XJ∂XK

F−1
KkF

−1
Ji + ηf

( ∂2vi(f)
∂XJ∂XK

F−1
KjF

−1
Jj +

∂2vj(f)
∂XJ∂XK

F−1
Ki F

−1
Jj

))
dV .

(24)

Furthermore, the “mixed approach” taken by Vuong et al.32,33 to treat porosity nf

as an independent field variable in the FE implementation (with the assumption of
incompressible pore fluid (f) constituent, i.e.,∇·vf = 0), thereby eliminating strict
dependence on solid skeleton (s) displacement, does not in and of itself relieve the
issue of higher-order continuity requirements since second derivatives appear for
pore fluid velocity when the pore fluid is assumed to be compressible (∇·vf ̸= 0), in
both the balance of mass of the mixture and the balance of linear momentum of the
pore fluid (assuming the divergence on the pore fluid extra stress is not weakened
in the latter; details to follow in Section 3).

One potential remedy is to ignore the pore fluid extra stress tensor σf
E altogether.
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It was shown by Markert34 and Ehlers35 (originally in Ehlers et al.36) that the fluid
friction (viscous) forces are negligible when compared to the drag forces on the
macroscale. The derivation from Ehlers35 proceeds as follows.

Begin by assuming an incompressible pore fluid constituent and a rigid, non-deforming
solid constituent:

Df
tρ

fR → 0 , u→ 0 . (25)

Then, the balance of mass of phase α reduces to (still under the assumption of
negligible mass supply to phase α)

Dα
t n

α + nα div vα = 0 . (26)

Given that∑
α

Dα
t n

α = grad(nf) · ṽf = div(nf ṽf)− nf div vf + (1− ns) div vs , (27)

the balance of mass of the mixture for incompressible constituents reduces to

div(nf ṽf) = 0 . (28)

For non-deforming solid, ns is constant (grad(nf)→ 0), and thus

div vf = 0 . (29)

Pore fluid momentum balance is written as

ρfaf + div(nfpf)− divσf
E − hf − ρfg = 0 . (30)

In a prior report,27 it was shown that the drag force

hf = hf
E + pfgradn

f , (31)

with

hf
E = −Swṽf = −

(nf)2

k̂
ṽf , Sw

..=
(nf)2

k̂
1 . (32)
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With this, and by inserting the Newtonian fluid law given by Eq. 12 (using the
identity tr(df) = div vf , which is zero by Eq. 29) into Eq. 30 gives the pore fluid
momentum balance for incompressible constituents and non-deforming solid skele-
ton:

ρfaf + nfgradpf − nfηf div gradvf +
(nf)2

k̂
vf − ρfg = 0 . (33)

Introducing the dimensionless quantities

∗
x ..=

x

L
,

∗
vf

..=
vf

V
, (34)

with L as a characteristic length scale and V as a characteristic velocity allows us
to write the dimensionless gradient and divergence operators as

∗
grad(·) = Lgrad(·) ,

∗
div(·) = L div(·) . (35)

Then we may recast the viscous and drag forces in Eq. 33 as, respectively,

divσf
E = nfηf

V

L2

∗
div(

∗
grad

∗
vf) ,

hf
E = −(nf)2

k̂
V

∗
vf .

(36)

Taking the ratio of the viscous force to the drag force yields

Viscous force
Drag force

∝ ηf k̂

nfL2
=

κ
nfL2

. (37)

For porous media applications, κ is typically several orders of magnitude smaller
than the length scale of interest L (e.g., in the current work κ ∼ O(10−10 m2) for
lung parenchyma37 and L ∼ O(10−2 m)). Thus, it may be appropriate to ignore
the pore fluid extra stress (the viscous force) when solving the balance equations
for the macroscale regime, but not necessarily for the microscale regime where the
pore size

√
κ is on the order of L.

However, as Vuong points out (see Section 3.3.6 of Vuong33 and the figures therein),
a nearly inviscid fluid creates infinitesimally large velocity gradients at the porous
channel walls to counteract an infinitesimally small boundary layer, which could
lead to numerical instability for 3-D simulations, particularly for highly permeable
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materials, that is, those with larger pore sizes (larger fluid domains). Whether or not
it is necessary to account for the boundary layer in a numerical simulation where
flow is modeled on the macroscale regime is an area of debate.38 This boundary
layer has thickness of order (η̃fκ/ηf)1/2, where η̃f is an effective viscosity of the
pore fluid. For lung parenchyma,37 κ ∼ 10−10 m2, thus these viscous effects are
probably negligible at the mesoscale level of interest for lung parenchyma, which
is O(10−2) m.

Generally speaking, it is believed that both the Darcy and Darcy-Brinkman equa-
tions only hold in the range of Reynolds numbers33,38–40 1 < Re < 10—for ref-
erence, in prior work,28,29 the maximum Reynolds number resulting from numeri-
cal simulations was roughly Re = 10.7. Nevertheless, the Reynolds number-based
limits are based upon experimental data wherein it is difficult to measure the inertia
forces,41 and, with the exception of Vuong et al.,32,33 many authors do not include
the inertia term in Darcy’s law, and use instead the classical form that relates seep-
age velocity to pore fluid pressure gradient and (if applicable) body forces.

2.2 Satisfying C1 Continuity

If the pore fluid extra stress is to be included, elements with continuous first deriva-
tives along their boundaries must be used to guarantee convergence. The approach
taken by Vuong et al.32,33 to guaranteeC1 continuity was to use Non-Uniform Ratio-
nal Basis Splines (NURBS) (refer to work by Hughes et al.42 for a FE application).
However, for the simple 1-D geometry considered herein, NURBS would introduce
an additional layer of complexity given that the basis functions are not interpolatory.

A simpler solution would be to invoke the Hermite cubic polynomial element (which
is C1 continous), typically employed in FE analysis of beams. Herein, the analogy
to a rotational degree of freedom (DOF) in beam analysis is the gradient DOF.
However, unlike beam analysis, the gradient DOFs of the field variables of interest
(u and uf) are allowed to “float,” that is, no Dirichlet nor Neumann boundary con-
ditions are prescribed on these DOFs; in essence, they go unused outside of their
interpolatory functionality.

The element (refer to Fig. 2) will not be isoparametric, that is,

xh
e

(ξ) = N e(ξ) · xe , uh
e

(ξ) = N e,u
H (ξ) · de , (38)
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Fig. 2 The Q3H-Q3H-P1 line element used for C1 continuity of the field variables u and
uf . Shown in red are the gradient DOFs that are allowed to “float,” that is, no boundary
conditions are prescribed for these DOFs.

with

N e
1

..=
1

2
(1− ξ) ,

N e
2

..=
1

2
(1 + ξ) ,

(39)
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and

de =


de1

de2

de3

de4

 =


uh

e
(ξ = −1)
uh

e

,x (−1)
uh

e
(1)

uh
e

,x (1)

 , (40)

such that

uh
e

(ξ) =
[
N e,u

1(H) jeN e,u
2(H) N e,u

3(H) jeN e,u
4(H)

]

de1

de2

de3

de4

 = N e,u
H (ξ) · de , (41)

where N e,u
H (ξ) are the element Hermite cubic polynomials:

N e,u
1(H)

..=
1

4
(1− ξ)2(2 + ξ) ,

N e,u
2(H)

..=
1

4
(1− ξ)2(1 + ξ) ,

N e,u
3(H)

..=
1

4
(1 + ξ)2(2− ξ) ,

N e,u
4(H)

..=
1

4
(1 + ξ)2(−1 + ξ) ,

(42)

and

je ..=
∂xh

e

∂ξ
=
he

2
,

∂uh
e

∂ξ
= je

∂uh
e

∂X
,

wuhe

(ξ) = N e,u
H · cu,e = (cu,e)T · (N e,u

H )T .

(43)

Herein, the “strain-displacement” matrix He,u is defined as

∂2uh
e
(ξ)

∂X2
=
d2N e,u

H (ξ)

∂X2
· de =

1

(je)2
d2N e,u

H (ξ)

∂ξ2
· de = He,u(ξ) · de , (44)

and

∂uh
e
(ξ)

∂X
=
dBe,u

H (ξ)

∂X
· de =

1

je
dBe,u

H (ξ)

∂ξ2
· de = Be,u

H (ξ) · de . (45)
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For notational purposes, the (·)H subscript will be dropped from N e,u
H and Be,u

H .
In the finite element equations where He,u is used, the reader should assume that
the shape functions for the respective field, and its first derivative, are the Hermite
shape functions shown here (i.e., only one element type will be used to represent a
field variable, not a mix of element types). Of course the same interpolation applies
to the shape functions N e,uf

H , Be,uf

H , and He,uf when the pore fluid displacement uf
requires a C1 continuous element.

3. Numerical Implementation

3.1 1-D Kinematics

One-dimensional uniaxial solid skeleton strain and unidirectional pore fluid flow
simplifications are implemented for (s) and (f) phases, respectively. If we assume
that the soft porous material only undergoes compression or expansion in one di-
mension, specifically the vertical directionX , then both the solid skeleton displace-
ments in the transverse directions as well as all shear terms in the deformation
gradient go to zero. The solid skeleton deformation gradient becomes

F s =

1 +
∂u

∂X
0 0

0 1 0

0 0 1

 , Js = detF s = F11(s) = 1 +
∂u

∂X
(46)

where u(X, t) is the axial displacement in the X direction. Similarly, if we assume
that pore fluid flow is confined in direction X (i.e., surrounded by an impermeable
sleeve, drained or undrained at its ends), then

vf =

vf0
0

 , af =

af0
0

 , uf =

uf0
0

 (47)

where in the X direction, vf is the pore fluid velocity, af is the pore fluid acceler-
ation, and uf is the pore fluid displacement. Variational forms that follow are first
presented in a general 3-D regime before simplifications to the 1-D regime; the (·)s
and (·)s superscripts and subscripts are dropped for notational convenience.
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3.2 Variational Formulation

The strong and variational form of the balance of mass of the mixture was given in
Section 2, but is briefly restated here as

Jnf

Kη
f

Dtpf +DtJ +
J

Kη
f

GRAD(pf) · F−1 · (nf ṽf) + J GRAD(nf ṽf)
.. F−T = 0 ,

pf(X, t) = gp(X, t) ∀X ∈ Γp
0 ,

− [JF−1 · (nf ṽf)] ·N = Qf(X, t) ∀X ∈ ΓQf
0 ,

(48)

where gp is the prescribed pore fluid pressure on Γp
0 (typically set for the “drained”

boundary condition), and Qf is the prescribed fluid flux (positive inward) on ΓQf
0 ,

where we have assumed that the mass supply of the pore fluid (f) constituent is
negligible.

