СОДЕРЖАНИЕ

НАУКИ О ЗЕМЛЕ 471

<table>
<thead>
<tr>
<th>Авторы</th>
<th>Название</th>
<th>Страницы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Рудько Г.И., Мятченко А.В., Исатеева Ф.М., Портнов В.С.</td>
<td>ГЕОЛОГО-ЭКОНОМИЧЕСКАЯ ОЦЕНКА ЗАПАСОВ МЕСТОРОЖДЕНИЙ КАЗАХСТАНА</td>
<td>471</td>
</tr>
<tr>
<td>Дегтярева Т.В., Лиховид А.А., Лысенко А.В., Кареев Ю.И.</td>
<td>РЕГИОНАЛЬНЫЕ СТРУКТУРЫ МИГРАЦИИ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ЛАНДШАФТАХ СЕВЕРНОГО КАВКАЗА</td>
<td>481</td>
</tr>
<tr>
<td>Кирилева В.В., Рассказова Т.Г., Сербулова Н.М.</td>
<td>СПОСОБ ПОЛУЧЕНИЯ ОРГАНИЧЕСКОГО УДОБРЕНИЯ ИЗ ОТХОДОВ ПОЛЕВОДСТВА ДЛЯ ПОДДЕРЖАНИЯ ПОЧВЕННОГО ПЛОДОРОДИЯ</td>
<td>493</td>
</tr>
<tr>
<td>Гризеев М.В., Качурин Н.М., Стась Г.В.</td>
<td>ПЫЛЕГАЗОВЫЕ ВЫБРОСЫ С ПОВЕРХНОСТИ ПОРОДНЫХ ОТВАЛОВ ЛИКВИДИРОВАННЫХ ШАХТ УГОЛЬНОГО БАССЕЙНА</td>
<td>500</td>
</tr>
<tr>
<td>Заалишвили В. Б., Рекава П. А., Мельков Д. А.</td>
<td>РАЗВИТИЕ СЕЙСМОСТОЙКОГО СТРОИТЕЛЬСТВА НА ГОРНЫХ ТЕРРИТОРИЯХ СЕВЕРНОЙ ОСЕТИИ НА ОСНОВЕ НОВОЙ РЕГИОНАЛЬНОЙ КРИВОЙ КОЭФФИЦИЕНТА ДИНАМИЧНОСТИ</td>
<td>509</td>
</tr>
<tr>
<td>Рыльникова М.В., Струков К.И., Есина Е.Н.</td>
<td>ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ГОРНОТЕХНИЧЕСКОЙ СИСТЕМЫ НА ЗАВЕРШАЮЩЕЙ СТАДИИ ПОДЗЕМНОЙ РАЗРАБОТКИ ЖИЛЬНЫХ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ УРАЛА</td>
<td>518</td>
</tr>
<tr>
<td>Умаров М.У., Галаев Я.С, Тайсумов М.А.</td>
<td>ФЛЮРА ПАРАБОЧЕВСКОГО ЗАКАЗНИКА И ЕЕ СИСТЕМАТИЧЕСКИЙ АНАЛИЗ</td>
<td>526</td>
</tr>
<tr>
<td>Рыбак О.О., Рыбак Е.А., Корнева И.А., Поповинин В.В.</td>
<td>МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ ЛЕДНИКА ДЖАНКУАТ В СОВРЕМЕННЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ</td>
<td>533</td>
</tr>
</tbody>
</table>

ТЕХНИЧЕСКИЕ НАУКИ 545

<table>
<thead>
<tr>
<th>Авторы</th>
<th>Название</th>
<th>Страницы</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morkun V.S., Morkun N.V., Tron V.V., Dotsenko I.A.</td>
<td>ADAPTIVE CONTROL SYSTEM FOR THE MAGNETIC SEPARATION PROCESS</td>
<td>545</td>
</tr>
</tbody>
</table>

Гиясов А.А., Тускаева З.Р., Гиясова И.В. ИСПОЛЬЗОВАНИЕ ОСОБЕННОСТЕЙ СЛОЖНОГО РЕЛЬФА ДЛЯ УСТОЙЧИВОГО РАЗВИТИЯ ГОРНЫХ ТЕРРИТОРИЙ 558

Алепеев Б.С., Черноморский А. И., Курис Э.Д. НАЗЕМНЫЕ КОЛЕСНЫЕ ТРАНСПОРТНЫЕ МОДУЛИ ДЛЯ РЕШЕНИЯ ЗАДАЧ МОНИТОРИНГА ОКРУЖАЮЩЕЙ СРЕДЫ ГОРНЫХ ТЕРРИТОРИЙ 566

Соколов И.В., Смирнов А.А., Никитин И.В. ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРИ РАЗРАБОТКЕ КТИ-ТЕБЕРДИНСКОГО ВОЛЬФРАМОВОГО МЕСТОРОЖДЕНИЯ 577

Хасаева Б. Д., Маслаков М. П., Карлов В. В., Олисаева О.В. РАЗРАБОТКА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ДЛЯ ГОРНОДОБЫВАЮЩИХ ПРЕДПРИЯТИЙ 586

Michail M. Buczek, Nguyen Quoc Long, Xuan-Nam Bui, Hoang Nguyen APPLICATION OF KNOTHE-BUDRYK THEORY AND RIGID BODY CONDITION FOR ASSESSMENT OF SUBSIDENCE 595

Демин В.Ф., Демина Т.В., Кайназаров А.С., Кайназарова А.С. ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ТЕХНОЛОГИЧЕСКИХ СХЕМ ПРОВЕДЕНИЯ ВЫРАБОТКИ ДЛЯ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ ИХ КОНТУРОВ 606

Люткова Л.А., Махошева С.А., Шматова Е.В., Кандрокова М.М. РАЗРАБОТКА МЕТОДОВ КОРРЕКТИРУЮЩИХ АЛГОРИТМОВ ДЛЯ ПОСТРОЕНИЯ ОПТИМАЛЬНОЙ СТРАТЕГИИ РАЗВИТИЯ ГОРНЫХ ТЕРРИТОРИЙ 617

Поспелов П. И., Кортев А. Л. НОРМЫ ПРОЕКТИРОВАНИЯ ДОРОГ В ГОРНЫХ УСЛОВИЯХ С УЧЕТОМ ОБЕСПЕЧЕНИЯ БЕЗОПАСНОСТИ ДВИЖЕНИЯ 624

ИНФОРМАЦИЯ ДЛЯ АВТОРОВ 631

ПОДПИСКА 635
CONTENTS

EARTH AND PLANETARY SCIENCES
ENVIRONMENTAL SCIENCES 471
G. I. Rudko, A. V. Myatchenko, F.M. Isataeva, V. S. Portnov GEOLOGICAL-ECONOMIC ESTIMATION OF KAZAKHSTAN DEPOSITS 471
V.V. Kireeva, T.G. Rasskazova, N.M. Serbulova MAINTAINING SOIL FERTILITY: A METHOD FOR ORGANIC FERTILIZER PRODUCTION FROM CROP FARMING WASTE 493
M.V. Gryazev, N.M. Kachurin, G.V. Stas DUST AND GAS EMISSIONS FROM THE DUMPS SURFACES OF THE LIQUIDATED MINES OF THE MOSCOW COAL BASIN 500
V.B. Zaalishvili, P.A. Rekava, D.A. Melkov DEVELOPMENT OF SEISMIC RESISTANCE CONSTRUCTIONS IN THE MOUNTAIN TERRITORIES OF NORTH OSSETIA ON THE BASIS OF A NEW REGIONAL CURVE OF DYNAMICITY COEFFICIENT 509
M.V. Rylnikova, K.I. Strukov, E.N. Esina SUSTAINABLE DEVELOPMENT OF MINING SYSTEM AT THE FINAL STAGE OF UNDERGROUND MINING VEIN GOLD DEPOSITS OF THE URALS 518
M.U. Umarov, Y.C. Gapaev, M.A. Taisumov PARABOCHYEVSCIY RESER FLORA AND ITS SYSTEMATIC ANALYSIS 526
O.O. Rybak, E.A. Rybak, I.A. Korneva, V.V Popovnin MATHEMATICAL MODELING OF DJANKUAT GLACIER EVOLUTION IN PRESENT-DAY CLIMATIC CONDITIONS 533

ENGINEERING 545
Morkun V.S., Morkun N.V., Tron V.V., Dotsenko I.A. ADAPTIVE CONTROL SYSTEM FOR THE MAGNETIC SEPARATION PROCESS 545
Уважаемые коллеги!

В соответствии с Заключением Президиума ВАК Минобрнауки РФ от 19.12.2014 г. №47/307 с 2015 года статьи для публикации в журнале «Устойчивое развитие горных территорий» принимаются по следующим группам научных специальностей и отраслям наук:
25.00.00 Науки о Земле (все научные специальности в рамках группы);
05.00.00 Технические науки (три группы научных специальностей):
05.05.00 Транспортное, горное и строительное машиностроение;
05.13.00 Информатика, вычислительная техника и управление;
05.14.00 Энергетика.
08.00.00 Экономические науки (все научные специальности в рамках группы).

Журнал включен в Международную реферативную базу данных и систему цитирования Scopus. Публикации в журнале «Устойчивое развитие горных территорий» принимаются по следующим группам научных специальностей и отраслям наук:
1. Engineering (технические науки);
2. Earth and Planetary Sciences (науки о Земле и планетарные науки);
3. Environmental Science (наука об окружающей среде).

В связи с тем, что журнал «Устойчивое развитие горных территорий» входит в «Перечень российских рецензируемых научных журналов, в которых должны публиковаться основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук» и включен в международную реферативную базу данных и систему цитирования Scopus, просьба к авторам:
- соблюдать требования к авторам публикации;
- текст статьи сопровождать необходимыми сопутствующими материалами;
- не выходить за рамки обозначенного допустимого объема статьи;
- выполнить все требования, предъявляемые к рисункам, диаграммам, фотографиям и пр. Напоминаем, что редакция не возвращает авторам присланные материалы равно как на бумажных, так и на электронных носителях.

Сообщаем также, что количество журналов, в рекламных целях рассылающих ранее бесплатно, значительно сокращено, в связи с чем информируем, что подписка на журнал продолжается. Те, кто не успел подписаться на 2 полугодие 2018 года в отделениях Роспечати, могут сделать это в самой редакции (подробности стоимости и условий подписки в разделе «Подписка. Реклама» журнала).

Редакция также осуществляет услуги по изготовлению и размещению рекламных материалов на страницах журнала (обложка, цветные вклейки, черно-белые вставки). Вы можете прорекламировать продукцию, разработанную в ваших лабораториях и научных центрах, предложить запатентованное вами оборудование, приборы, новые технологии, сделать предложение о сотрудничестве, предложить услуги научного либо прикладного характера, попытаться привлечь инвестиции под ваши проекты, произошедшие монографию, т.е. на правах рекламы разместить любую необходимую для вас информацию.

Сделав заявку и прислав текст и примерный вид вашей предполагаемой рекламы, Вы, связавшись с нами по телефону редакции +7(918)707-39-25, обговорим все детали. Получив от нас счет за выполненную работу, оплачиваете его, а копию платежного полученного присылаете на электронный адрес редакции.

Всегда рады сотрудничеству.
УДК: 553.04(574)

Наращивание зависимости экономики Республики Казахстан от импорта и активизация политики импортозамещения требуют реформирования в сфере недропользования. В свете сказанного актуализируется необходимость роста научной обоснованности геолого-экономической оценки месторождений, ее соответствия международным требованиям. На примере перспективного колчеданно-медно-цинкового месторождения Кусмурын показаны возможности дальнейшего совершенствования геолого-экономической оценки с учетом внедрения в Казахстане международной системы стандартов отчетности по запасам полезных ископаемых CRIRSCO. Предложены показатели, углубляющие геолого-экономическую оценку.

Для соответствия уровню экономического развития богатых природными ресурсами стран, к числу которых относится и Казахстан, требуется интенсификация их добычи, увеличение глубины переработки в готовую продукцию с целью получения добавленной стоимости в обрабатывающей отрасли [4–8]. Не теряет актуальность проблема повышения инвестиционной привлекательности отрасли за счет активизации таких экономических методов, как льготное налогообложение, преференции, лицензии, отмена налога на добавленную стоимость на геолого-разведочные работы и геологическую информацию.

Решение указанных проблем требует не только совершенствования геолого-эколого-геофизических исследований. Слабо изученными остаются экономическая сторона геологоразведочной деятельности, достоверность и обоснованность геолого-экономической оценки месторождений, что и определяет актуальность настоящего исследования.

Авторами выдвигается тезис о том, что прогресс Казахстана связан, прежде всего, с наличием природных ресурсов, многолетней практикой, охватывающей все сложности хозяйствования, отработкой защитных механизмов по отстаиванию национальных интересов. Накопленный Казахстаном опыт по индустриально-инновационному развитию может быть полезным для развивающихся стран.
Состояние геологоразведочной отрасли Казахстана

За годы новой индустrialизации Казахстана активизировалось государственное регулирование отрасли: в июне 2016 г. Казахстан стал 10-м членом Комитета CRIRSCO; страна вошла в состав Правления организации ИНИЦИАТИВА ПРОЗРАЧНОСТИ ДЕЯТЕЛЬНОСТИ, странство которой призвано повысить ответственность и открытость геологоразведочных компаний, улучшить качество информации о недрах и недропользовании, создать условия для привлечения инвестиций в геологоразведку и обеспечить достоверность и прозрачность процессов недропользования.

В 2018 г. на поиск и разведку месторождений стратегических металлов, таких как медь, золото, редкие металлы, свинец, цинк, хром, были нацелены 39 инвестиционных проектов. Размер частных инвестиций в геологоразведку составил порядка 4 млрд. тенге.

Укрепление международных позиций Казахстана, применение опыта других стран, как Германия и Норвегия, делает необходимым обеспечение безвозмездного доступа к информации о недрах и недропользователях, условиях и конечных бенефициариев (лицах и юридических лицах, получивших лицензию или либо контролирующих владельцев, условиях и конечных бенефициарах), что приведет не только к снижению геологоразведочных работ, но и сокращению недропользования.

Инвестиции, направляемые на поиски и разведку месторождений полезных ископаемых, носят инновационный характер [6; 7]. В отрасли планируется увеличение доли геологоразведочных работ, выполняемых инновационными технологиями, до 75 %, в связи с чем система налогообложения геологоразведочной деятельности должна быть скорректирована с учетом повышенного риска в данной сфере деятельности [8–10]. Инновационное развитие открывает возможность для добычи новых, скрытых потенциалов недр, в том числе за счет использования новых технологий и методов."
руженных запасах. Общеизвестно, что биржи и банки оказывают доверие горнодобывающим и геологоразведочным предприятиям лишь в случае соответствия их деятельности и представленных отчетных данных международным стандартам.

На текущий период почти три четверти месторождений Казахстана законтрактованы, из действующих 866 контрактов на недропользование 484 приходится на месторождения твердых полезных ископаемых. К наиболее востребованным видам ископаемых относятся золото, медь, свинец, цинк, уран. Активизируются работы по металлам (итрий, итербий) в 16 основных рудных провинциях (табл. 2) [11].

С учетом зарубежного опыта, специфики проведения геологоразведочных работ в труднодоступных районах Казахстана и влияния такого фактора, как разнообразие поверхностных и горно-геологических условий, планируется разработка программы по изучению редкоземельных элементов, основанной на оценке перспектив освоения новых участков, с привлечением высокотехнологических японских и корейских компаний [2; 12–14].

Геолого-экономическая оценка запасов месторождения Кусмурын

Индустрально-инновационное развитие Казахстана потребовало перестройку геологоразведочной отрасли в части совершенствования геолого-экономической оценки месторождений, для которых главным остаются социально-экономические и горно-геологические факторы [15, 16]. Принимаются системные действия по стимулированию геологических и разведочных исследований новых месторождений, призванных стабилизировать сырьевую базу для индустриализации страны [2; 5; 17].

В свете сказанного, особую значимость приобретает геолого-экономическая оценка тех месторождений, которые располагают прогнозными ресурсами полезных ископаемых, однако еще недостаточно изучены и не располагают соответствующей инфраструктурой. К их числу относится кольчеданно-медно-цинково-щитковое месторождение Кусмурын, технико-экономическое обоснование которого разработано еще в советский период.

Реализованный в 1957 г. комплекс детальных геолого-геофизических работ выявил большой по площади интенсивный ореол рассеяния меди, в пределах которого наблюдались повышенные содержания свинца, цинка и следы золота. Проведение первых буровых работ, бурение трещ скважин севернее железной шляпы, которыми на различных интервалах были подсечены рудные метасоматически измененные породы с промышленными содержаниями меди, дало возможность отнести рудопроявление к разряду перспективных.

В 1958–1977 гг. буровые работы проводились по стадиям, в результате чего установлено, что это месторождение отличается повышенным содержанием меди и цинка как в приповерхностных смешанных рудах, так и в сульфидных рудах. Были разведаны пять линзовидных рудных тел протяженностью по простиранию до 350 м, по падению – до 650 м при мощности 2–75 м. Первичные руды колчеданно-медно-цинковые, прожилково-вкрапленные, среднее содержание золота – 1,12 г/т, меди – 3,37 %, цинка – 1 %. На основе комплексного геолого-геофизического изучения месторождения разработаны кондиции для дальнейшего подсчета запасов руд.

В постсоветский период ТОО «Корпорация Казахмыс» – один из крупнейших производителей меди в Казахстане, начинает отрабатывать месторождение открытым способом с дальнейшей отработкой подземным методом. До 2009 г. месторождение было одним из основных сырьевых источников медной и медно-цинковой руды для Карагайлинской обогатительной фабрики, входящей в корпорацию.

<table>
<thead>
<tr>
<th>Вид полезного ископаемого</th>
<th>Золото, т</th>
<th>Медь, млн. т</th>
<th>Свинец, млн. т</th>
<th>Цинк, млн. т</th>
<th>Уран, тыс. т</th>
<th>Железо, млн. т</th>
<th>Уголь, млн. т</th>
</tr>
</thead>
<tbody>
<tr>
<td>Запасы на государственном балансе</td>
<td>1140</td>
<td>30</td>
<td>12</td>
<td>25</td>
<td>904</td>
<td>10</td>
<td>34103</td>
</tr>
<tr>
<td>Количество месторождений</td>
<td>330</td>
<td>120</td>
<td>96</td>
<td>93</td>
<td>73</td>
<td>60</td>
<td>147</td>
</tr>
<tr>
<td>Законтрактовано, %</td>
<td>97</td>
<td>98</td>
<td>92</td>
<td>94</td>
<td>77</td>
<td>67</td>
<td>39</td>
</tr>
</tbody>
</table>

Таблица 2 / Table 2

Твердые полезные ископаемые Казахстана [2; 4; 5; 10]

Solid minerals of Kazakhstan [2; 4; 5; 10]
Однако смешанный тип руд с более высоким содержанием окислов меди и цинка, высокая трудоемкость обогащения медно-цинковых руд, продолжительная транспортировка руды автосамосвалами по грейдерной дороге до обогатительной фабрики и недостаточная изученность технологии переработки медно-цинковых руд отрицательно отразились на себестоимости концентрата, получаемого из них. Поэтому в конце 2009 г. ТОО «Корпорация Казахмыс» вынуждено было остановить добычные работы на месторождении, а в середине 2010 г. было получено разрешение на «консервацию» добычных работ до 2012 г.

В это же время корпорация проводила геологоразведочные работы на месторождении, в том числе для отбора представительной технологической пробы, проведения испытаний и дальнейшей разработки схемы переработки медно-цинковых руд. Доразведка буровыми работами была необходима для отбора кернового материала для технологического картирования, доразведки флангов месторождения как по простиранию, так и по падению. В связи с необходимостью пересмотра глубины отработки месторождения и его изучения планировалось провести инженерно-геологическое бурение с последующим проведением тестов на определение физико-механических свойств пород.

Исследованиями установлено, что большая часть массива горных пород имеет среднюю категорию устойчивости (70÷80 %), остальная часть горного массива, представленная в основном рудной зоной, оказалась неустойчивой.

По результатам химико-аналитических, петрогра-фических, минералогических и технологических работ, выполненных в процессе разведки месторождения, выделено три природных типа руд: первичные сульфидные; смешанные; окисленные.