LetH(u,uf , pf , w
pf ) be the variational form of Eq. 48, and let wpf be a set of scalar

valued weighting (test) functions associated with pore fluid pressure pf . We may
then rewrite Eq. 48 in indicial notation as

H(ui, ui(f), pf , wpf ) =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV

+

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV

−
∫
B0

∂wpf

∂XI

J
(
nf ṽi(f)

)
F−1
Ii dV −

∫
Γ
Qf
0

wpfQf dA = 0 . (49)

For notational simplicity, we will denote the separate terms as

H = HINT
1 +HINT

2 +HINT
3 +HINT

4 +HINT
5 −HEXT = 0 , (50)
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where

HINT
1 =

∫
B0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
dV ,

HINT
2 =

∫
B0

wpf
J

Kη
f

∂pf
∂XI

F−1
Ii

(
nf ṽi(f)

)
dV ,

HINT
3 =

∫
B0

∂wpf

∂XI

JF−1
Ii k̂

∂pf
∂XK

F−1
Ki dV ,

HINT
4 =

∫
B0

∂wpf

∂XI

JF−1
Ii k̂ρ

fR (ai(f) − gi) dV ,

HINT
5 = −

∫
B0

∂wpf

∂XI

k̂

nf
JF−1

Ii

∂σf
ij(E)

∂XJ

F−1
Jj dV ,

HEXT =

∫
Γ
Qf
0

wpfQf dA .

(51)

The 1-D reduction of Eq. 51 is

HINT
1 =

X=H∫
0

wpf

(
Jnf

Kη
f

ṗf + J̇

)
AdX ,

HINT
2 =

X=H∫
0

wpf
1

Kη
f

∂pf
∂X

nf ṽfAdX ,

HINT
3 =

X=H∫
0

∂wpf

∂X
k̂
∂pf
∂X

F−1
11 AdX ,

HINT
4 =

X=H∫
0

∂wpf

∂X
k̂ρfR (af + g)AdX ,

HINT
5 = −

X=H∫
0

∂wpf

∂X

k̂

nf

∂σf
11(E)

∂X
F−1
11 AdX ,

HEXT =

∫
Γ
Qf
0

wpfQf dA = Qf |X=HA .

(52)

The strong form of the balance of linear momentum of the biphasic mixture is given
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as

DIVP + ρ0g −
(
ρs0a+ ρf0af

)
= 0 ,

u(X, t) = gu(X, t) ∀X ∈ Γu
0 ,

P (X, t) ·N (X) = tσ(X, t) ∀X ∈ Γt
0 .

(53)

Let G(ui, ui(f), pf , wu
i ) be the variational form of Eq. 53 and letwu

i be a set of vector-
valued weighting (test) functions associated with solid skeleton displacement ui.
We may then rewrite Eq. 53 as

G(ui, ui(f), pf , wu
i ) =

∫
B0

wu
i

(
ρs0ai + ρf0ai(f)

)
dV +

∫
B0

∂wu
i

∂XI

P s
iI(E) dV

−
∫
B0

∂wu
i

∂XI

JF−1
Ii pf dV +

∫
B0

∂wu
i

∂XI

P f
iI(E) dV −

∫
B0

wu
i ρ0gi dV

−

∫
Γt
0

wu
i t

σs
E

i dA−
∫
Γt
0

wu
i pfJF

−1
Ii NI dA+

∫
Γt
0

wu
i t

σf
E

i dA

 = 0 ,

(54)

where the divergence on total first Piola-Kirchhoff stress of the mixture was weak-
ened using divergence theorem, producing the second, third, fourth, and last terms
in Eq. 54. The last term represents the total traction applied to solid and fluid phases
(the mixture). Thus, there is no need to compute any of its components, for exam-
ple, the integrand of the “viscous traction” tσ

f
E

i term. For notational simplicity, we
denote the separate terms as

G = GINT
1 + GINT

2 + GINT
3 + GINT

4 − (GEXT
1 + GEXT

2 + GEXT
3 ) = 0 , (55)
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where

GINT
1 =

∫
B0

wu
i

(
ρs0ai + ρf0ai(f)

)
dV ,

GINT
2 =

∫
B0

∂wu
i

∂XI

P s
iI(E) dV ,

GINT
3 = −

∫
B0

∂wu
i

∂XI

JF−1
Ii pf dV ,

GINT
4 = −

∫
B0

wu
i ρ0gi dV ,

GINT
5 =

∫
B0

∂wu
i

∂XI

P f
iI(E) dV ,

GEXT
1 =

∫
Γt
0

wu
i t

σs
E

i dA ,

GEXT
2 = −

∫
Γt
0

wu
i pfJF

−1
Ii NI dA ,

GEXT
3 =

∫
Γt
0

wu
i t

σf
E

i dA .

(56)
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The 1-D reduction of Eq. 56 is

GINT
1 =

X=H∫
0

wu
(
ρs0as + ρf0af

)
AdX ,

GINT
2 =

X=H∫
0

∂wu

∂X
P s
11(E)AdX ,

GINT
3 = −

X=H∫
0

∂wu

∂X
pfAdX ,

GINT
4 =

X=H∫
0

wuρ0gA dX ,

GINT
5 =

X=H∫
0

∂wu

∂X
P f
11(E)AdX ,

GEXT
1 =

∫
Γt
0

wutσ
s
E dA = tσ

s
EA ,

GEXT
2 = −

∫
Γt
0

wupf dA = −pfA ,

GEXT
3 =

∫
Γt
0

wutσ
f
E dA = tσ

f
EA .

(57)

If we combine Eq. 576,7,8 we see that

GEXT
1 + GEXT

2 + GEXT
3 = A

(
tσ

s
E − pf + tσ

f
E

)
= Atσ . (58)

The strong formulation of the balance of linear momentum for a viscous pore fluid
is given as

ρf0af + Jnf GRAD(pf) · F−1 −DIVP f
E + J

(
nf
)2
k̂

(vf − v)− ρf0g = 0 ,

uf(X, t) = guf
(X, t) ∀X ∈ Γuf

0 .

(59)

Let I(ui, ui(f), pf , wuf
i ) be the variational form of Eq. 59 and let wuf

i be a set of
vector-valued weighting functions associated with pore fluid displacement ui(f). We
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may then rewrite Eq. 59 as follows:

I(ui, ui(f), pf , wuf
i ) =

∫
B0

wuf
i ρ

f
0ai(f) dV +

∫
B0

wuf
i Jn

f ∂pf
∂XI

F−1
Ii dV

+

∫
B0

wuf
i J

(
nf
)2
k̂

(vi(f) − vi) dV

−
∫
B0

wuf
i

∂P f
iI(E)

∂XI

dV −
∫
B0

wuf
i ρ

f
0gi dV = 0 , (60)

wherein the second to last term in Eq. 60 can be split into two terms, similar to the
procedure in the balance of momentum of the mixture, as follows:

I(ui, ui(f), pf , wuf
i ) =

∫
B0

wuf
i ρ

f
0ai(f) dV +

∫
B0

wuf
i Jn

f ∂pf
∂XI

F−1
Ii dV

+

∫
B0

wuf
i J

(
nf
)2
k̂

(vi(f) − vi) dV

+

∫
B0

∂wuf
i

∂XI

P f
iI(E) dV −

∫
Γ0

wuf
i t

σf
E

i dA

−
∫
B0

wuf
i ρ

f
0gi dV = 0 . (61)

However, doing so creates an additional complexity, namely that now t
σf
E

i must be
determined. In Vuong et al.,32,33 such a traction is merely a stress balance between
solid and fluid phases, and does not take into account an external load as implied
here. There are at least two ways in which one might approximate the viscous trac-
tion.

The first follows from analysis by Heider43 for a nearly inviscid pore fluid. It in-
volves applying traction to the solid and fluid phases separately, which thus ne-
cessitates an equation that solves balance of linear momentum of the solid phase,
rather than an equation that solves the balance of linear momentum of the mixture.
Supposing then that the total traction

tσ = tσ
s︸︷︷︸

applied to solid mom. bal.

+ tσ
f︸︷︷︸

applied to fluid mom. bal.

(62)
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is specified (e.g., from known data), one may deduce the viscous traction compo-
nent tσ

f
E via an implicit solve using the solutions u and pf , that is,

tσ
f

= tσ − tσ
s ⇒ tσ

f
E(u, pf) = tσ − (σs

E − nspf1) · n+ nfpfn , (63)

where σs
E, n

s, nf are functions of solid displacement u. Heider43 observed inaccu-
rate pore fluid pressure solutions with such a scheme for low permeabilities, small
strain theory and low-strain-rate loadings, unless additional stabilization parame-
ters were provided. Given difficulties obtaining stable solutions at finite strain for
high-strain-rate loadings,28,29 it is outside the current scope to pursue such a method.

The other approach would be to use the mixture linear momentum balance equa-
tion, and approximate the value of tσ

f
E using the interpolated values of porosity and

pore fluid velocity gradient at the Gauss point closest to the boundary where tσ
f
E is

applied. However, this would be inconsistent with how the total traction is applied
to the mixture in the balance of linear momentum of the mixture; there, no such
approximations are used for tσ

f
E , nor tσ

s
E nor the pore fluid pressure component.

The most consistent assumption, in contrast to the previous two cumbersome al-
ternatives, is to not weaken the divergence of the pore fluid extra stress term, in
other words, to use Eq. 60. We have already established in Section 2 that the pore
fluid velocity cannot be weakened in the balance of mass of the mixture equations;
therefore, requiring C1 continuity in the balance of linear momentum of the pore
fluid raises no issues, and alleviates the problem of specifying the “viscous traction”
term.

For notational simplicity, we will denote the separate terms in Eq. 60 as

I = I INT
1 + I INT

2 + I INT
3 + I INT

4 + I INT
5 = 0 , (64)
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where

I INT
1 =

∫
B0

wuf
i ρ

f
0ai(f) dV ,

I INT
2 =

∫
B0

wuf
i Jn

f ∂pf
∂XI

F−1
Ii dV ,

I INT
3 =

∫
B0

wuf
i J

(nf)2

k̂
(vi(f) − vi) dV ,

I INT
4 = −

∫
B0

wuf
i ρ

f
0gi dV ,

I INT
5 = −

∫
B0

wuf
i

∂P f
iI(E)

∂XI

dV .

(65)

The 1-D reduction of Eq. 65 is

I INT
1 =

X=H∫
0

wufρf0afAdX ,

I INT
2 =

X=H∫
0

wufnf ∂pf
∂X

AdX ,

I INT
3 =

X=H∫
0

wufJ
(nf)2

k̂
(vf − v)AdX ,

I INT
4 =

X=H∫
0

wufρf0gA dX ,

I INT
5 = −

X=H∫
0

wuf
∂P f

11(E)

∂X
AdX .

(66)
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3.3 FE Implementation

The FE implementation follows from Irwin et al.,29,30 though in the present work
we invoke the Q3H-Q3H-P1 element as discussed in Section 2 to be able to handle
second-order spatial derivatives of solid and fluid displacements. In other words,
the Hermite cubic polynomials are used to interpolate solid skeleton and pore fluid
displacement and their associated gradients, and linear shape functions are used to
interpolate pore fluid pressure and associated gradients.

For our solution variables of interest (i.e., u, uf , and pf) we introduce the corre-
sponding discretizations d, df , and π, respectively. For solid skeleton displacement
d, we have

uh
e

(ξ, t) =

ns,e
dof∑

a=1

Nu
a (ξ)d

e
a(t) =

{
N e,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
de
}

︸ ︷︷ ︸
ns,e

dof ×1

, (67)

where for the Q3H-Q3H-P1 element ns,e
dof

..= 4. The solid skeleton velocity and
acceleration are defined similarly:

vh
e

(ξ, t) =

ns,e
dof∑

a=1

Nu
a (ξ)ḋ

e
a(t) =

{
N e,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
ḋ
e
}

︸ ︷︷ ︸
ns,e

dof ×1

,

ah
e

(ξ, t) =

ns,e
dof∑

a=1

Nu
a (ξ)d̈

e
a(t) =

{
N e,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
d̈
e
}

︸ ︷︷ ︸
ns,e

dof ×1

.