По своему вещественному составу (пирита до 90 %) руды месторождения Кусмурын отнесены к медно-кобальтовому промышленному типу с главными рудообразующими минералами – пиритом, халькопиритом, сфалеритом, галенитом. В соответствии с запасами, месторождение признано мелким (табл. 3).

Таблица 3 / Table 3

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Вид полезного ископаемого</th>
<th>Категория запасов</th>
<th>Запасы месторождения Кусмурын [18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>№ п/п</td>
<td>Mineral type</td>
<td>Ba</td>
<td>C1</td>
</tr>
<tr>
<td>1</td>
<td>Руда, тыс. т / Ore, th.t</td>
<td>19105.2</td>
<td>1862.0</td>
</tr>
<tr>
<td>2</td>
<td>Медь, тыс. т / Copper, th.t</td>
<td>644.1</td>
<td>53.9</td>
</tr>
<tr>
<td>3</td>
<td>Цинк, тыс. т / Zinc, th.t</td>
<td>191.0</td>
<td>12.5</td>
</tr>
<tr>
<td>4</td>
<td>Золото, кг / Gold, kg</td>
<td>21122.0</td>
<td>2095.0</td>
</tr>
<tr>
<td>5</td>
<td>Серебро, т / Silver, t</td>
<td>382.6</td>
<td>37.3</td>
</tr>
<tr>
<td>6</td>
<td>Селен, т / Selenium, t</td>
<td>1764.0</td>
<td>177.0</td>
</tr>
<tr>
<td>7</td>
<td>Теллур, т / Tellurium, t</td>
<td>809.0</td>
<td>81.0</td>
</tr>
<tr>
<td>8</td>
<td>Сера сульфидная, тыс. т / Sulfide sulfur, t</td>
<td>4766.0</td>
<td>452.0</td>
</tr>
</tbody>
</table>

Содержание: / Content:

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Медь, % / Copper, %</th>
<th>Золото, г/т / Gold, g/t</th>
<th>Серебро, г/т / Silver, g/t</th>
<th>Селен, % / Selenium, %</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>3.37</td>
<td>1.11</td>
<td>0.0092</td>
<td>24.95</td>
</tr>
<tr>
<td>2</td>
<td>0.99</td>
<td>1.12</td>
<td>0.0095</td>
<td>24.27</td>
</tr>
<tr>
<td>3</td>
<td>20.03</td>
<td>20.25</td>
<td>0.0042</td>
<td>17.67</td>
</tr>
<tr>
<td>4</td>
<td>0.0042</td>
<td>0.0044</td>
<td>0.0048</td>
<td>-</td>
</tr>
</tbody>
</table>

По своему вещественному составу (пирита до 90 %) руды месторождения Кусмурын отнесены к медно-кобальтовому промышленному типу с главными рудообразующими минералами – пиритом, халькопиритом, сфалеритом, галенитом. В соответствии с запасами, месторождение признано мелким (табл. 3).
залегания некоторых рудных тел на устойчивость массива руд и пород, по мере отработки требовалось расширение геомеханических исследований по контролю над состоянием горного массива, безопасностью горных работ и корректировке технологии ведения горных работ.

Для последующей разработки технологии переработки медно-цинковых руд и строительства новой обогатительной фабрики близ месторождения была осуществлена доразведка месторождения. Были отобраны технологические пробы медных и медно-цинковых руд из керна скважин, пробуренных в контурах рудных тел, с подсечением их на различных горизонтах; изучено структурно-tekтоическое строение месторождения в целом, бурение скважин, пробуренных в контурах рудных тел с подсечением их на различных горизонтах; изучено структурно-tekтоическое строение месторождения посредством бурения скважин с использованием электронного керноориентатора и геотехнической документации; выделены физико- механические свойства руд и пород по образцам, отобранным из керна, и оконтуривание месторождения, путем бурения скважин на крайнем северном и южном профилях вкрест простирания.

По сложности строения месторождение Кусмурын относится ко II-й (3-й) группе: сеть пробуренных скважин и горных выработок отвечает требованиям изученности месторождений при этой категории сложности.

В результате отбора лабораторной технологической пробы и технологических исследований обо-гатимости руд месторождения было подтверждено выделение двух природных типов руд – смешанные и сульфидные, граница между которыми определена только по результатам лабораторных исследований. Оба типа руд подразделяются на сорта: медные и медно-цинковые.

Анализ элементов выполнен методом ICP-OES с предварительным четырехкислотным разложением проб, что способствовало почти полному переводу компонентов порошковой пробы в химический раствор.

Реализация программы доразведки месторождений и программы бурения с целью отбора технологических проб была положительными результатами, позволила пересмотреть утлы бортов как существующего, так и проектного карьера. Программа бурения скважин с целью отбора технологической пробы дала возможность получить в достаточном объеме керновый материал для проведения испытаний и разработки технологического регламента переработки руд месторождения.

До сих пор отсутствует достоверная информация о качестве и количестве добытой руды и итоговые данные картирования с отбором проб весом до 200 кг, не получены результаты технологических исследований, проведенных в полевой период, что во многом затрудняет решение вопроса о переутверждении кондиций или перечете запасов месторождения Кусмурын, перевод утвержденных запасов по категории С1 и С2, в более высокие категории.

В этой связи необходимо: провести доразведку месторождения путем бурения колонковых скважин; выполнить повариантный подсчет запасов и ТЭО промышленных кондиций; пересчитать запасы с утверждением в ГКЗ РК.

Только после внесения корректив в обновленные данные, т.е. внутреннее строение запасов медных и медно-цинковых руд, как по месторождению Кусмурын, так и по отдельным рудным телам, их взаимо-расположение и условия залегания, будут изменены промышленно-генетические типы руд. В дальнейшем возможен пересчет запасов в основании существующих кондиций.

Потенциальные возможности месторождения «Кусмурын»

В ближайшие годы объем инвестиций ТОО «Корпорация «Казахмыс» значительно увеличится благодаря вводу проектов по строительству новых рудников и инновационного проекта гидрометаллургической переработки чернового медного концентрата с использованием жезказганских руд.

На 2018–2026 годы для стабилизации достигнутого добычного уровня и компенсации выбывающих функционирующих объектов корпорации «Казахмыс» запланирован ряд проектов, среди которых – с 2019 г. начнутся открытые горные работы и в 2021 г. появляется возможность открытия новых рудников.

В целях снижения себестоимости концентрации необходимо: проведение геолого-экономических работ с учетом изменений в ГКЗ РК.

Для обеспечения работы определенного производственного комплекса Казахстана, возможности определения максимальных приростов и обеспечения технологических исследований необходимо утверждение запасов в соответствии с CRIRSCO.

Одним из первостепенных условий роста инвестиционной привлекательности минерально-сырьевого комплекса Казахстана, возможности определения максимальных приростов и обеспечения технологических исследований необходимо утверждение запасов в соответствии с CRIRSCO.

Совершенствование геолого-экономической оценки месторождений полезных ископаемых

Одним из первостепенных условий роста инвестиционной привлекательности минерально-сырьевого комплекса Казахстана, возможности определения максимальных приростов и обеспечения технологических исследований необходимо утверждение запасов в соответствии с CRIRSCO.

Принципиальных различий в требованиях CRISCO и Государственной комиссии по запасам полезных
ископаемых Республики Казахстан не наблюдается. Более того, система CRISCO, где запасы и ресурсы оценивает компетентное лицо, выглядит более упрошенной. В Казахстане запасы делились на прогнозные, подтвержденные, извлекаемые, экономически целесообразные. Общим требованием является достоверность всей информации и по запасам, в частности. Запасы минерального сырья не являются неиссякаемыми, необходим строгий учет и контроль над их рациональным использованием.

С внедрением международных стандартов претерпевает изменение экономическая оценка месторождений полезных ископаемых. На ее основе будут определены экономическая значимость и целесообразность освоения месторождения, последовательность вовлечения в разработку отдельных его частей, определены кондиции на минеральное сырье, рассчитаны балансовые запасы месторождения, очерчены ориентиры дальнейших геологоразведочных работ. Итоговые данные экономической оценки могут применяться для нормирования потерь полезного ископаемого при разработке и расчете экономических санкций за их превышение.

Для оптимизации принимаемых решений по дальнейшей эксплуатации месторождений, соединения воедино проблемы удовлетворения потребностей общества в конкретных природных ресурсах и экологических требований, на наш взгляд, научная доказательность геолого-экономической оценки месторождений полезных ископаемых повысится за счет расчета дополнительных показателей. Например, сравнительная себестоимость добычи различными приемами с учетом содержания полезных ископаемых и расходов на рекультивацию земель; транспортные расходы, связанные с доставкой сырья конкретному потребителю; степень загруженности ключевого оборудования, задействованного в обогащении и извлечении полезных компонентов.

Безусловно, основополагающим принципом, положенным в основу геолого-экономической оценки месторождений, охватывающей все стадии геолого-разведочного процесса, должен быть положен принцип наиболее полного вовлечения в национальное хозяйство уже разведанных запасов. На наш взгляд, должны учитываться еще и такие единые принципы, как наилучшее применение уже разведанных запасов полезных ископаемых; достижение доходности добывы и переработки минерального сырья (не ниже отраслевых нормативов); самоокупаемость добычи и переработки по каждой единице балансовых запасов; возможность убыточного перевода на расчет некоторые проекты по конкретному месторождению.

Если говорить о будущем геологической отрасли Казахстана, то для всестороннего исследования комплексных и качественных характеристик недр, за счет государственного бюджета и государственно-частного партнерства запланировано продолжение региональных и полномасштабных разведочных работ, выявление перспективных участков на коммерческое использование полезных ископаемых для последующих разведочных работ по контрактам на недропользование. Внедрение инструментов государственно-частного партнерства будет стимулировать частные инвестиции в реализацию проектов по геологическому исследованию недр, проведению наиболее рисковых геологических исследований, что активизирует продвижение инновационных технологий в геолого-разведочные работы, ускорит переход на международные стандарты отчетности по запасам [20]. На 2020–2030 годы запланировано проведение...
поисково-оценочных геологоразведочных работ, открытие новых месторождений и подсчет ресурсов полезных ископаемых, обеспечение целесообразного потребления недр на изученных площадях, продолжение региональных и поисковых работ на новых территориях.