(68)

Solid skeleton displacement gradient, velocity gradient, and acceleration gradient
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are defined as follows, respectively:

∂uh
e
(ξ, t)

∂X
=

ns,e
dof∑

a=1

Bu
a (ξ)d

e
a(t) =

{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
de
}

︸ ︷︷ ︸
ns,e

dof ×1

,

∂vh
e
(ξ, t)

∂X
=

ns,e
dof∑

a=1

Bu
a (ξ)ḋ

e
a(t) =

{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
ḋ
e
}

︸ ︷︷ ︸
ns,e

dof ×1

,

∂ah
e
(ξ, t)

∂X
=

ns,e
dof∑

a=1

Bu
a (ξ)d̈

e
a(t) =

{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
d̈
e
}

︸ ︷︷ ︸
ns,e

dof ×1

.

(69)

Second-order gradients are defined as follows:

∂2uh
e
(ξ, t)

∂X2
=

ns,e
dof∑

a=1

Hu
a (ξ)d

e
a(t) =

{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
de
}

︸ ︷︷ ︸
ns,e

dof ×1

,

∂2vh
e
(ξ, t)

∂X2
=

ns,e
dof∑

a=1

Hu
a (ξ)ḋ

e
a(t) =

{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
ḋ
e
}

︸ ︷︷ ︸
ns,e

dof ×1

,

∂2ah
e
(ξ, t)

∂X2
=

ns,e
dof∑

a=1

Hu
a (ξ)d̈

e
a(t) =

{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
d̈
e
}

︸ ︷︷ ︸
ns,e

dof ×1

.

(70)

Discretizations of the pore fluid displacement df are given as follows, where for the
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Q3H-Q3H-P1 element nf,e
dof

..= 4:

uh
e

f (ξ, t) =

nf,e
dof∑

a=1

Nuf
a (ξ)dea,f(t) =

{
N e,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
de
f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

vh
e

f (ξ, t) =

nf,e
dof∑

a=1

Nuf
a (ξ)ḋea,f(t) =

{
N e,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
ḋ
e

f

}
︸ ︷︷ ︸
ns,e

dof ×1

,

ah
e

f (ξ, t) =

nf,e
dof∑

a=1

Nuf
a (ξ)d̈ea,f(t) =

{
N e,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
d̈
e

f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂uh
e

f (ξ, t)

∂X
=

nf,e
dof∑

a=1

Buf
a (ξ)dea,f(t) =

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

·
{
de
f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂vh
e

f (ξ, t)

∂X
=

nf,e
dof∑

a=1

Buf
a (ξ)ḋea,f(t) =

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

·
{
ḋ
e

f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂ah
e

f (ξ, t)

∂X
=

nf,e
dof∑

a=1

Buf
a (ξ)d̈ea,f(t) =

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

·
{
d̈
e

f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂2uh
e

f (ξ, t)

∂X2
=

nf,e
dof∑

a=1

Huf
a (ξ)dea,f(t) =

{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
de
f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂2vh
e

f (ξ, t)

∂X2
=

nf,e
dof∑

a=1

Huf
a (ξ)ḋea,f(t) =

{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
ḋ
e

f

}
︸ ︷︷ ︸
nf,e

dof ×1

,

∂2ah
e

f (ξ, t)

∂X2
=

nf,e
dof∑

a=1

Huf
a (ξ)d̈ea,f(t) =

{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
d̈
e

f

}
︸ ︷︷ ︸
nf,e

dof ×1

.

(71)
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Pore fluid pressure discretizations π are given as follows:

ph
e

f (ξ, t) =

n
pf ,e

dof∑
a=1

Npf
a (ξ)πe

a(t) =
{
N e,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
πe
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

ṗh
e

f (ξ, t) =

n
pf ,e

dof∑
a=1

Npf
a (ξ)π̇e

f (t) =
{
N e,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
π̇e
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

p̈h
e

f (ξ, t) =

n
pf ,e

dof∑
a=1

Npf
a (ξ)π̈e

f (t) =
{
N e,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
π̈e
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

∂ph
e

f (ξ, t)

∂X
=

n
pf ,e

dof∑
a=1

Bpf
a (ξ)πe

a(t) =
{
Be,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
πe
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

∂ṗh
e

f (ξ, t)

∂X
=

n
pf ,e

dof∑
a=1

Bpf
a (ξ)π̇e

f (t) =
{
Be,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
π̇e
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

∂p̈h
e

f (ξ, t)

∂X
=

n
pf ,e

dof∑
a=1

Bpf
a (ξ)π̈e

f (t) =
{
Be,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
π̈e
}

︸ ︷︷ ︸
n
pf ,e

dof ×1

.

(72)

The weighting functions for solid skeleton displacement d and their interpolations
(including gradients) are given as follows:

wuhe

(ξ) =
{
N e,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
cu,e
}

︸ ︷︷ ︸
ns,e

dof ×1

=
{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
{
N e,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

,

∂wuhe

(ξ, t)

∂X
=
{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
cu,e
}

︸ ︷︷ ︸
ns,e

dof ×1

=
{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
{
Be,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

,

∂2wuhe

(ξ, t)

∂X2
=
{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

·
{
cu,e
}

︸ ︷︷ ︸
ns,e

dof ×1

=
{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
{
He,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

.

(73)

The weighting functions for pore fluid displacement df and their interpolations (in-
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cluding gradients) are given as follows:

wuhe

f (ξ) =
{
N e,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
cuf ,e

}
︸ ︷︷ ︸
nf,e

dof ×1

=
{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
{
N e,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

,

∂wuhe

f (ξ, t)

∂X
=
{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

·
{
cuf ,e

}
︸ ︷︷ ︸
nf,e

dof ×1

=
{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
{
Be,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

,

∂2wuhe

f (ξ, t)

∂X2
=
{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

·
{
cuf ,e

}
︸ ︷︷ ︸
nf,e

dof ×1

=
{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
{
He,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

.

(74)

The weighting functions for pore fluid pressure π and their interpolations (including
gradients) are given as follows:

wph
e

f (ξ) =
{
N e,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
cpf ,e

}
︸ ︷︷ ︸
n
pf ,e

dof ×1

=
{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
N e,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

,

∂wph
e

f (ξ, t)

∂X
=
{
Be,pf

}
︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
cpf ,e

}
︸ ︷︷ ︸
n
pf ,e

dof ×1

=
{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
{
Be,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

.

(75)

3.4 Numerical Integration

After applying the Galerkin approximation44 to the coupled variational equations
in Section 3 substituting interpolations and their derivatives in Section 3 applying
boundary conditions at the nodes, and assembling the FE equations, the general
coupled system of matrix-vector equations resembles the following nonlinear form:

Mẍ+Cẋ+ F INT (ẍ,x) = F EXT , (76)

where M is the mass matrix, C is the viscous matrix, F INT is the nonlinear in-
ternal “force” vector, and F EXT is the vector of applied external forces and fluxes
for the full coupled variational form. Similarly, the accelerations, velocities, and
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displacements are given by the global DOF vectors ẍ, ẋ, and x, respectively, as

x =


d

df

π

 , ẋ =


ḋ

ḋf

π̇

 , ẍ =


d̈

d̈f

π̈

 (77)

where d, df , and π are the global nodal DOFs of solid skeleton displacement, pore
fluid displacement (part of the time integration procedure, not used in any of the
balance equations), and pore fluid pressure, respectively.

3.4.1 Newmark-beta Integrators

For the dynamic equations that retain inertia terms, we apply the Newmark-beta
(NB) method44,45 and a nonlinear solver (Newton-Raphson method; for details, refer
to Irwin et al.30) for solving Eq. 76 wherein

Mẍn+1 +Cẋn+1 + F INT(ẍn+1,xn+1) = F EXT
n+1 ,

xn+1 = xn +∆tẋn +
(∆t)2

2
[(1− 2β) ẍn + 2βẍn+1] ,

ẋn+1 = ẋn +∆t [(1− γ) ẍn + γẍn+1] .

(78)

Here (•)n+1 implies a quantity to be solved or updated at current time tn+1, (•)n
implies a quantity known at previous time tn, β and γ are integration parameters,
and the time increment ∆t = tn+1− tn may be variable or held constant during the
time marching solution.

The predictors are written as

x̃n+1 = xn +∆tẋn +
(∆t)2

2
(1− 2β) ẍn ,

˙̃xn+1 = ẋn +∆t (1− γ) ẍn ,

(79)

such that the correctors are

xn+1 = x̃n+1 + β(∆t)2ẍn+1 ,

ẋn+1 = ˙̃xn+1 + γ∆tẍn+1 .
(80)

Writing in residual form for solution via the Newton-Raphson method, this allows
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us to solve for the accelerations ẍn+1 at the next time step tn+1 as follows:

R(ẍn+1) = Mẍn+1 +Cẋn+1 + F INT(ẍn+1,xn+1)− F EXT
n+1 = 0 (81)

In Eq. 81, the internal forces are nonlinear, therefore requiring us to employ a non-
linear solver (e.g., the Newton-Raphson method).

With the linearized equations, we can construct the coupled linear equations to solve
at each current iteration k + 1 asKu,u Ku,uf

Ku,pf

Kuf ,u Kuf ,uf
Kuf ,pf

Kpf ,u Kpf ,uf
Kpf ,pf


k

︸ ︷︷ ︸
(ns

dof+nf
dof+n

pf
dof)×(ns

dof+nf
dof+n

pf
dof)

·


δd̈

δd̈f

δπ̈

︸ ︷︷ ︸
(ns

dof+nf
dof+n

pf
dof)×1

=


−Ru

−Ruf

−Rpf


k

︸ ︷︷ ︸
(ns

dof+nf
dof+n

pf
dof)×1

(82)

The “stiffness” matrices in Eq. 82 remain mostly unchanged from those given in
Irwin et al.29,30 Minor differences arise with the inclusion of the pore fluid extra
stress. Specifically, variations of the pore fluid extra stress tensor and the divergence
of the pore fluid extra stress tensor contribute to block matrices Ku,u,Ku,uf

,Kuf ,u,

Kuf ,uf
,Kpf ,u,Kpf ,uf

. The derivation of the Gateaux derivative of the pore fluid
extra stress tensor, which contributes to block matrices Ku,u,Ku,uf

, proceeds as
follows:

δ(σf
11(E)) = δ

(
nf ∂vf
∂X

)
(κf + 2ηf) =

(
ns

J

(
β∆t2

)∂(δa)
∂X

+ nf(γ∆t)
∂(δaf)

∂X

)
(κf + 2ηf) ,

(83)

where we assume pore fluid bulk viscosity κf and pore fluid shear viscosity ηf are
not functions of the independent variables u, uf , pf . Thus, δGINT

5 is

δGINT
5 =

X=H∫
0

∂wu

∂X

(
ns

J

(
β∆t2

)∂(δa)
∂X

+ nf(γ∆t)
∂(δaf)

∂X

)
(κf + 2ηf)AdX . (84)

Divergence of the pore fluid extra stress tensor simplifies to the following with the
1-D uniaxial strain assumption:[

∂nf

∂X

∂vf
∂X

+ nf ∂
2vf
∂X2

]
(κf + 2ηf)F

−2
11 . (85)
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The Gateaux derivatives of new variables are given as follows:

δ
(∂nf

∂X

)
= δ
(
ns ∂

2u

∂X2
F−2
11

)
=
(
β∆t2

)(
− ns

J

∂2u

∂X2
F−2
11

∂(δa)

∂X
+ nsF−2

11

∂2(δa)

∂X2
− 2

ns

J
F−2
11

∂2u

∂X2

∂(δa)

∂X

)

=
(
β∆t2

)(
nsF−2

11

∂2(δa)

∂X
− 3

J

∂nf

∂X

∂(δa)

∂X

)
,

δ
(∂vf
∂X

)
= (γ∆t)

∂(δaf)

∂X
,

δ
(∂2vf
∂X2

)
= (γ∆t)

∂2(δaf)

∂X2
.