В силу того, что геологоразведочное производство принимает отчетливо выявленный научно-исследовательский образ, нельзя не заметить подобие инвестиций, нацеленных на разведывательные операции по месторождениям полезных ископаемых с вложениями в инновационную среду. В случае проведения аналогий между инновациями и геологоразведочными работами первому этапу бюджетного финансирования соответствуют стадии региональных и геолого-съемочных работ. Этап рисковоинвестиций сопоставим с работами, предполагающими поисковые, поисково-оценочные действия, и ожидающими начальные стадии разведки. На данном этапе происходит оценка возможного промышленного значения выявленных объектов, утверждение промышленных запасов. Для указанного этапа характерно участие как государства, так и частных компаний. Третьему этапу инновационных инвестиций соответствуют стадии доразведки месторождений и эксплуатационной разведки, т.е. работы, проводимые обычно на фоне промышленной добычи полезных ископаемых.

Исходя из существующей в Казахстане структуры затрат на геологоразведочные работы, очевидно, что почти 90 % затрат приходится именно на этап рисковых инвестиций, причем свыше 70 % затрат являются наиболее уязвимыми с точки зрения геологического риска, поскольку приходятся на стадии поисков. Об идентичной природе финансирования нововведений и вложениях ресурсов в поисково-разведочные действия говорит многое. Это, например, наукоемкий характер подобных шагов, похожесть в оценке экономических рисковых ситуаций и возвращении потраченных средств, обязательность государственной поддержки как в виде конкретного финансирования на начальных производственных этапах, так и в виде поощрения инвестиционных поступлений в дальнейшем.

Как инновационная активность, так и геологоразведочная деятельность должны стимулироваться налоговым льготами. Но для геологических предприятий необходима оптимизация налоговой политики с учетом геологического риска.

Заключение

Горно-металлургический комплекс Казахстана, будучи наиболее конкурентоспособным и динамично развивающимся, значительно уступает мировым лидерам по техническому вооружению. Так, оснащение современным оборудованием и развитыми сетями передачи данных на месторождениях составляет 21 %, 56 % месторождений характеризуется отсутствием се-
1. О недрах и недропользовании: Кодекс Республики Казахстан от 27 декабря 2017 года № 125-VI ЗРК.
2. Концепция развития геологоразведочной отрасли Республики Казахстан до 2030 года. Утверждена постановлением Правительства Республики Казахстан от 13 августа 2012 года № 1042.
The thesis is put forward that the progress of Kazakhstan is connected, first of all, with the availability of natural resources; long-term practice, covering the complexity of management; development of protective mechanisms to defend national interests. Kazakhstan's experience in industrial and innovative development can be useful for developing countries, as it clearly shows how the transformation processes take into account the specifics of the country, its geopolitical position, traditions and mentality.

Further development of the geological industry of Kazakhstan, the key criterion for the efficiency of which is the increase in proven mineral reserves, due to the intensification of production and increasing the depth of processing. Along with the improvement of geological and geophysical research, the economic side of geological exploration plays an important role. In light of the above, the article aims to substantiate the directions of improving the geological and economic assessment of the pyrite-copper-lead-zinc Deposit of Kusmuryn.

Objectives: to show the effective steps of state regulation of the geological industry of Kazakhstan; to summarize the results of geological and economic assessment of the copper-lead-zinc Deposit Kusmuryn; to justify the need to improve the geological and economic assessment of deposits in accordance with international standards and taking into account socio-economic, geological and geographical factors. Information and factual base of research-materials of the legislative and regulatory framework of the Republic of Kazakhstan, the results of scientific research of the field Kusmuryn, own calculations of the authors. The validity and reliability of the results are determined by comparative analysis, the use of reliable economic and geological information about the raw material base of Kazakhstan, the Kusmuryn Deposit, the use of a set of modern methods of scientific research, taking into account regional climatic and geological conditions.

The results of geological and economic assessment of the Kusmuryn field can be attributed to the category of promising, in the medium term it is planned to enter the field of underground mining. In order to improve the geological and economic assessment of deposits proposed to deepen the feasibility study of permanent conditions, developed on the basis of materials already completed exploration, financial analysis. For the growth of scientific evidence of geological and economic assessment of mineral deposits and optimization of decisions on their further operation, specific indicators are proposed. In conclusion, the article shows how the planned effective measures of state regulation of the geological industry will affect the quality of exploration, their innovative component, and in general, the sustainability of regional development.

Keywords: Kazakhstan, investments, evaluation, deposit, CRISCO standards, innovations.

References

Article received 14.06.2018.
РЕГИОНАЛЬНЫЕ СТРУКТУРЫ МИГРАЦИИ ХИМИЧЕСКИХ ЭЛЕМЕНТОВ В ЛАНДШАФТАХ СЕВЕРНОГО КАВКАЗА

Введение

Для определения состояния природной среды горных регионов, как наиболее уязвимых к воздействиям человека, особое значение имеет их целостное геохимическое изучение и мониторинг фоновых геохимических параметров. Важнейшей составляющей геохимического мониторинга является исследование геохимической структуры природно-территориальных комплексов разного ранга и типа. Вертикальная геохимическая структура ландшафтов формируется в ходе миграционных радиальных взаимодействий в системах типа «литосфера – растительный покров», «почва – растения», «порода – почва – растения» и др. [1].

С целью выявления сложной картины пространственного распределения химических элементов в геохимической структуре ландшафтов традиционно применяется радиальный анализ миграции химических элементов, использование которого более широко для геосистем локального уровня, элементарных ландшафтов [2]. В современных научных публикациях недостаточно работ по изучению геохимической дифференциации вертикальной структуры региональных геосистем.

Особый интерес представляет изучение миграционных радиальных взаимодействий в региональных геосистемах с однотипным биологическим круговоротом и неоднородными почвообразующими породами. В пределах таких региональных геосистем складывается определенная последовательность изменения интенсивности миграции химических элементов в системе «почва – гетерогенные почвообразующие породы». В результате длительного протекания процессов выветривания и почвообразования в материнских породах и почвах формируется система соединений элементов с различным соотношением их прочнокованных и подвижных форм [3–6]. Характерный для каждого комплекса почвообразующих пород и почв различный минералогический состав и разная устойчивость минеральной массы к выветриванию приводит к появлению соединений элементов разной растворимости и подвижности [7–9]. Комплексное сочетание факторов внутренней и внешней миграции элементов в конкретных физико-географических условиях региональных геосистем определяет миграционное поведение каждого химического элемента, его радиальное перераспределение [10].

Важнейшим фактором радиальной миграции химических элементов выступает биогенный фактор, который проявляется через характерные для каждого типа БИКа в определенных гидротермических условиях биогеохимические процессы выветривания и почвообразования. В ходе этих процессов происходит биогеохимическая трансформация соединений элементов в материнских породах и почвах с образованием различного количества прочнокованных и подвижных форм. Когда в пределах региональных геосистем почвообразующие породы представлены несколькими комплексами, то воздействие биогеохимических процессов однотипного БИКа специфично для каждого почвообразующего комплекса и определенным образом влияет на вовлечение химических элементов в миграционные процессы, приводящие к различной интенсивности их перемещения в почвы [11–13].
Цель исследования – выявление особенностей миграции химических элементов в системе «почва – почвообразующие породы» в региональных геосистемах Северного Кавказа с однотипным биологическим круговоротом (БИКом) и неоднородными почвообразующими породами. Определение геохимической дифференциации в распределении химических элементов между почвами и почвообразующими породами позволяет установить генетические взаимосвязи между этими компонентами геосистем [14; 15].

Материалы и методы исследований. В качестве региональных геосистем рассмотрены доминант-
ные высотные геоботанические пояса ландшафтных округов, имеющие значительное вертикальное развитие и горизонтальную протяженность в пределах высокогорной и среднегорно-низкогорной физико-географических областей северных склонов Большого Кавказа [16]. Данные крупные геокомплексы имеют региональные различия, позволяющие выделять в них физико-географические подобласти и ландшафтные округа (рис. 1).

В пределах каждой физико-географической подобласти развиты несколько почвообразующих комплексов, отличающихся между собой по генезису, литологии и геохимии [17; 18]. В Эльбрус-Казбекской высокогорной подобласти Главного, Бокового и Передового хребтов (рис. 1, A) почвы формируются на продуктах выветривания протерозойских кристаллических сланцев и гнейсов, палеозойских гранитоидов, вулканогенных отложений. В Североюрско-Дагестанской высокогорно-среднегорной подобласти (рис. 1, B) к морфоструктурным комплексам Гойтского антиклиниория в Западном Кавказе и антиклинариум Главного и Бокового хребтов Дагестана приурочены почвообразующие комплексы терригенно-вулканогенных отложений юры. В Кубано-Дагестанской подобласти среднегорий (рис. 1, В) к морфоструктурному комплексу Скалистого хребта приурочены вулканогенно-терригенные комплексы терригенно-карбонатных отложений верхней юры и мела. В пределах Пастбищного, Дарьинского, Боргустанского и Джинальского хребтов распространены терригенно-карбонатные неогеновые отложения. В Черноморско-Терско-Сунженской подобласти низкогорий (рис. 1, Г) отмечены местные отличия, в системе низких горных гряд Лесистого хребта сложены терригенно-карбонатными отложениями верхней юры и мела.

Геохимическая специфика почвообразующих комплексов и почв определена по данным В.В. Дьяченко [17; 18] о содержании в них 25 химических элементов, полученных в ходе ландшафтно-геохимической съемки Северного Кавказа масштаба 1:500000. На этой основе получены данные по 31 высотному поясу. Геохимическая специфика почвообразующих комплексов и почв представляющая определенную последовательность изменения интенсивности миграции элемента между почвой и почвообразующими породами в пределах высотных геоботанических поясов:

- ранжирование почв, сформированных на неоднородных почвообразующих породах, по возрастанию коэффициентов радиальной дифференциации, позволяющее получить определенный структурный ряд высотных геоботанических поясов: скально-нивального и субнивального, высокогорных лугов, смешанных и хвойных лесов. Региональная структура миграции химических элементов, образующихся в породах и почвах, представляет собой парагенетические ассоциации химических элементов, участвующих в миграции между почвой и почвообразующими породами;

- сопоставление между собой региональных структур миграции химических элементов высотных поясов с одинаковой комплексной системой БИК;
щих пород: метаморфических кристаллических сланцах и гнейсах протерозоя (метам.Пр.), метаморфических терригенно-вулканогенных палеозоя (метам.ПЗ), магматических палеозойских гранитоидах (магм.ПЗ) и терригенных палеозоя (терр.ПЗ).