(86)

Thus, the variation of the divergence of the pore fluid extra stress term, which con-
tributes to block matrices Kuf ,u,Kuf ,uf

, is

δ

(
∂σf

11(E)

∂X

)
= (κf + 2ηf)

([
(ns − nf)

∂2vf
∂X2

− 4
∂nf

∂X

∂vf
∂X

]
F−2
11

(
β∆t2

)∂(δa)
∂X

+ (γ∆t)F−1
11

[
∂nf

∂X

∂(δaf)

∂X
+ nf ∂

2(δaf)

∂X2

])
.

(87)

With that, δI INT
5 is

δI INT
5 =

X=H∫
0

wuf (κf + 2ηf)

([
(ns − nf)

∂2vf
∂X2

− 4
∂nf

∂X

∂vf
∂X

]
F−2
11

(
β∆t2

)∂(δa)
∂X

+ (γ∆t)F−1
11

[
∂nf

∂X

∂(δaf)

∂X
+ nf ∂

2(δaf)

∂X2

])
AdX .

(88)

The Gateaux derivative of the divergence of the pore fluid extra stress term that is
scaled by porosity, hydraulic conductivity, and inverse deformation gradient, is used
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in variation ofHINT
2 ,HINT

5 , and is given by

δ

(
k̂

nf

∂σf
11(E)

∂X
F−1
11

)
=

(
k̂

nf
F−2
11

[
∂σf

11(E)

∂X

(
ns

[(
3

nf
− 2nf

1− (nf)2

)
− 1

nf

]
− 2

)

+ (κf + 2ηf)

[
ns

J

∂2vf
∂X2

− 3

J

∂nf

∂X

∂vf
∂X

])(
β∆t2

)∂(δa)
∂X

+
k̂

nf

ns

J

∂vf
∂X

F−3
11 (κf + 2ηf)

(
β∆t2

)∂2(δa)
∂X2

+
k̂

nf
F−2
11 (γ∆t)

(
∂nf

∂X

∂(δaf)

∂X
+ nf ∂

2(δaf)

∂X2

)
(89)

Thus, δH INT
2 becomes

δHINT
2 =

X=H∫
0

wpf

([(
nf ṽf

)
− k̂ ∂pf

∂X

](
β∆t2

)∂(δp̈f)
∂X

− k̂ ∂pf
∂X

(af + g)
ρfR

Kη
f

×
(
β∆t2

)
δp̈f +

∂pf
∂X

[
ns

J

(
3

nf
− 2nf

1− (nf)2

)(
nf ṽf

)
+ k̂

∂pf
∂X

F−2
11

+
k̂

nf
F−2
11

(
∂σf

11(E)

∂X

[
ns

([
3

nf
− 2nf

1− (nf)2

]
− 1

nf

)
− 2

]

+(κf + 2ηf)

(
ns

J

∂2vf
∂X2

− 3

J

∂nf

∂X

∂vf
∂X

)](
β∆t2

)∂(δa)
∂X

−∂pf
∂X

k̂

nf

ns

J

∂vf
∂X

F−3
11 (κf + 2ηf)

(
β∆t2

)∂2(δa)
∂X2

− ∂pf
∂X

k̂ρfRδaf

−∂pf
∂X

k̂

nf
F−2
11 (γ∆t)

[
∂nf

∂X

∂(δaf)

∂X
+ nf ∂

2(δaf)

∂X2

])
A

Kη
f

dX . (90)
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Next, δHINT
5 is given as

δHINT
5 = −

X=H∫
0

∂wpf

∂X

(
k̂

nf
F−2
11

[
∂σf

11(E)

∂X

(
ns

[(
3

nf
− 2nf

1− (nf)2

)
− 1

nf

]
− 2

)

+ (κf + 2ηf)

(
ns

J

∂2vf
∂X2

− 3

J

∂nf

∂X

∂vf
∂X

)](
β∆t2

)∂(δa)
∂X

+
k̂

nf

ns

J

∂vf
∂X

F−3
11 (κf + 2ηf)

(
β∆t2

)∂2(δa)
∂X2

+
k̂

nf
F−2
11 (γ∆t)

[
∂nf

∂X

∂(δaf)

∂X
+ nf ∂

2(δaf)

∂X2

])
AdX .

(91)

Following the procedure described in Irwin et al.,30 the global residual for the solid
skeleton displacement is given by

cu,T ·Ru = Gh = GINT,h
1 + GINT,h

2 + GINT,h
3 + GINT,h

4 + GINT,h
5 − GEXT,h = 0 , (92)

which remains unchanged from Irwin et al.,29,30 with the exception of

GINT,h
5 =

ne

A
e

{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
( 1∫

−1

{
Be,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

P f,he

11(E)Aj
e dξ

)
. (93)

The global residual for the pore fluid displacement is given by

cuf ,T ·Ruf
= Ih = I INT,h

1 + I INT,h
2 + I INT,h

3 + I INT,h
4 + I INT,h

5 = 0 , (94)

which remains unchanged from Irwin et al.,29,30 with the exception of

I INT,h
5 =

ne

A
e

{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
(
−

1∫
−1

{
N e,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

∂P f,he

11(E)

∂X
Aje dξ

)
. (95)
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The global residual for the pore fluid pressure is given by

cpf ,T ·Rpf = Hh = HINT,h
1 +HINT,h

2 +HINT,h
3 +HINT,h

4 +HINT,h
5 −HEXT,h

1 = 0 ,

(96)

which remains unchanged from Irwin et al.,29,30 with the exception of

HINT,h
2 =

ne

A
e

{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
( 1∫

−1

{
N e,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

1

Kη
f

∂ph
e

f

∂X

(
nf ṽf

)he

Aje dξ

)
,

HINT,h
5 =

ne

A
e

{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
(
−

1∫
−1

{
Be,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

k̂h
e

nf,he

∂σf,he

11(E)

∂X
(F he

11 )
−1Aje dξ

)
,

(97)

where the pore fluid extra stress is embedded within the discretized Darcy velocity
in HINT,h

2 . When pressure stabilization is enabled, an additional term Hstab is added
to the left-hand side of Eq. 96 and is defined as

Hstab =
ne

A
e

{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
( 1∫

−1

{
Be,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

αstab∂p
he

f

∂X

(
F he

11

)−1
Aje dξ

)
(98)

Recall that the tangent matrix for each iteration must be of the form

0 = Rk =

Ku,u Ku,uf
Ku,pf

Kuf ,u Kpuf ,uf
Kuf ,pf

Kpf ,u Kpf ,uf
Kpf ,pf


︸ ︷︷ ︸
(ns

dof+nf
dof+n

pf
dof)×(ns

dof+nf
dof+n

pf
dof)

·


δd̈

δd̈f

δπ̈

︸ ︷︷ ︸
(ns

dof+nf
dof+n

pf
dof)×1

(99)

Block stiffness matrices remain unchanged from Irwin et al.,29,30 with the following
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exceptions: [
Ku,u

]
︸ ︷︷ ︸
ns

dof×ns
dof

=
ne

A
e

{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
∑

i=1,2,5

[
kGINT

i ,e
u,u

]
︸ ︷︷ ︸
ns,e

dof ×ns,e
dof

,

[
Ku,uf

]
︸ ︷︷ ︸
ns

dof×nf
dof

=
ne

A
e

{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
∑
i=1,5

[
kGINT

i ,e
u,uf

]
︸ ︷︷ ︸
ns,e

dof ×nf,e
dof

,

[
Kuf ,u

]
︸ ︷︷ ︸
nf

dof×ns
dof

=
ne

A
e

{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
5∑

i=1

[
kIINT

i ,e
uf ,u

]
︸ ︷︷ ︸
nf,e

dof ×ns,e
dof

,

[
Kuf ,uf

]
︸ ︷︷ ︸
nf

dof×nf
dof

=
ne

A
e

{
cuf ,e

}T

︸ ︷︷ ︸
1×nf,e

dof

·
∑

i=1,3,5

[
kIINT

i ,e
uf ,uf

]
︸ ︷︷ ︸
nf,e

dof ×nf,e
dof

,

[
Kpf ,u

]
︸ ︷︷ ︸
n
pf
dof×ns

dof

=
ne

A
e

{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
5∑

i=1

[
kHINT

i ,e
pf ,u

]
︸ ︷︷ ︸
n
pf ,e

dof ×ns,e
dof

,

[
Kpf ,uf

]
︸ ︷︷ ︸
n
pf
dof×nf

dof

=
ne

A
e

{
cpf ,e

}T

︸ ︷︷ ︸
1×n

pf ,e

dof

·
5∑

i=1

[
kHINT

i ,e
pf ,uf

]
︸ ︷︷ ︸
n
pf ,e

dof ×nf,e
dof

.