Определение коэффициентов радиальной дифференциации показало, что в почвах двух высотных поясов (скально-нивального и субнивального и пояса высокогорных лугов) преобладает обогащение химическими элементами по сравнению с почвообразующими породами (табл.1).

Ранжирование по возрастанию коэффициентов радиальной дифференциации в пределах высотного пояса дает определенную структуру изменения интенсивности миграции каждого химического элемента между почвой и неоднородными почвообразующими породами. Например, структурный ряд изменения интенсивности радиальной миграции в скально-нивальном и субнивальном высотном поясе выглядит как:

для Cu – метам.Пр < метам.ПЗ < терр.ПЗ < магм.ПЗ;
dля Zn – метам.Пр < терр.ПЗ < магм.ПЗ < метам.Пр;
dля Pb – магм.ПЗ < терр.ПЗ < метам.Пр < метам.Пр и т.д.

С помощью кластерного анализа в высотных поясах Лабино-Тебердинского округа выделены группы химических элементов с одинаковыми структурами радиального перераспределения между почвой и гетерогенными почвообразующими породами. Так, результаты кластерного анализа региональных структур миграции химических элементов в скально-нивальном и субнивальном высотном поясе свидетельствуют о том, что:

Коэффициенты радиальной дифференциации (R) для почв двух высотных поясов Лабино-Тебердинского округа, сформированных на неоднородных почвообразующих породах

\[\text{Coefficients of radial differentiation (R) for soils of two high-altitude belts of the Labino-Teberda region, formed on heterogeneous soil-forming rocks} \]

<table>
<thead>
<tr>
<th>Химические элементы</th>
<th>Высотные геоботанические пояса / High-altitude geobotanical belts</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>скально-нивальный и субнивальный rock-nival and subnival</td>
</tr>
<tr>
<td></td>
<td>высокогорные луга / alpine meadows</td>
</tr>
<tr>
<td></td>
<td>I</td>
</tr>
<tr>
<td>Cu</td>
<td>1,19</td>
</tr>
<tr>
<td>Zn</td>
<td>2,07</td>
</tr>
<tr>
<td>Pb</td>
<td>1,51</td>
</tr>
<tr>
<td>Ag</td>
<td>1,70</td>
</tr>
<tr>
<td>Sn</td>
<td>1,15</td>
</tr>
<tr>
<td>Mo</td>
<td>1,06</td>
</tr>
<tr>
<td>W</td>
<td>1,33</td>
</tr>
<tr>
<td>Ba</td>
<td>1,41</td>
</tr>
<tr>
<td>Co</td>
<td>1,72</td>
</tr>
<tr>
<td>Ni</td>
<td>1,04</td>
</tr>
<tr>
<td>Mn</td>
<td>1,22</td>
</tr>
<tr>
<td>Ti</td>
<td>1,36</td>
</tr>
<tr>
<td>V</td>
<td>1,37</td>
</tr>
<tr>
<td>Cr</td>
<td>0,89</td>
</tr>
<tr>
<td>Ga</td>
<td>1,00</td>
</tr>
<tr>
<td>Ge</td>
<td>1,58</td>
</tr>
<tr>
<td>P</td>
<td>1,56</td>
</tr>
<tr>
<td>Li</td>
<td>1,19</td>
</tr>
<tr>
<td>Be</td>
<td>1,55</td>
</tr>
<tr>
<td>Sr</td>
<td>1,11</td>
</tr>
<tr>
<td>Y</td>
<td>1,10</td>
</tr>
<tr>
<td>Yb</td>
<td>1,35</td>
</tr>
<tr>
<td>Zr</td>
<td>1,22</td>
</tr>
<tr>
<td>Nb</td>
<td>0,82</td>
</tr>
<tr>
<td>Sc</td>
<td>1,71</td>
</tr>
</tbody>
</table>

тельствуют о наличии нескольких таких небольших групп: Cu и Co; Mo, Cr и Nb; Zn и Ge; Ni, Mn и Li; V, Y и Zr; Sr, Be, Ga, Ba и Pb; Sn и P (рис. 2). В высотном поясе высокогорных лугов одинаковая региональная структура миграции характерна для групп элементов: Cu, Co, Ge и Zr; V и Li; Y и Yb; Zn и Cr; Sn и Ga; Mo и W (рис. 3).

Группы химических элементов с одинаковой региональной структурой миграции (рис. 4, 5) могут быть рассмотрены как биогеохимические парагенетические ассоциации элементов, участвующие в миграционных процессах между почвами и неоднородными почвообразующими породами в пространстве региональных геосистем с однотипным БИКом. Полученные данные о преобладании в высокогорной подобласти единичных биогеохимических парагенетических ассоциаций, состав которых образует небольшие группы химических элементов (от 2 до 5), свидетельствуют о постоянном обновлении состава высокогорных почв за счет сильной механической миграции и выпуска вещества.

Одинаковый набор комплексов почвообразующих пород в высотных поясах ландшафтных округов физико-географических подобластей Большого Кавказа дает возможность провести сопоставление в них региональных структур миграции элементов и выявить степень их сходства. Такое сравнение позволяет говорить о ведущих факторах формирования региональных структур миграции элементов между почвами и почвообразующими породами в условиях высокогорий, среднегорий и низкогорий.

При сильном сходстве (до 90 – 100%) в региональных структурах миграции элементов по разным высотным поясам с одинаковым набором комплексов почвообразующих пород, определяющую роль в радиальном перераспределении элементов между почвами и породами играет литогенный фактор. Интенсивность
и направленность радиальной миграции для этих химических элементов в данных физико-географических условиях высотных поясов определяется в первую очередь геохимической специализацией почвообразующих пород, особенностями трансформации минералов пород при выветривании с образованием различного соотношения прочными связанных или подвижных соединений элементов.

Отсутствие или слабое сходство (от 0 до 10%) с большими различиями в региональных структурах миграции химических элементов по высотным поясам с одинаковым набором комплексов почвообразующих пород свидетельствует о преобладающем влиянии биогенного фактора. В этом случае, биогеохимические процессы разных типов БИКа, протекающие при выветривании и почвообразовании в высотных геобо-

Таблица 2 / Table 2

Сопоставление региональных структур миграции химических элементов в высотных поясах Эльбрус-Казбековской высокогорной подобласти
Comparison of regional structures of migration of chemical elements in high-altitude belts of the Elbrus-Kazbek Highland Subregion

<table>
<thead>
<tr>
<th>Ландшафтный округ / Landscaping</th>
<th>Высотные геоботанические пояса High-altitude geobotanical belts</th>
<th>Сходство в региональных структурах миграции Similarity in regional migration structures</th>
</tr>
</thead>
</table>
| Лабино-Тебердинский (Западный Кавказ) Labino-Teberdinsky (Western Caucasus) | 1) скально-нивальный и субнивальный / rock-nival and subnival
2) высокогорные луга / alpine meadows
3) смешанные леса / mixed forests
4) хвойные леса / coniferous forests | слабое small (0 – 10%)
среднее / average (10 – 90%)
сильное / strong (90 – 100%) |
| | Zn, Pb, Ag, Sn, Ge, Sc, Be, P, Li | Sn, Ni, Ga, Mo, W, Ba, Mn, Ti, Cr, Zr
Cu, Co, Y, Yb, Nb, V |
| Тебердино-Эльбрусский (Центральный Кавказ) Teberdino-Elbrus (Central Caucasus) | 1) скально-нивальный и субнивальный / rock-nival and subnival
2) высокогорные луга / alpine meadows
3) смешанные леса / mixed forests
4) хвойные леса / coniferous forests | Zn, Pb, Ag, Sn, Sr
Ni, V, Li, Ga, Be, Mo, W, Ba, Mn, Ti, Cr, Ge, P, Sc
Cu, Co, Y, Yb, Nb |
| Кубано-Терский (Восточный Кавказ) Kuban-Tere (Eastern Caucasus) | 1) скально-нивальный и субнивальный / rock-nival and subnival
2) высокогорные луга / alpine meadows
3) хвойные леса / coniferous forests | -
Zn, Pb, Ag, Mo, W, Ba, Mn, Ti, Cr, Ge, P, Sr, Sc
Cu, Co, Y, Yb, Nb, V, Sn, Ni, Li, Ga, Be |
Таблица 3 / Table 3

<table>
<thead>
<tr>
<th>LANDSCAPING округ</th>
<th>Высотные геоботанические пояса</th>
<th>Сходство в региональных структурах миграции / Similarity in regional migration structures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>слабое small (0 – 10%)</td>
</tr>
<tr>
<td>Северогойхотский, Кубанский, Западнокубанский, Лабино-Малкинский (Западный Кавказ) / Severogoyhotsky, Kuban, Zapadnokubansky, Labino-Malkinsky (Western Caucasus)</td>
<td>1) высокогорные луга alpine meadows 2) смешанные леса / mixed forests 3) лиственные леса deciduous forests 4) степи и остепненные луга steppes and steppe meadows</td>
<td>Ag, Mo, W</td>
</tr>
<tr>
<td>Терский и Терско-Малкинский (Центральный Кавказ) / Terek and Terek-Malkinsky (Central Caucasus)</td>
<td>1) высокогорные луга alpine meadows 2) смешанные леса / mixed forests 3) лиственные леса deciduous forests 4) степи и остепненные луга steppes and steppe meadows</td>
<td>Ag, Mn, Sr</td>
</tr>
<tr>
<td>Андийско-Аварский, Сумур-улугчаи, Внутренний Дагестан, Сулак-Самурский (Восточный Кавказ) / Andean-Avar, Sumuro-Uluchay, Inner Dagestan, Sulak-Samur (Eastern Caucasus)</td>
<td>1) высокогорные луга alpine meadows 2) смешанные леса / mixed forests 3) лиственные леса deciduous forests 4) степи и остепненные луга steppes and steppe meadows</td>
<td>-</td>
</tr>
</tbody>
</table>