(100)

Specifically, the following new additions (denoted by i = 5 in all of Eq. 100, as
well as i = 2 in Eq. 1005,6) are made to account for the pore fluid extra stress:

[
kGINT

5 ,e
u,u

]
︸ ︷︷ ︸
ns,e

dof ×ns,e
dof

=

1∫
−1

∂vh
e

f

∂X
(ns,he − nf,he

)(κf + 2ηf)
(
F he

11

)−2(
β∆t2

){
Be,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

Aje dξ ,

[
kGINT

5 ,e
u,uf

]
︸ ︷︷ ︸
ns,e

dof ×nf,e
dof

=

1∫
−1

nf,he

F he

11

(κf + 2ηf)(γ∆t)
{
Be,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

Aje dξ ,

[
kIINT

5 ,e
uf ,u

]
︸ ︷︷ ︸
nf,e

dof ×ns,e
dof

= −
1∫

−1

{
N e,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

([
(ns,he − nf,he

)
∂2vh

e

f

∂X2
− 4

∂nf,he

∂X

∂nf,he

∂X

]{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

+
ns,he

Jhe

∂vh
e

f

∂X

{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

)(
F he

11

)−2
(κf + 2ηf)

(
β∆t2

)
Aje dξ ,
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[
kIINT

5 ,e
uf ,uf

]
︸ ︷︷ ︸
nf,e

dof ×nf,e
dof

= −
1∫

−1

{
N e,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

(
∂nf,he

∂X

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

+nf,he
{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

)
(κf + 2ηf)

(
F he

11

)−2
(γ∆t)Aje dξ ,

[
kHINT

2 ,e
pf ,u

]
︸ ︷︷ ︸
n
pf ,e

dof ×ns,e
dof

=

1∫
−1

{
N e,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

(([
3

nf,he −
2nf,he

1−
(
nf,he

)2
](
nf ṽf

)he ns,he

Jhe

+
k̂h

e

nf,he

(
F he

11

)−2

[
∂σf,he

11(E)

∂X

(
ns,he

[(
3

nf,he −
2nf,he

1−
(
nf,he

)2
)
− 1

nf,he

]
− 2

)

+ (κf + 2ηf)

(
ns,he

Jhe

∂2vh
e

f

∂X2
− 3

Jhe

∂nf,he

∂X

∂vh
e

f

∂X

)]
+ k̂h

e ∂ph
e

f

∂X

[
F he

11

]−2

){
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

(κf + 2ηf)
k̂h

e

nf,he n
s,he ∂vh

e

f

∂X

(
F he

11

)−4
{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

]
1

Kη
f

∂ph
e

f

∂X

(
β∆t2

)
Aje dξ ,

[
kHINT

5 ,e
pf ,u

]
︸ ︷︷ ︸
n
pf ,e

dof ×ns,e
dof

= −
1∫

−1

{
N e,uf

}T

︸ ︷︷ ︸
nf,e

dof ×1

([
∂σf,he

11(E)

∂X

(
ns,he

[(
3

nf,he −
2nf,he

1−
(
nf,he

)2
)
− 1

nf,he

]
− 2

)

+ (κf + 2ηf)

(
ns,he

Jhe

∂2vh
e

f

∂X2
− 3

Jhe

∂nf,he

∂X

∂vh
e

f

∂X

)]{
Be,u

}
︸ ︷︷ ︸
1×ns,e

dof

+ (κf + 2ηf)
ns,he(
F he

11

)2 ∂vhe

f

∂X

{
He,u

}
︸ ︷︷ ︸
1×ns,e

dof

)
k̂h

e(
F he

11

)2 (β∆t2)Aje dξ ,
[
kHINT

2 ,e
pf ,uf

]
︸ ︷︷ ︸
n
pf ,e

dof ×nf,e
dof

= −
1∫

−1

{
N e,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

(
ρfR,he

{
N e,uf

}
︸ ︷︷ ︸

1×nf,e
dof

− (κf + 2ηf)(γ∆t)
(
F he

11

)−2

[
1

nf,he

∂nf,he

∂X

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

+
{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

])
∂ph

e

f

∂X

k̂h
e

Kη
f

Aje ,
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[
kHINT

5 ,e
pf ,uf

]
︸ ︷︷ ︸
n
pf ,e

dof ×nf,e
dof

= −
1∫

−1

{
Be,pf

}T

︸ ︷︷ ︸
n
pf ,e

dof ×1

(
1

nf,he

∂nf,he

∂X

{
Be,uf

}
︸ ︷︷ ︸
1×nf,e

dof

+
{
He,uf

}
︸ ︷︷ ︸

1×nf,e
dof

)
(κf + 2ηf)

k̂h
e(

F he

11

)2 (γ∆t)Aje .
(101)

3.4.2 Runge-Kutta Integrators

For explicit time integration of the matrix-vector equations, we apply a generalized
adaptive time-stepping Runge-Kutta method (specifically, the Runge-Kutta Cash-
Karp scheme,46 henceforth referred to as “RKFNC”) for solving Eq. 76, which
involves transforming the second-order ordinary differential equations (ODEs) into
first-order ODEs by variable substitution:

z ..=

{
zx

zẋ

}
=

{
x

ẋ

}
, (102)

such that

ż =

{
żx

żẋ

}
=

{
ẋ

ẍ

}
. (103)

For a general nonlinear multi-degree-of-freedom ODE

ż = f(t, z) , (104)

where f(t, z) is in general a nonlinear equation in terms of time t and unknown
variable z. For a general Runge-Kutta method of mth order, the intermediate stages
ki are defined as follows using standard notation for a Butcher table:

ki = f

(
tn + ci∆t, z(tn) + ∆t

i−1∑
j=1

aijkj

)
. (105)

The higher-order solution is given by

zm(tn+1) = z(tn) + ∆t
m+1∑
i=1

bmi ki , (106)
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and the lower-order solution is given by

zm−1(tn+1) = z(tn) + ∆t
m∑
i=1

bm−1
i ki , (107)

where the bmi coefficients are different from the bm−1
i coefficients; refer to the lit-

erature46,47 for specific values. The difference between the higher and lower order
solutions allows us to define a truncation error

ϵTE
..=
∣∣∣∣∣∣zm(tn+1)− zm−1(tn+1)

∣∣∣∣∣∣
2
. (108)

Note that in comparison to prior work,28–30 here we define the truncation error with
the L2 norm rather than the L∞ norm because the former has better performance
with the new Q3H-Q3H-P1 element than the latter. The adapted time step ∆t∗ is
typically adjusted as follows:

∆t∗ = SF×
(
ϵa
ϵTE

)1/(m−1)

∆t , (109)

where SF is a safety factor, typically set to 0.9, and ϵa is a user-defined absolute
tolerance, typically set to ϵa ∈ [10−8,10−2]. If the absolute error(

ϵTE

ϵa

)1/(m−1)

< 1 , (110)

then the solution zm is accepted with ∆tn+1 ← ∆t∗. Otherwise, the stages ki are
recomputed at time tn with ∆tn ← ∆t∗, new solutions are computed, and a new
absolute error is computed until the condition defined by Eq. 110 is met.

The Runge-Kutta integrators transform the general solution variables given by Eq. 104
to

{
ż
}

..=



żu

żv

żuf

żvf

żpf


=
{
f(t, z)

}
=



f v(t, z)

fa(t, z)

f vf
(t, z)

faf
(t, z)

f ṗf
(t, z)


, (111)
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such that

{
z
}
=



d

ḋ

df

ḋf

π


, ż =



ḋ

d̈

ḋf

d̈f

π̇


. (112)

The FE formulation for the balance of momentum of the mixture, variational Eq. 54,
is written in block-matrix form as {

Ru

}
︸ ︷︷ ︸
ns

dof×1

= 0 , (113)

where the global residual for the solid skeleton displacement is given as

cu,T ·Ru = Gh = GINT,h
1 + GINT,h

2 + GINT,h
3 + GINT,h

4 + GINT,h
5 − GEXT,h = 0 .

(114)

The weighted residual remains unchanged from Irwin et al.,29,30 with the exception
of

GINT,h
5 =

ne

A
e

{
cu,e
}T

︸ ︷︷ ︸
1×ns,e

dof

·
{
fGINT

5 ,e
}

︸ ︷︷ ︸
ns,e

dof ×1

,

{
fGINT

5 ,e
}

︸ ︷︷ ︸
ns,e

dof ×1

=

1∫
−1

{
Be,u

}T

︸ ︷︷ ︸
ns,e

dof ×1

P f,he

11(E)Aj
e dξ .

(115)

The FE formulation for the balance of mass, variational Eq. 49, is written in block-
matrix form as {

Rpf

}
︸ ︷︷ ︸
n
pf
dof×1

= 0 , (116)

where the global residual for the pore fluid pressure is given as

cpf ,T ·Rpf = Hh = HINT,h
1 +HINT,h

2 +HINT,h
3 +HINT,h

4 +HINT,h
5 −HEXT,h

1 = 0 .

(117)
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The weighted residual remains unchanged from Irwin et al.,29,30 with the exception
of

HINT,h
2 =

ne

A
e

{
cpf ,e
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where the pore fluid extra stress is embedded within the discretized Darcy velocity
in fHINT

2 ,e.

The FE formulation for the balance of momentum of the fluid, variational Eq. 60,
is written in block-matrix form {

Ruf

}
︸ ︷︷ ︸
nf

dof×1

= 0 , (119)

where the global residual for the pore fluid displacement is given as

cuf ,T ·Ruf
= Ih = I INT,h

1 + I INT,h
2 + I INT,h

3 + I INT,h
4 + I INT,h

5 = 0 . (120)

The weighted residual remains unchanged from Irwin et al.,29,30 with the exception
of

I INT,h
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e
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(121)
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The block system of equations to solve is

{
ż
}
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ḋ
}

︸︷︷︸
ns

dof×1[
MGINT

1
u,u

]−1

︸ ︷︷ ︸
ns

dof×ns
dof

·

(
−
{
F GINT

1

}
︸ ︷︷ ︸

ns
dof×1

−
{
F GINT

2

}
︸ ︷︷ ︸

ns
dof×1

−
{
F GINT

3

}
︸ ︷︷ ︸

ns
dof×1

−

{
F GINT

4

}
︸ ︷︷ ︸

ns
dof×1

−
{
F GINT

5

}
︸ ︷︷ ︸

ns
dof×1

+
{
F GEXT

}
︸ ︷︷ ︸

ns
dof×1

)
{
ḋf
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,

(122)

where assembled mass matrices and vectors remain unchanged from those given in
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Irwin et al.,29,30 with the exception of{
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(123)

4. Results

4.1 Verification

Here, we present results comparing the numerical solutions to an analytical solution
developed by de Boer et al.48

A porous column is subjected to an external traction load while its base and sides
remain fixed. Values of material and geometric parameters used in this example are
given in Tables 1 and 2, respectively, where different load amplitudes and frequen-
cies are included in the latter. The top of the porous column is perfectly drained with
reference pressure pf(X = H, t) = 0 atm and subjected to a harmonic loading, as
shown in Fig. 3. The analytical solution for this problem was given in Irwin et al.28

(originally by de Boer et al.48), and is not repeated here for brevity.

Table 1 Material parameters for the poroelastodynamics verification example. Viscosity values
are obtained from Holmes et al.,49 assuming a temperature = 20◦ C.

λ (MPa) µ (MPa) ρsR
0 (kg/m3) ρfR

0 (kg/m3) nf
0 k0 (m/s) ηf (mPa-s) κf (mPa-s)

5.6 8.4 2700 1000 0.42 10−2 1 2.86

Table 2 Geometrical and loading parameters for the poroelastodynamics verification example

H (m) A (m2) he
0 (m) tσ0 (kPa) ω (rad/s)

10 1 0.1 40 50
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(a) (b)

Fig. 3 (a) Traction application and (b) schematic of column mesh for the poroelastodynamics
verification example

Here we compare the results between the analytical solution, the new Q3H-Q3H-P1
element type—with and without the pore fluid extra stress—and the old Q2-Q2-P1
element type, which is restricted to the nearly inviscid assumption. Solid skeleton
displacement results (refer to Fig. 4(a)) are improved for the Hermite cubic ele-
ment, but pore fluid displacement results (refer to Fig. 4(b)) suffer slightly, though
remain reasonably accurate. Excellent agreement is observed between pore fluid
pressure and solid skeleton extra (effective) stress for all element types. Appear-
ance of improvement of the Hermite cubic element over the standard Lagrange
quadratic element arises only since the Hermite cubic element is integrated with 4-
point quadrature rather than 3-point quadrature; thus, the quadrature points that are
sampled for the Hermite cubic element are closer to the nodes where the analytical
solution is defined.
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Fig. 4 Verification results for the numerical approximation to the de Boer analytical solution
showing (a) solid skeleton displacement, (b) pore fluid displacement, (c) pore fluid pressure,
and (d) solid extra stress

Pore fluid extra stress is shown in Fig. 5(a); it is six orders of magnitude smaller
than the pore fluid pressure contribution (refer to Fig. 5(b)). This is in agreement
with the argument laid out in Section 2 (originally in Ehlers et al.36), where the soil
column in this example is essentially a low permeability, rigid, non-deforming solid
skeleton (approximate for small strain) and the pore fluid is nearly incompressible
(via large pore fluid bulk modulus given in Table1). Furthermore, porosity gradients
for this example are inherently small for small strains, rendering that contribution
to the divergence of the pore fluid extra stress negligible as well.
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Fig. 5 Pore fluid stress results for the numerical approximation to the de Boer analytical solu-
tion for (a) pore fluid extra stress at the Gauss point closest to X = H , and (b) total pore fluid
stress σf

11
..= σf

11(E) − nfpf at the Gauss point closest to X = H

4.2 Shockwave Loading of Lung

Of key importance for dynamic injury predictions is how lung tissue deforms un-
der shock loading. In Section 4 we present our findings for a column of lung
parenchyma subjected to external traction loadings on the order of milliseconds
or less. In all of the simulations, the lung parenchyma column is fixed on its sides
and base. In contrast to prior work,28,29 the pore fluid pressure boundary condition
at the top of the column is allowed to vary, such that the top of the membrane can be
represented as both impermeable (i.e., “undrained”) or permeable (i.e., “drained”).
The latter might be more experimentally feasible and is an advantage of our model
to the one implemented by Clayton et al.10 For example, one might excise a small
section of lung parenchyma, place it in a sleeve such that the sleeve need not en-
close the end of excised tissue, and then load it uniaxially wherein the impacting
device would need only to maintain contact with a part of the tissue during loading.
Material, geometrical, and loading parameters are given in Tables 3 and 4.

We begin our discussion of the effects of the pore fluid extra stress with a simulation
that mimics a shock tube test in a laboratory setting. The traction is a linear trian-
gular impulse, hereafter referred to as the Yen impulse,50 shown in Fig. 6(a), which
rises to a maximum overpressure tσ0 = 50 kPa (relative to atmospheric pressure at
sea level) at a time t0 = 170 µs. It then decays to tσ = 0 kPa at time 2t0 = t1 = 340

µs. The time scales and pressure profile were chosen based on an experimental
study of rabbit lung exposed to shock tubes by Yen et al.50 Overpressure amplitude

46



was chosen arbitrarily, though we note that Yen et al.50 observed that overpressures
greater than 2 psi (≈ 14 kPa) resulted in edema of the exposed rabbit lung.

Table 3 Material parameters for multiphase lung parenchyma simulations. Values taken from
Clayton et al., Lande and Mitzner, Holmes et al., Rand et al. and Shang et al.10,37,49,51,52 Viscos-
ity values for air are interpolated for resting body temperature 37◦ C; bulk modulus, density
and bulk viscosity for blood are estimated using values for water at resting body temperature
37◦ C, while shear viscosity is estimated from Rand et al.51

Kskel (kPa) G (kPa) Ks (kPa) Kη
f (kPa) ρsR

0 (kg/m3)
7.5 3 2.2× 106 140; 2.2× 106 1000

ρfR
0 (kg/m3) nf

0 k̂0 (m2/Pa-s) ηf (mPa-s) κf (mPa-s)
1.2; 1000 0.664; 0.99 10−5; 6.3× 10−8 1.89× 10−2; 3 2.03× 10−2; 1.93

Table 4 Geometrical and loading parameters for multiphase lung parenchyma simulations

Overpressure load type H (cm) A (cm2) he
0 (cm) tσ0 (kPa) t0 (ms) t1 (ms)

Yen impulse 10 1 0.1 25; 50 0.17 0.34
Friedlander impulse 10 1 0.1 25; 50 10 N/A

To start, we assume an impermeable membrane of lung parenchyma, in other words,
the pore air is allowed to move freely within the column of lung parenchyma,
but cannot escape at either end. Displacement profiles between the nearly inviscid
(Darcy) and viscous (Darcy-Brinkman, inclusion of pore fluid extra stress) simula-
tions are shown in Fig. 7. It is evident that inclusion of the pore fluid extra stress for
this example has a negligible effect on the motion of the lung parenchyma and pore
fluid within. This is likely due to how small of a contribution the pore fluid extra
stress, shown in Fig. 8(a), has on the total fluid stress, shown in Fig. 8(b). Pore fluid
extra stress is three orders of magnitude smaller than the pore fluid pressure for this
application.
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(a) (b)

(c)

Fig. 6 (a) Yen impulse traction application (b) Friedlander traction application (c) schematic
of multiphase column mesh for examples of lung parenchyma deformations. Note that in (c),
for the impermeable membrane, the boundary condition pf(H, t) = pf,0 is not set.
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Fig. 7 Displacement results from applying the Yen impulse (50 kPa) to the impermeable lung parenchyma for (a) solid skeleton displacement u(X = H, t)
(and by extension due to the no-slip/no-penetration condition, uf(X = H, t)), and (b) solid skeleton displacement u(X = H/2, t) and pore fluid
displacement uf(X = H/2, t)
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(a) (b)

Fig. 8 Pore fluid stress results from applying the Yen impulse (50 kPa) to the impermeable lung parenchyma for (a) pore fluid extra stress at the Gauss
point closest to X = H , and (b) total pore fluid stress σf

11
..= σf

11(E) − nfpf at the Gauss point closest to X = H
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Next, we assume a permeable membrane (which might be more experimentally fea-
sible), in other wrods, the pore air is allowed to escape from the top of the column.
We note that the prescription of this pore fluid pressure boundary condition restricts
the maximum overpressure we are able to apply to the mixture (i.e., the simula-
tions fail for tσ0 = 50 kPa; ∆t → 0 for RKFNC, NB does not converge). Again we
see that the pore fluid extra stress has negligible effects on displacements (refer to
Fig. 9) and total fluid stress (refer to Fig. 10). However, pore fluid extra stress is
only one order of magnitude smaller than total pore fluid stress for the permeable
membrane. In Fig. 11, we see how pore fluid extra stress “scales” with pore fluid ve-
locity gradient—denoted by the slope of the velocity contour curve—and porosity,
and how each evolve over time. Sampled times are (a) at maximum overpressure
loading, (b) when overpressure loading stops, and (c) well after loading has ended.
Peak overpressure loading occurs at 170µs, but the effects of the shock loading
are not observed until later, see, for example, Fig. 11(b) when the impulse ends.
In Fig. 11(c) we see that the magnitude of the pore fluid extra stress has greatly
dissipated well after load is removed.
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Fig. 9 Displacement results from applying the Yen impulse (25 kPa) to the permeable lung parenchyma for (a) solid skeleton displacement u(X = H, t)
and pore fluid displacement uf(X = H, t), and (b) solid skeleton displacement u(X = H/2, t) and pore fluid displacement uf(X = H/2, t)
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(a) (b)

Fig. 10 Pore fluid stress results from applying the Yen impulse (25 kPa) to the permeable lung parenchyma for (a) pore fluid extra stress at the Gauss
point closest to X = H , and (b) total pore fluid stress σf

11
..= σf

11(E) − nfpf at the Gauss point closest to X = H
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(a) t = 0.17 ms (b) t = 0.34 ms (c) t = 3.00 ms

Fig. 11 Contours along the length of the mesh for pore fluid extra stress σf
11(E), pore fluid velocity vf and porosity nf for permeable lung parenchyma

after applying the Yen impulse with 25 kPa maximum overpressure
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Since a permeable membrane induces higher pore fluid extra stress, we now swap
the pore air for pore blood, in others words, we assume the lung is saturated with
blood as the pore fluid, assuming blood can be modeled as a Newtonian fluid. We
adjust the pore fluid density, bulk modulus, and viscosities appropriately (refer to
Table 3). Initial porosity is also increased to nf

0 = 0.99 (from 0.664), and maxi-
mum applied overpressure is increased to tσ0 = 50 kPa (from 25 kPa). While the
high initial porosity is not a physically realistic scenario, the magnitude of the pore
fluid extra stress should increase as pore fluid extra stress scales with porosity and
viscosity. This is what is observed in Fig. 12: the pore fluid extra stress accounts
for some oscillations in the total pore fluid stress at the onset of the shock load.
However, the solid extra stress (i.e., the material stress of the lung parenchyma tis-
sue itself) is not affected by the inclusion of the pore fluid extra stress (as shown in
Fig. 13). This may have to do with the fact that the motion of the lung parenchyma
and the pore blood are not affected either (refer to Fig. 14).

In contrast to the example with pore air (refer to Fig. 9), pore fluid (blood) and
solid skeleton (lung parenchyma) displacements are similar. When shear viscos-
ity of the pore fluid is increased, the initial hydraulic conductivity k̂0 is reduced.
Since seepage velocity (nf ṽf) scales with hydraulic conductivity per Darcy’s (and
Darcy-Brinkman’s) law, relative velocity between solid and fluid phases is reduced.
Comparing now the contours of pore fluid extra stress, pore fluid velocity, and
porosity (Fig. 15) for blood-saturated lung parenchyma to that of air-saturated lung
parenchyma (Fig. 11), we see that in the latter the shock wave percolates more
quickly through the mixture than in the former. Velocity of pore air is also greater
in magnitude than for pore blood, even though the blood-saturated lung parenchyma
was subjected to greater maximum overpressure (50 kPa versus 25 kPa). Further-
more, porosity gradients are small for high initial porosity in blood-saturated lung
parenchyma compared to moderate initial porosity in air-saturated lung parenchyma.
In fact, we see that porosity remains high for the duration of the simulation as com-
pared to air-saturated lung parenchyma, where more fluctuations in porosity are
observed.

In addition, because the density of the mixture is higher when pore air is swapped
for pore blood, wave speed is thus also higher; correspondingly, the estimated sta-
ble time-step for explicit integrators (via CFL condition) is reduced by a factor of
approximately 103. We found that the RKFNC integrator does not perform well
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with this restriction on time-step, and often ∆t → 0, which is why the afore-
mentioned results use the implict Newmark-beta scheme with constant acceleration
(β = 0.25, γ = 0.5).