Таблица 4 / Table 4

<table>
<thead>
<tr>
<th>LANDSCAPING округ</th>
<th>Высотные геоботанические пояса</th>
<th>Сходство в региональных структурах миграции / Similarity in regional migration structures</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>слабое small (0 – 10%)</td>
</tr>
<tr>
<td>Западнокубанский и Прикубанский (Западный Кавказ) / West Prikubansky and Prikubansky (Western Caucasus)</td>
<td>1) лиственные леса deciduous forests 2) степи и остепненные луга steppes and steppe meadows</td>
<td>Cu, Zn, Pb, Ba, Sn, Sr, Ge, Be, P, Mo, W, Ni, Ga, Zr, Y, Nb</td>
</tr>
<tr>
<td>Терско-Малкинский и Терско-Кубанский (Центральный Кавказ) / Terek-Malka and Terek-Kuban (Central Caucasus)</td>
<td>1) лиственные леса deciduous forests 2) степи и остепненные луга steppes and steppe meadows</td>
<td>Cu, Zn, Pb, Ag, Mn, Ba, Sn, W, Ni, P, Nb</td>
</tr>
<tr>
<td>Терско-Сулакский (Восточный Кавказ) / Terek-Sulak (Eastern Caucasus)</td>
<td>1) лиственные леса deciduous forests 2) степи и остепненные луга steppes and steppe meadows</td>
<td>Cu, Zn, Ag, Mn, Ba, Sn, W, Ni, P, Nb, Li, Mo, Co, V</td>
</tr>
<tr>
<td>Сулакско-Прикаспийский (Восточный Кавказ) / Sulak-Caspian (Eastern Caucasus)</td>
<td>1) лиственные леса deciduous forests 2) степи и остепненные луга steppes and steppe meadows</td>
<td>Zn, W, Ba, Mn, Ge, Cu, Yb, Ni, Sn, Ti, Li, Ga, Co, Y, Nb, P, Sr</td>
</tr>
</tbody>
</table>
танических поясах, приводят к отличиям в структуре миграции химических элементов между почвами и неоднородными почвообразующими породами.

В Эльбрус-Казбековской высокогорной подобласти элементов со слабым сходством в своих региональных структурах миграции между почвами и породами больше всего в высотных поясах ландшафтных округов Западного Кавказа (табл. 2). В то же время, в высотных поясах ландшафтных округов Восточного Кавказа химических элементов с разными структурами миграции нет, а преобладают элементы с близкими или одинаковыми региональными структурами миграции между почвами и породами.

В среднегорных физико-географических подобластях (Североюрско-Дагестанской и Кубано-Дагестанской) в ландшафтных округах Восточного Кавказа также наблюдается увеличение количества химических элементов с сильным сходством в региональных структурах миграции между почвой и неоднородными породами и отсутствие в них химических элементов со слабым сходством, т.е. разными структурами радиального перераспределения (табл. 3).

В Черноморско-Терско-Сунженской подобласти низкогорий и предгорных равнин характерно преобладание химических элементов со слабым сходством в региональных структурах миграции между почвами и породами в высотных поясах ландшафтных округов Западного, Центрального и Восточного Кавказа (табл. 4). В то же время отмечается некоторое увеличение количества химических элементов с сильным сходством в структурах миграции в высотных поясах ландшафтных округов Центрального Кавказа.

Заключение

Изучение особенностей радиальной дифференциации химических элементов в высотных геоботанических поясах ландшафтных округов физико-географических подобластей Большого Кавказа показало, что в них пределах каждому химическому элементу свойственна своя региональная структура миграции. Она представляет определенную последовательность в изменении интенсивности радиальной миграции химического элемента между почвой и гетерогенными почвообразующими породами в геосистемах с однотипным биологическим круговоротом. Разная интенсивность радиальной миграции химического элемента тесно связана с количеством его подвижных и прочищовязанных соединений, образование которых происходит в породах и почвах в ходе длительных сложных процессов выветривания горных пород и почвообразования. В качестве временного периода формирования региональной структуры миграции химического элемента принимается период образования современных почв.

Единому экологическому пространству высотного пояса присущ однотипный характер комплекса факторов, влияющих на региональную структуру миграции химических элементов [19; 20]. Для высотных поясов характерны единство гидроретимических условий, однотипность БНКа вследствие господства одной растительности, единый характер почвообразовательных процессов, относительная близость геоморфологических условий. Гетерогенный характер структуры миграции химических элементов придают неоднородные почвообразующие породы. Влияние латеральных потоков вещества на радиальную миграцию химических элементов в пределах высотного пояса сведено к минимуму.

В ходе миграционных процессов между почвами и неоднородными почвообразующими породами в высотных поясах складываются парагенетические ассоциации химических элементов с одинаковой региональной структурой миграции. В высокогорной подобласти преобладают единичные парагенетические ассоциации, состав которых образуют небольшие группы химических элементов, что свидетельствует о постоянном обновлении микроэлементного состава высокогорных почв за счет выноса вещества.

Сравнение региональных структур миграции химических элементов на основе имеющихся данных по высотным поясам всех ландшафтных округов высокогорной, среднегорной и низкогорной физико-географических подобластей северных склонов Большого Кавказа позволило сделать следующие выводы:

1. В условиях высокогорий, среднегорий и низкогорий северных склонов Большого Кавказа меняются ведущие факторы формирования региональных структур миграции химических элементов между почвами и почвообразующими породами.

2. В высокогорной и среднегорной подобластих, при движении от Западного к Восточному Кавказу, при формировании региональных структур миграции химических элементов уменьшается влияние биогенного фактора и усиливается роль литогенного фактора. Для высоко- и среднегорных геосистем Западного Кавказа, в связи с их большей увлажненностью и большим количеством поступающей фитомассы в биологический круговорот, свойственна более сильная интенсивность биогеохимических процессов в почвах и почвообразующих породах. В высокогорьях и среднегорьях Восточного Кавказа влияние биогеохимических процессов на радиальную миграцию элементов ослабляется в силу континентальности климата с меньшим количеством осадков, а также меньшей емкости биологического круговорота в связи с понижением продуктивности биоценозов [17; 21].

3. Во всей подобласти низкогорий и предгорных равнин (по Западному, Центральному и Восточному Кавказу) в формировании региональных структур
Северного Кавказа в какой-то мере раскрывают механизмы формирования геохимической и миграционной структур горных ландшафтов, в значительной степени обеспечивающих их устойчивость к различного рода воздействиям.

ЛИТЕРАТУРА:

2. Геохимия ландшафтов и география почв. 100 лет со дня рождения М.А.Глазовской / Под ред. Н.С.Касимова, М.И.Герасимовой. М.: АПР . 2012. 600 с.
10. Дегтярева Т.В., Шальнев В.А., Лысенко А.В. Геохимические поля горных пород и почв Большого Кавказа. Ставрополь: СГУ . 2007. 309 С.

КРИТЕРИИ АВТОРСТВА / Contribution

Дегтярева Т.В. – в значительной степени участвовала в написании работы, в ее концепции, в научном дизайне, в анализе и интерпретации материала; Лиховид А. А. – корректировал рукопись до подачи в редакцию; Лысенко А.В. и Каразев Ю.И. – несут ответственность при обнаружении плагиата или других нежелательных проблем.

Degtyareva T.V. – largely co-wrote the work in its concepts, scientific design, analysis and interpretation of material; A.A. Lihovid – corrected the manuscript before submission to the editor; Lysenko A.V. and Karaev Y.I. – are responsible for detecting plagiarism or other unethical problems.

КОНФЛИКТ ИНТЕРЕСОВ / Conflict of interest

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.
УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

СВЕДЕНИЯ ОБ АВТОРЕ / Information about author:

ДЕГТЯРЕВА Татьяна Васильевна – кандидат географических наук, доцент кафедры физической географии и кадастров, Институт математики и естественных наук Северо-Кавказского федерального университета, 355009, г. Ставрополь, Россия.

Тел.: 8(919)731-84-98.
E-mail: dtb.70@mail.ru

Татьяна В. ДЕГТЯРЕВА – Candidate of Geographical Sciences, associate professor of the Department of physical geography and cadastres, Institute of mathematics and natural sciences of the North Caucasus Federal University, 355009, Stavropol, Russia
Ph.: +7 (919)731-84-98, e-mail: dtb.70@mail.ru

ЛИХОВИД Андрей Александрович – доктор географических наук, кандидат биологических наук, профессор кафедры экологии и природопользования, Институт математики и естественных наук Северо-Кавказского федерального университета, 355009, г. Ставрополь, Россия.

Тел.: 8(8652) 95-64-87.
E-mail: alikhovid@ncfu.ru

Андрей Ал. ЛИХОВИД – Dr. of Geographical Sciences, Candidate of Biological Sciences, professor of the Department of ecology and nature management, Institute of mathematics and natural sciences of the North Caucasus Federal University, 355009, Stavropol, Russia
Ph.: +7 (8652) 95-64-87; E-mail: alikhovid@ncfu.ru

ЛЫСЕНКО Алексей Владимирович – доктор географических наук, профессор кафедры физической географии и кадастров, Институт математики и естественных наук Северо-Кавказского федерального университета, 355009, г. Ставрополь, Россия.

Тел.: 8(905)448-18-74.
E-mail: lysenkostav@yandex.ru

Алексей Вл. ЛЫСЕНКО – Dr. of Geographical Sciences, professor of the Department of physical geography and cadastres, Institute of mathematics and natural sciences of the North Caucasus Federal University, 355009, Stavropol, Russia
Ph.: +7 (905)448-18-74. E-mail: lysenkostav@yandex.ru

КАРАЕВ Юрий Исаевич – директор Международного инновационного научно-технологического центра «Устойчивое развитие горных территорий» (МИНТЦ «Горы») Северо-Кавказского горно-металлургического института (государственного технологического университета), 362021, Владикавказ, Россия.