Fig. 12 Pore fluid stress results from applying the Yen impulse (50 kPa) to the permeable,
blood-saturated lung parenchyma for the Gauss point closest to X = H
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Fig. 13 Solid extra stress results from applying the Yen impulse (50 kPa) to the permeable,
blood-saturated lung parenchyma for the Gauss point closest to X = H
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(b)

Fig. 14 Displacement results from applying the Yen impulse (50 kPa) to the permeable, blood-saturated lung parenchyma for (a) solid skeleton dis-
placement u(X = H, t) and pore fluid displacement uf(X = H, t), and (b) solid skeleton displacement u(X = H/2, t) and pore fluid displacement
uf(X = H/2, t)
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(a) t = 0.17 ms (b) t = 0.34 ms (c) t = 3.00 ms

Fig. 15 Contours along the length of the mesh for pore fluid extra stress σf
11(E), pore fluid velocity vf and porosity nf for permeable, blood-saturated

lung parenchyma after applying the Yen impulse with 25 kPa maximum overpressure
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We now present the results of the simulations using the Friedlander impulse load-
ing53 at maximum overpressure tσ0 = 25 kPa (refer to Fig. 6(b)), which is more ap-
plicable for free-field shock loading (i.e., a shock wave resulting from a detonation
of an explosive device).54 Proceeding as before, we first assume an impermeable
membrane of air-saturated lung parenchyma. Looking at Figs. 16 and 17, we see a
similar trend: the pore fluid extra stress is small and does not account for any dis-
crepancy between motions of solid and fluid, and total fluid stress, between nearly
inviscid (Darcy) and viscous (Darcy-Brinkman) pore fluid flow.
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(b)

Fig. 16 Displacement results from applying the Friedlander impulse (25 kPa) to the impermeable lung parenchyma for (a) solid skeleton displacement
u(X = H, t) (and by extension due to the no-slip/no-penetration condition, uf(X = H, t)), and (b) solid skeleton displacement u(X = H/2, t) and pore
fluid displacement uf(X = H/2, t)
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(b)

Fig. 17 Pore fluid stress results from applying the Friedlander impulse (25 kPa) to the impermeable lung parenchyma for (a) pore fluid extra stress at
the Gauss point closest to X = H , and (b) total pore fluid stress σf

11
..= σf

11(E) − nfpf at the Gauss point closest to X = H . Slightly higher amplitude of
pore fluid extra stress when zoomed in is due to finer resolution of the data points in a second, shorter simulation.
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When the top of the column allows fluid to escape (i.e., when we use the perme-
able boundary condition), we again see no difference between the nearly inviscid
(Darcy) and viscous (Darcy-Brinkman) displacements (refer to Fig. 18), though we
note that strains are much larger here than for the impermeable boundary. Total pore
fluid stress is unaffected by the pore fluid extra stress (refer to Fig. 19). Furthermore,
pore fluid extra stress begins to diminish as the shock wave moves along the mesh
(where the time sampling locations in used for the contour stills are shown in by
Fig. 20), as shown in Fig. 21. We again see how pore fluid extra stress is influenced
by large gradients in pore fluid velocity (Figs. 21(a) and 21(b)). In contrast to the
Yen impulse (shock-tube loading), we also see larger porosity gradients (Fig. 21(b)).
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(b)

Fig. 18 Displacement results from applying the Friedlander impulse (25 kPa) to the permeable lung parenchyma for (a) solid skeleton displacement
u(X = H, t) and pore fluid displacement uf(X = H, t), and (b) solid skeleton displacement u(X = H/2, t) and pore fluid displacement uf(X = H/2, t)
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(b)

Fig. 19 Pore fluid stress results from applying the Friedlander impulse (25 kPa) to the permeable lung parenchyma for (a) pore fluid extra stress at the
Gauss point closest to X = H , and (b) total pore fluid stress σf

11
..= σf

11(E) − nfpf at the Gauss point closest to X = H
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Fig. 20 Sampling locations along the Friedlander impulse for 25 kPa maximum overpressure
used in the contour plots
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(a) t = 0.03 ms (b) t = 0.30 ms (c) t = 3.00 ms

Fig. 21 Contours along the length of the mesh for pore fluid extra stress σf
11(E), pore fluid velocity vf and porosity nf for permeable lung parenchyma

after applying the Friedlander impulse with 25 kPa maximum overpressure
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Continuing, the pore air is now swapped for pore blood; pore fluid density, bulk
modulus and viscosities are adjusted accordingly. Initial porosity and load are in-
creased to 0.99 and 50 kPa, respectively. We observe that the pore fluid extra stress
has no impact on displacement (refer to Fig. 22), although its magnitude is on par
with the total pore fluid stress, at least at the onset of the shock load before the
pore fluid pressure response dominates (refer to Fig. 23). However, the pore fluid
extra stress does not affect the solid extra stress, that is, no additional tensile forces
indicative of potential damage in the lung parenchyma55 are observed as compared
to the nearly inviscid pore fluid (refer to Fig. 24). Similarly to the Yen impulse for
blood-saturated lung parenchyma, we see (refer to Fig. 25) the shock wave perco-
lating more slowly through the mixture than for air-saturated lung parenchyma, for
either type of impulse loading.
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(b)

Fig. 22 Displacement results from applying the Friedlander impulse (50 kPa) to the permeable, blood-saturated lung parenchyma for (a) solid skeleton
displacement u(X = H, t) and pore fluid displacement uf(X = H, t), and (b) solid skeleton displacement u(X = H/2, t) and pore fluid displacement
uf(X = H/2, t)
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Fig. 23 Pore fluid stress results from applying the Friedlander impulse (50 kPa) to the perme-
able, blood-saturated lung parenchyma for the Gauss point closest to X = H

Fig. 24 Solid extra stress results from applying the Friedlander impulse (50 kPa) to the perme-
able, blood-saturated lung parenchyma for the Gauss point closest to X = H
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(a) t = 0.03 ms (b) t = 0.30 ms (c) t = 3.00 ms

Fig. 25 Contours along the length of the mesh for pore fluid extra stress σf
11(E), pore fluid velocity vf and porosity nf for permeable, blood-saturated

lung parenchyma after applying the Friedlander impulse with 50 kPa maximum overpressure
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5. Conclusion

We have expanded upon prior work27–30 by assuming non-negligible contributions
of pore fluid viscous stress to total pore fluid stress. It has been shown that inclu-
sion of the pore fluid viscous stress (the pore fluid extra stress) led to higher-order
continuity requirements in the variational forms of the governing equations for bal-
ance of mass of the mixture and balance of linear momentum of the pore fluid,
via the porosity gradient and Laplacian of pore fluid velocity. A C1 continuous
finite-element, the Hermite cubic polynomial, has been employed to ensure global
convergence of the weakened forms of the aforementioned equations. The imple-
mentation was verified for a small-strain analytical solution assuming finite strain
numerical implementation.

Numerical simulations for shock loading of lung parenchyma then followed. It was
shown that for impermeable (undrained) and permeable (drained) boundary condi-
tions, with air as the pore fluid, inclusion of the pore fluid extra stress had negligible
effects on deformations. For permeable boundary conditions, effect of pore fluid
extra stress on total fluid stress is more noticeable, particularly when the saturating
fluid is changed from air to blood, where the latter has viscosities two orders of
magnitude larger than the former. However, inclusion of pore fluid extra stress does
not affect the solid extra stress, that is, the material response of the lung tissue itself.

A limiting factor in the present simulations is the assumption of 1-D uniaxial strain.
Indeed, pore fluid viscous stresses along the direction of flow are not expected to be
as significant compared to shear stresses at the fluid-structure interface. The latter
are responsible for development of boundary layers in the pore channels, which,
though not necessary to model given the length scale of interest, could affect nu-
merical results for 3-D simulations. Notwithstanding, we have demonstrated for
1-D uniaxial strain shock problems that pore fluid pressure is the dominant force
compared to viscous effects, and that the pore fluid extra stress may be ignored in
such scenarios.

Furthermore, overcoming theC1 continuity requirement for solid skeleton displace-
ment will allow for appropriate implementation of distinct phase temperatures via
balances of energy of each phase. Recall from Irwin et al.27 the dissipation inequal-
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ity for distinct phase temperatures θs ̸= θf :

∑
α

1

θα

(
ρα
[
Dα

t ψ
α + ηαDα

t θ
α
]
− σα .. lα − êα + ρ̂α

[
ψα − 1

2
vα · vα

]
+ hα · vα

+
1

θα
grad(θα) · qα

)
≥ 0 .

(124)

With the assumption of negligible mass supplies (i.e., ρ̂s = ρ̂f = 0), the Clausius-
Duhem inequality (dissipation inequality) for the mixture, now assuming thermally
compressible solid (s) constituent, is written as

(
ρsDs

tψ
s +

θs

θf
ρfDf

tψ
f
)
+
([
ρsηs − Λ
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ρsR
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−
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] .. ds +
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θf
σf + Λnf1

]
.. df
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+(hf − Λgradnf) · ṽf − Λ

nf

ρfRD
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fR

−ε̂f
(θs
θf
− 1
)
+
( 1

θs
grad(θs) · qs +

θs

(θf)2
grad(θf) · qf

)
≥ 0 , (125)

where ηα is the phase entropy, ε̂f is the local interaction energy supply to the pore
fluid (e.g., heat transfer), and Λ is a Lagrange multiplier satisfying the saturation
constraint

Λ
( ns

ρsR

∂ρsR

∂θs
Ds

tθ
s + nsds

.. 1+
nf

ρfRD
f
tρ

fR + nfdf
.. 1+ grad(nf) · ṽf

)
= 0 . (126)

Introducing the so-called “extra” terms,

σs
E = σs + Λns1 ,

σf
E = σf + Λ

θf

θs
nf1 ,

ηsE = ηs − Λ
1

(ρsR)2
∂ρsR

∂θs
,

hf
E = hf − Λgradnf ,

(127)

it can be shown that in order to satisfy the thermodynamic identity56,57

∂ψf

∂vf
= −pf ⇒

∂ψf

∂ρfR

∂ρfR

∂vf
= −pf ⇒ (ρfR)2

∂ψf

∂ρfR = pf , (128)
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the following must hold:

Λ =
θs

θf
pf . (129)

This means that

hf
E = hf − θs

θf
pfgradn

f , (130)

such that the distinct phase temperature Darcy-Brinkman equation is written as

nf ṽf = −k̂
(
ρfR(af − b) + gradpf −

1

nf
divσf

E +
1

nf
pfgrad(n

f)
[
1− θs

θf

])
.

(131)

Thus, the porosity gradient must be calculated when assuming distinct phase tem-
peratures. Future work will include implementation of distinct phase temperatures
in the numerical model, with the aim of formulating rate equations for phase en-
tropies to enable a thermodynamically-consistent damage model for the solid (s)
phase of lung parenchyma (similar to the one developed by Clayton et al.9,10) thus
allowing us to quantify damage in lung tissue subjected to high-strain-rate loading.
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2. Suki B, Ito S, Stamenović D, Lutchen K, Ingenito E. Biomechanics of the
lung parenchyma: critical roles of collagen and mechanical forces. Journal of
Applied Physiology. 2005;98:1892–1899.

3. Freed A, Zamana S, Paul S, Clayton J. A Dodecahedral Model for Alveoli.
Part I. Theory and Numerical Methods. DEVCOM Army Research Laboratory
(US); 2021. Report No.: ARL-TR-9148.

4. Suki B, Bates J. Lung tissue mechanics as an emergent phenomenon. Journal
of Applied Physiology. 2011;110:1111–1118.

5. Brannen M, Kang G, Dutrisac S, Banton R, Clayton J, Petel O. The influence
of the tertiary bronchi on dynamic lung deformation. Journal of the Mechanical
Behavior of Biomedical Materials. 2022;130:105181.

6. Clayton J, Freed A. Viscoelastic-damage theory based on a QR decomposition
of deformation gradient. DEVCOM Army Research Laboratory (US); 2019.
Report No.: ARL-TR-8840.

7. Clayton J, Banton R, Freed A. A nonlinear thermoelastic-viscoelastic contin-
uum model of lung mechanics for shock wave analysis. In: Shock Compression
of Condensed Matter; Vol. 2272; Lane J, editor. Portland (OR): AIP Confer-
ence Proceedings; 2020; p. 040001.

8. Clayton J. Modeling lung tissue dynamics and injury under pres-
sure and impact loading. Biomechanics and Modeling in Mechanobiology.
2020;19(6):2603–2626.

9. Clayton JD, Freed AD. A constitutive model for lung mechanics and injury
applicable to static, dynamic, and shock loading. Mechanics of Soft Materials.
2020;2(3).

10. Clayton J, Banton R, Goertz A. A continuum model of the human lung: imple-
mentation and parameterization. DEVCOM Army Research Laboratory (US);
2021. Report No.: ARL-TR-9138.

74



11. Freed A, Clayton J. Coordinate indexing strategies for the laplace stretch in
two and three dimensions. DEVCOM Army Research Laboratory (US); 2022.
Report No.: ARL-TR-9530.

12. Truesdell C, Toupin R. The classical field theories. In: Principles of Classi-
cal Mechanics and Field Theory / Prinzipien der Klassischen Mechanik und
Feldtheorie; Flügge S, editor. Berlin, Heidelberg: Springer Berlin Heidelberg;
1960; p. 226–858.

13. Bowen R. Theory of mixtures. In: Continuum Physics; Elsevier; 1976; p. 1–
127.

14. Bowen R. Incompressible porous media models by use of the theory of mix-
ture. International Journal of Engineering Science. 1980;18(9):1129–1148.

15. Bowen R. Compressible porous media models by use of the theory of mix-
tures. International Journal of Engineering Science. 1982;20(6):697–735.

16. Ehlers W. Foundations of multiphasic and porous materials. In: Porous Me-
dia: Theory, Experiments and Numerical Applications; Ehlers W, Bluhm J, ed-
itors. Berlin, Heidelberg: Springer Berlin Heidelberg; 2002; p. 3–86.

17. Coussy O. Poromechanics. John Wiley & Sons; 2004.

18. de Boer R. Trends in continuum mechanics of porous media: theory and ap-
plications of transport in porous media. Springer; 2005.

19. Bowen R, Chen P. Shock waves in a mixture of linear elastic materials. Ren-
diconti del Circolo Matematico di Palermo. 1972;21:267–283.

20. Bowen R, Wright T. On wave propagation in a mixture of linear elastic mate-
rials. Army Ballistic Research Laboratory; 1972. Report No.: BRL-TR-1581.

21. Bowen R, Chen P. Shock waves in ideal fluid mixtures with several tempera-
tures. Archive for Rational Mechanics and Analysis. 1974;53:277–294.

22. Bowen R, Chen P, Nunziato J. Shock waves in a mixture of chemically react-
ing materials with memory. Acta Mechanica. 1975;21:1–11.

23. Clayton J. Analysis of shock waves in a mixture theory of a thermoelastic
solid and fluid with distinct temperatures. International Journal of Engineering
Science. 2022;175:103675.

75



24. Tsokos M, Paulsen F, Petri S, Madea B, Püschel K, Türk E. Histo-
logic, immunohistochemical, and ultrastructural findings in human blast
lung injury. American Journal of Respiratory and Critical Care Medicine.
2003;168(5):549–555; PMID: 12842857.

25. Cooper G, Townend D, Cater S, Pearce B. The role of stress waves in thoracic
visceral injury from blast loading: Modification of stress transmission by foams
and high-density materials. Journal of Biomechanics. 1991;24:273–285.

26. Cooper G. Protection of the lung from blast overpressure by thoracic stress
wave decouplers. The Journal of Trauma: Injury, Infection, and Critical Care.
1996;40:105S–110S.

27. Irwin Z, Regueiro R, Clayton J. A Large Deformation Multiphase Continuum
Mechanics Model for Shock Loading of Lung Parenchyma. Part I: Theory. DE-
VCOM Army Research Laboratory (US); 2023. Report No.: ARL-TR-9686.

28. Irwin Z, Regueiro R, Clayton J. A Large Deformation Multiphase Continuum
Mechanics Model for Shock Loading of Lung Parenchyma. Part III: Numerical
simulations. DEVCOM Army Research Laboratory (US); 2023. Report No.:
ARL-TR-9688.

29. Irwin Z, Clayton J, Regueiro R. A large deformation multiphase continuum
mechanics model for shock loading of soft porous materials. International Jour-
nal for Numerical Methods in Engineering. 2023; submitted.

30. Irwin Z, Regueiro R, Clayton J. A Large Deformation Multiphase Continuum
Mechanics Model for Shock Loading of Lung Parenchyma. Part II: Numeri-
cal methods. DEVCOM Army Research Laboratory (US); 2023. Report No.:
ARL-TR-9687.

31. Holzapfel G. Nonlinear solid mechanics: A continuum approach for engineer-
ing. John Wiley & Sons; 2000.

32. Vuong AT, Ager C, Wall W. Two finite element approaches for Darcy and
Darcy–Brinkman flow through deformable porous media—mixed method vs.
nurbs based (isogeometric) continuity. Computer Methods in Applied Mechan-
ics and Engineering. 2016;305:634–657.

76



33. Vuong AT. A computational approach to coupled poroelastic media problems
[thesis]. Technische Universität München (DEU); 2016.

34. Markert B. Porous Media Viscoelasticity with Application to Polymeric Foams
[thesis]. Institut für Mechanik (Bauwesen) der Universität Stuttgart (DEU);
2005.

35. Ehlers W. Darcy, Forchheimer, Brinkman and Richards: classical hydrome-
chanical equations and their significance in the light of the TPM. Archive of
Applied Mechanics. 2022;92(2):619–639.

36. Ehlers W, Ellsiepen P, Blome P, Mahnkopf D, Markert B. Theoretische und nu-
merische studien zur lösung von rand- und anfangswertproblemen in der theo-
rie poröser medien, abschulußbericht zum dfg-forschungsvorhaben eh 107/6-2.
Institut für Mechanick, Unversität Stuttgart (DEU); 1999. Report No.: 99-II-1.

37. Lande B, Mitzner W. Analysis of lung parenchyma as a parametric porous
medium. Journal of Applied Physiology. 2006;101(3):926–933.

38. Nield D, Bejan A. Convection in Porous Media. Springer New York; 2013.

39. Bear J. Dynamics of fluids in porous media. Dover Publications, Inc.; 1972.

40. Winter R, Valsamidou A, Class H, Flemisch B. A study on Darcy versus
Forchheimer models for flow through heterogeneous landfills including macro-
pores. Water. 2022;14(4):546.

41. Sobieski W, Trykozko A. Darcy’s and Forchheimer’s laws in practice. Part 1.
The experiment. Technical Sciences. 2014;17(14):321–355.

42. Hughes T, Cottrell J, Bazilevs Y. Isogeometric analysis: Cad, finite elements,
nurbs, exact geometry and mesh refinement. Computer Methods in Applied
Mechanics and Engineering. 2005;194(39-41):4135–4195.

43. Heider Y. Saturated Porous Media Dynamics with Application to Earthquake
Engineering [thesis]. [Stuttgart, Germany]: Institut für Mechanik (Bauwesen)
Lehrstuhl für Kontinuumsmechanik; 2012 OCLC: 824646288.

44. Hughes T. The finite element method: Linear static and dynamic finite element
analysis. Dover Publications, Inc.; 2000.

77



45. Newmark N. A method of computation for structural dynamics. Journal of the
Engineering Mechanics Divison. 1959;85(3):67–94.

46. Cash JR, Karp A. A variable order runge-kutta method for initial value prob-
lems with rapidly varying right-hand sides. ACM Translations on Mathematical
Software. 1990;16(3):201–222.

47. Bogacki P, Shampine L. A 3(2) pair of runge - kutta formulas. Applied Math-
ematics Letters. 1989;2(4):321–325.

48. de Boer R, Ehlers W, Liu Z. One-dimensional transient wave propagation in
fluid-saturated incompressible porous media. Archive of Applied Mechanics.
1993;63(1):59–72.

49. Holmes M, Parker N, Povey M. Temperature dependence of bulk viscosity
in water using acoustic spectroscopy. Journal of Physics: Conference Series.
2011;269(1).

50. Yen R, Fung Y, Liu S. Trauma of lung due to impact load. Journal of Biome-
chanics. 1988;21(9):745–753.

51. Rand P, Lacombe E, Hunt H, Austin W. Viscosity of normal human blood un-
der normothermic and hypothermic conditions. Journal of Applied Physiology.
1964;19(1):117–122.

52. Shang J, Wu T, Wang H, Yang C, Ye C, Hu R, Tao J, He X. Measurement of
temperature-dependent bulk viscosities of nitrogen, oxygen and air from spon-
taneous rayleigh-brillouin scattering. IEEE Access. 2019;7:136439–136451.

53. Friedlander F. The diffraction of sound pulses. I. Diffraction by a semi-infinite
plane. The Royal Society. 1946;186(1006).

54. Dewey J. The Friedlander equations. In: Blast Effects: Physical Properties of
Shock Waves; Sochet I, editor. Springer International Publishing; 2018; p. 37–
55.

55. Fung Y. Biomechanics. Motion, flow, stress, and growth. Springer; 1990.

56. Davison L. Fundamentals of shock wave propagation in solids. Springer;
2008.

78



57. Clayton J. Differential geometry and kinematics of continua. Singapore:
World Scientific; 2014.

79



List of Symbols, Abbreviations, and Acronyms

TERMS:

1-D one-dimensional

2-D two-dimensional

3-D three-dimensional

ARL Army Research Laboratory

CFD computational fluid dynamics

CFL Courant-Friedrichs-Lewy

DEVCOM US Army Combat Capabilities Development Command

DOF degree(s) of freedom

FE finite element

FSI fluid-structure interaction

NB Newmark-beta integrator

NURBS Non-uniform rational B-spline

ODE ordinary differential equation

RKFNC Runge-Kutta Cash-Karp integrator

SF safety factor

TPM theory of porous media
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MATHEMATICAL SYMBOLS:

t time

x, xk Cartesian spatial coordinates

X, XK Cartesian reference coordinates

uα, ui(α) displacement of phase α

nα volume fraction of phase α

mα mass of phase α

ραR real mass density of phase α [Mass/Length3]

ρα partial mass density of phase α [Mass/Length3]

ρ̂α mass supply to phase α

Jα Jacobian of deformation of phase α

F α, FiI(α) deformation gradient of phase α

pα Cauchy pressure of phase α [Force/Length2]

vα, vi(α) velocity of phase α [Length/Time]

dα, dij(α) velocity gradient of phase α [Time−1]

aα, ai(α) acceleration of phase α [Length/Time2]

hα, hαi interaction force of phase α with other phases

σα, σα
ij partial Cauchy stress of phase α [Force/Length2]

P α, Pα
iI first Piola-Kirchhoff stress of phase α [Force/Length2]

ηα entropy per unit mass of phase α [Length2/Time2·Temperature]

ψα free energy per unit mass of phase α [Length2/Time2]

θα temperature of phase α

εα energy supply per unit mass to phase α [Length2/Time2]

qα, qαi heat flux vector of phase α [Length2·Mass/Time2]

k̂ hydraulic conductivity [Length3·Time/Mass]

ηα shear viscosity of phase α [Force·Time]

κα bulk viscosity of phase α [Force·Time]
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κ solid skeleton intrinsic permeability [Length2]

Kη
α isentropic bulk modulus of phase α [Force/Length2]
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