Юрий И. КАРАЕВ – Director of the International Innovation Scientific and Technological Center “Sustainable Development of Mountain Areas” (IISTC “Mountains”) of the North Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia.
REGIONAL PATTERNS OF CHEMICAL ELEMENTS MIGRATION IN THE LANDSCAPES OF THE NORTH CAUCASUS

1 T. V. Degtyareva,*
2 A. A. Lichowid,
3 A. V. Lysenko,
4 Yu. Karaev
1 North Caucasus Federal University, 355009, Stavropol, Russia, dth.70@mail.ru
2 North-Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia

The purpose of the study is to identify the peculiarities of chemical elements migration in the system “soil – soil-forming rocks” in the regional geo – systems of the North Caucasus with the one type biological cycle and heterogeneous soil-forming rocks. As the regional geo – systems are high-altitude geo – botanical zones of high-mountain, mid-mountain and low-mountain physical and geographical sub domains landscape of the northern slopes of the greater Caucasus.

Research methods: The object of study is the regional structure of chemical elements migration which are considered on the example of two high-altitude zones of Labino-Teberda landscape district allocated in the Western Caucasus within the Elbrus-Kazbek Alpine sub domain. To determine the intensity of chemical elements migration in the high-altitude zones, the coefficient of radial differentiation R, reflecting the genetic relationship of the soil with the soil-forming rock was used. The allocation of par genetic associations of chemical elements with the same regional structures of migration between the soil and heterogeneous soil-forming rocks within the boundaries of the high-altitude zones of the Labino-Teberdinsky district was performed by the cluster analysis. On the basis of the available data on high-altitude zones of all landscape districts of the mountainous, mid-mountainous and low-mountainous sub domains of the northern slopes of the greater Caucasus, a comparison of the regional structures of chemical elements migration was carried out.

Research results: In geo – systems of the regional level with the same type of biological cycle and non-uniform soil-forming rocks the regional structure of chemical elements migration are formed. They represent a certain sequence in changing the element migration intensity between the soil and heterogeneous rocks within the boundaries of the high-altitude zone. Different intensity of radial migration depends on the number of mobile and strongly bound compounds of the chemical elements. Their formation occurs in the rocks and soils during the long course of complex processes of rocks weathering and soil formation with a complex combination of factors of internal and external chemical elements migration.

Conclusions. In geo – systems with the same type of biological cycle and heterogeneous soil-forming rocks within the physical and geographical sub domains of the northern slopes of the greater Caucasus, the peculiarities of regional structures formation of chemical elements migration have been developed.

In the mountainous and mid-mountainous sub-regions, moving from the Western to the Eastern Caucasus during the formation of regional structures of chemical elements migration, the role of the biogenic factor is weakening and the influence of the lithogenic factor is increasing.

All over the low mountains and foothill plains sub-regions (in the Western, Central and Eastern Caucasus), the biogenic factor is of primary importance for the majority of chemical elements in the formation of the regional migration structures.

Keywords: North Caucasus, soil-forming rocks, biological cycle, chemical elements migration.

References

Article received 24.10.2018.
УДК: 636.085.7:036.94

Цель работы – изучение возможностей приготовления жидкого органического удобрения из отходов переработки листостебельной массы люцерны и его влияния на поддержание плодородия почвы черноземов предкавказских.

Установлено, что коричневый сок из зеленой массы люцерны содержит существенное количество азота, зольных элементов, фосфора, кальция, калия и других соединений, необходимых для их восполнения в почве и полноценного питания выращиваемых на ней растений. При внесении удобрения под люцерну урожайность зеленой массы за 3 укоса возрастает по сравнению с контрольным участком.

Введение

Ростовская область почти полностью расположена в районах черноземных почв, для которых характерны два подтипа: чернозем южный и предкавказский или приазовский. Провинция подтипа чернозема предкавказского лежит в южной части области в условиях более теплого и мягкого климата.

Предкавказские черноземы залегают от Азовского моря вплоть до горных территорий Кавказа. Этот подтип черноземов обладает развитым перегнойным горизонтом с мощностью 1,5–1,8 м, высоким содержанием органических веществ, уровнем перевозок 4–6 % и высокой производительностью [1–3].

Сохранение земельных ресурсов является экологической задачей мирового масштаба для устойчивого развития сельскохозяйственного производства и полеводства в частности. По мере увеличения населения Земли все более важным становится сохранение плодородия почвы для производства сельскохозяйственной продукции.

Активное использование земель под пашню имеет множество последствий. Это изменение гумусного состава, направленности и активности биогеохимических циклов различных биофильных элементов, изменение водного режима, плотности и структуры почв [4; 5].

Как бы ни были богаты черноземы перегноем, но их органическое вещество разрушается, снижается и их производительность. Гумусовое состояние почв обращает на себя внимание в отношении деградационной дегумификации черноземов.

Принципы потерь гумуса пахотными почвами следующие:
1. Снижение количества поступающих в почву растительных остатков при переходе естественного агроценоза в агроценоз.
2. Усиление минерализации органических веществ из-за интенсивной обработки почвы и повышения степени ее аэрации.
3. Деградация гумуса в результате применения кислых удобрений и как следствие активация почвенной микрофлоры.
4. Усиление минерализации из-за процессов осушения или орошения.
5. Ветровая и водная эрозия почв.

Нарушение равновесия почвенного плодородия происходит в связи с сокращением притока органических веществ с корневыми и пожнивыми остатками культурных растений. Вследствие уборки урожая со сконцентрированными в нем органическими и минеральными веществами организмы почвообразователи не получают достаточного материала для разложения, минерализации и удовлетворения своих потребностей в веществе и энергии. Это в свою очередь ведет к нежелательному изменению состава почвенной микрофлоры, размножению вредителей.

За последние десятилетия плодородие почв Ростовской области снизилось почти на 15 %. До 3,09 % уменьшилось содержание гумуса, тогда как критическим считается 3,5 %. На восстановление всего одного процента данной самой важной части для питания растений почвы требуется более ста лет. Часть ее, разрушенная в настоящее время, может быть навсегда утрачена для последующих поколений [6].

Повышение и поддержание почвенного плодородия – одна из сложных и важных задач, особенно в условиях дороговизны минеральных удобрений, го-
Роль аминокислот в почвах состоит в том, что они служат структурными единицами в синтезе белка, регулятором ферментативных реакций, субстратом для эндогенного дыхания. Особенность аминокислотного состава почв состоит в корреляции с запасами азота и гумуса. Аминокислоты являются важным звеном в системе питания растений, создают условия для развития почвообразовательных процессов и возделывания сельскохозяйственных культур растений [11].

Состав тканей растений включает около 80 химических элементов. Наиболее необходимыми для жизни растений являются 16 элементов: углерод, кислород, азот, фосфор, водород, кальций, магний, железо, сера, бор, мартанец, молибден, медь, цинк, кобальт. Углерод, кислород, водород и азот являются органическими веществами, так как при сжигании растений они переходят в газообразное состояние и улетучиваются в воздух [12; 13]. Остальные питательные элементы относятся к зольным. В среднем сухое вещество растений содержит, %: 45 – углерода, 42 – кислорода, 6,5 – водорода, 1,5 – азота и 5 – золы.

Содержание золы в растительных остатках составляет: около 1 % – в древесных; 10 % – в травах.

Органические удобрения способствуют повышению стабилизации плодородия почв, являющихся основным энергетическим веществом в составе почвы. При трансформации органических веществ происходят не только процессы минерализации, но и гумификации, ведущие к повышению количества гумуса, запасов азота, макро- и микроэлементов, которые входят в состав всех органических удобрений.

В отличие от минеральных удобрений, органические удобрения способствуют повышению плодородия почв постепенно, не повышая концентрацию солей в почвенном растворе, в частности нитратов. Улучшаются физико-химические свойства почвы, водный и воздушный режимы, снижается вредное действие кислотности на рост растений, повышаются полезительная способность, влагоемкость, буферность, водопроницаемость. Органические удобрения способствуют обогащению почвы микрофлорой, усиливают биологическую активность, выделение углекислоты, снижают сопротивление почвы при обработке, создают оптимальные условия для минерального корневого питания растений. Их внесение в почву улучшает ее фитосанитарное состояние [14].

Плодородие – более широкое понятие, чем агрохимическая характеристика почв и фитосанитарное состояние. Оно включает не только наличие ресурсов, необходимых растениям на вегетационный период, но и доступность их для питания растений. При этом уровень почвенного плодородия зависит не от общего содержания гумуса, а от количества его лабильной части, определяющей питание растений, агрохимические и агротехнические свойства почв [4; 15; 16].

Роль аминокислот в почвах состоит в том, что они служат структурными единицами в синтезе белка, регулятором ферментативных реакций, субстратом для эндогенного дыхания. Особенность аминокислотного состава почв состоит в корреляции с запасами азота и гумуса. Аминокислоты являются важным звеном в системе питания растений, создают условия для развития почвообразовательных процессов и возделывания сельскохозяйственных культур растений [11].
в кормах для сельскохозяйственных животных определяет необходимость комплексного использования растительных ресурсов, при котором все продукты фракционирования, в том числе образующиеся отходы должны использоваться с максимальной эффективностью.

Исследователями ДГТУ разработана технология комплексной переработки вегетативной массы сельскохозяйственных сеяных бобовых трав с получением кормов для животных. При этом получают кормовой протеиновый зеленый концентрат и пресс-остаток [17]. Пресс-остаток после измельчения на мельницах центробежного [18] или другого типа можно использовать для приготовления травяной муки.

Образующаяся жидкая фракция – депротеинизированный коричневый сок (КС) – является отходом производства и не находит применения. Отчасти его пытаются использовать как добавку в корм животным – в гумусные корма, в качестве сырья для выращивания микроорганизмов. Но обычно он сливается в канализацию и забрасывается в почву для предотвращения истощения плодородия.

Возможный путь использования коричневого сока – депротеинизированный коричневый сок (КС) является отходом производства и не находит применения. Отчасти его пытаются использовать как добавку в корм животным – в гумусные корма, в качестве сырья для выращивания микроорганизмов. Но обычно он сливается в канализацию и забрасывается в почву для предотвращения истощения плодородия.

Переработка листостебельной массы проводилась по технологии влажного фракционирования [17], которая состоит в дезинтеграции и фракционировании вегетативной листостебельной массы сеяных бобовых трав посредством их механического обезвоживания прессованием с разделением на пресс-остаток и зеленый сок.

Зеленый сок подвергался фракционированию с получением протеинового зеленого концентрата. Образующийся при этом депротеинизированный коричневый сок (КС) являлся отходом переработки.

В экспериментах коричневый сок подвергался анализу химического состава и использовался в качестве сырья для приготовления удобрения, вносимого на поля, с которых была убрана вегетативная масса люцерны.

Химический анализ полученных препаратов коричневого сока проводили общепринятыми методами [19]. В опытных вариантах удобрения из коричневого сока, полученного с единицы площади по технологии влажного фракционирования [17], пресс-остаток после измельчения на мельницах центробежного [18] или другого типа можно использовать для приготовления травяной муки.

Возможный путь использования коричневого сока – депротеинизированный коричневый сок (КС) является отходом производства и не находит применения. Отчасти его пытаются использовать как добавку в корм животным – в гумусные корма, в качестве сырья для выращивания микроорганизмов. Но обычно он сливается в канализацию и забрасывается в почву для предотвращения истощения плодородия.

Исследователями ДГТУ разработана технология комплексной переработки вегетативной массы сельскохозяйственных сеяных бобовых трав с получением кормов для животных. При этом получают кормовой протеиновый зеленый концентрат и пресс-остаток [17]. Пресс-остаток после измельчения на мельницах центробежного [18] или другого типа можно использовать для приготовления травяной муки.

Образующаяся жидкая фракция – депротеинизированный коричневый сок (КС) – является отходом производства и не находит применения. Отчасти его пытаются использовать как добавку в корм животным – в гумусные корма, в качестве сырья для выращивания микроорганизмов. Но обычно он сливается в канализацию и забрасывается в почву для предотвращения истощения плодородия.

Образованная фракция – зеленый клеточный сок проводили общепринятыми методами [19]. Изучение состава почвы проводилось по следующей схеме:

1. Исходная почва в начале вегетации без внесения удобрения из коричневого сока.
2. Исходная почва в конце вегетации без внесения удобрения из коричневого сока.
3. Почва в конце вегетационного сезона после внесения удобрения из коричневого сока.

Образцы почвы отбирались по окончании периода вегетации и также подвергались анализу. В почвенном профиле пробы отбирали на глубине 10,0–40,0 см. При изучении химического состава почвы определяли азот, фосфор, кальций, калий и марганец общепринятыми методами [19]. При изучении химического состава почвы определяли азот, фосфор, кальций, калий и марганец общепринятыми методами [19].
других соединений, необходимых для их восполнения в почве и полноценного питания выращиваемых на ней растений (табл. 1).

При изучении химического состава почвы после введения полученного удобрения из показателей влияния химических компонентов почвы на урожайность растений предпочтение было отдано подвижным формам гумуса, фосфора, калия и азота, как наиболее доступным формам для питания растений.

Углерод водорастворимого гумуса – это подвижная часть гумуса, образованная из продуктов разложения растительных остатков и вторично образованных веществ гумуса, которые могут свободно переходить в растворимую форму. Эта часть состава гумуса формирует эффективное почвенное плодородие, служит энергетическим материалом и источником элементов питания и для растений и почвенных микроорганизмов [7].

В исходной почве в начале вегетационного периода содержание водорастворимых гумусовых веществ было невысоким, что вероятно, объяснялось снижением биологической активности чернозема в результате

<table>
<thead>
<tr>
<th>Таблица 1 / Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Химический состав коричневого сока из листостебельной массы люцерны</td>
</tr>
<tr>
<td>Chemical composition of brown juice from herbage of alfalfa</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Компонент / Component</th>
<th>Единица измерения / Unit of measurement</th>
<th>Содержание / Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Сухое вещество / Dry substance</td>
<td>%</td>
<td>5,91–6,82</td>
</tr>
<tr>
<td>Общий азот / General nitrogen</td>
<td>%</td>
<td>2,73–2,81</td>
</tr>
<tr>
<td>Протеин / Protein</td>
<td>%</td>
<td>17,00–17,73</td>
</tr>
<tr>
<td>Зола / Ash</td>
<td>%</td>
<td>16,57–16,78</td>
</tr>
<tr>
<td>Легкогидролизуемые углеводы / Easily hydrolyzable carbohydrates</td>
<td>%</td>
<td>10,91–12,84</td>
</tr>
<tr>
<td>Фосфор / Phosphorus</td>
<td>%</td>
<td>0,13–0,37</td>
</tr>
<tr>
<td>Кальций / Calcium</td>
<td>%</td>
<td>4,10–4,42</td>
</tr>
<tr>
<td>Калий / Potassium</td>
<td>мг % / mg %</td>
<td>35,2–42,1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Таблица 2 / Table 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Химический состав почвы при внесении удобрения</td>
</tr>
<tr>
<td>Chemical composition of soil at top-dressing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Показатель Index</th>
<th>Единицы измерения Units of measurement</th>
<th>Место отбора проб Sampling point</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td></td>
<td>Исходная почва, начало вегетации Initial soil, beginning of vegetation</td>
</tr>
<tr>
<td>Гумус / Humus</td>
<td>%</td>
<td>Исходная почва, конец вегетации Initial soil, end of vegetation</td>
</tr>
<tr>
<td>Углерод водорастворимого гумуса Carbon of water soluble humus</td>
<td>% углерода carbon %</td>
<td>Почва после введения удобрения Soil after introduction of fertilizer</td>
</tr>
<tr>
<td>Углерод общий Carbon general</td>
<td>%</td>
<td>2,617</td>
</tr>
<tr>
<td>Подвижный азот Movable nitrogen</td>
<td>мг/100 г mg/100 g</td>
<td>0,16</td>
</tr>
<tr>
<td>Подвижный фосфор Movable phosphorus</td>
<td>мг/100 г mg/100 g</td>
<td>26,3</td>
</tr>
<tr>
<td>Подвижный калий Movable potassium</td>
<td>мг/100 г mg/100 g</td>
<td>27,07</td>
</tr>
<tr>
<td>Поглощенные соли натрия Eaten up salts of sodium</td>
<td>мг/100 г mg/100 г</td>
<td>6,1</td>
</tr>
<tr>
<td>Поглощенные соли магния Eaten up salts of magnesium</td>
<td>мг/100 г mg/100 г</td>
<td>7,8</td>
</tr>
</tbody>
</table>
уплотнения слоя почвы и снижения количества поступающего кислорода, необходимого микроорганизмам для разложения органических остатков (табл. 2).

В конце вегетационного периода, несмотря на увеличение количества растительных остатков люцерны, образование гумуса и водорастворимых веществ было ниже по сравнению с почвой в начале вегетации, в результате выноса их с урожаем скошенной вегетативной массы люцерны. После введения органического удобрения из коричневого сока люцерны содержание химических элементов почвы в результате возврата удаленных с урожаем веществ было на том же уровне, что в исходной почве в начале вегетации. Урожайность зеленой массы люцерны за вегетационный период определяли после 3-го укоса. При внесении удобрения из КС под люцерну ее урожайность возрастила за год пользования травостоя по сравнению с урожаем на контрольном участке без введения удобрения.

Выводы
Обращающийся при переработке вегетативной массы люцерны отход – коричневый сок содержит ценные химические соединения, что позволяет использовать его как сырье для получения органического удобрения.

После введения органического удобрения содержание химических элементов почвы в результате возврата удаленных с урожаем веществ было на том же уровне, что в исходных образцах почвы в начале вегетации, характерном для черноземов предкавказских.

При внесении удобрения под люцерну урожайность зеленой массы за 3 укоса возрастила по сравнению с контрольным участком.

Разработанный способ комплексного использования растительных ресурсов, кроме корма для животных, позволит получать жидкое органическое удобрение, способствующее снижению истощения почвы и поддержанию ее плодородия.

КРИТЕРИИ АВТОРСТВА / Contribution:

Киреева В.В. – осуществляла общее руководство проведением исследований, редактирование рукописи, несет ответственность за плагиат; Рассказова Т.Г. – собрала необходимый материал, провела анализ, проанализировала результаты, написала рукопись; Сербулова Н.М. – произвела расчеты, обработку результатов анализа / Kireeva V.V. carried out the General management of research, editing of the manuscript, is responsible for plagiarism; Rasskazova T.G. collected the necessary material, analyzed, analyzed the results, wrote the manuscript; Serbulova N.M. made calculations, processing of the analysis results

КОНФЛИКТ ИНТЕРЕСОВ / Conflict of interest:

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.

ЛИТЕРАТУРА:

5. Ferrara C., Ranalli F. Soil quality Change and environmental vulnerability in the context of intense urbanization in the suburbs. Soil science, 2014, no 10, pp. 1273–1280
7. Терпелец В. И., Плитиню Ю. С. Гумусное состояние чернозема выщелоченного в агроценозах Азово-Кубанской низменности: монография. Краснодар: Кубанский государственный аграрный университет. 2015. 127 с.
The purpose of this work was to evaluate the opportunities for production of a liquid organic fertilizer from the waste left after processing of alfalfa herbage, and its influence upon preservation of fertility in the black soils of the Ciscaucasian region.

Methods. To produce the fertilizer, we used the phytomass
of Medicago sativa ('Manychskaya' variety) grown as forage grass and mown during the budding stage and blooming stage beginning.

Herbage was wet-fractionated (including disintegration and fractioning of alfalfa vegetative mass) and dehydrated by means of mechanical compression producing press cake and green juice used further for green protein concentrates. Brown juice also generated in the process was a by-product, which used to be considered a waste.

In our studies, brown juice was employed as a raw material for production of a fertilizer for the fields where alfalfa herbage had been harvested. During the study of brown juice applicability, we assumed the volume corresponding to the brown juice amount gathered from a unit of area within a season to be the reference fertilizer application volume.

Results. It was established that brown juice from alfalfa herbage contains material quantities of nitrogen, ash constituents, phosphorus, calcium, potassium, and other compounds necessary for their replenishment in soil and adequate nutrition of the plants cultivated there.

During chemical analysis of soil composition, priority was focused on active forms of humus, phosphorus, potassium, and nitrogen as the components most readily available for plant nutrition and thus also acting as productivity indicators.

Performed analysis demonstrated that the levels of chemical elements increased following fertilizer distribution due to the return of substances extracted with the gathered herbage reaching practically the same level as in the initial soil samples collected in the vegetation period beginning (typical productivity levels of black soils in the Ciscaucasian region).

Fertilizer application while alfalfa was still growing resulted in herbage yield increase observed throughout 3 hay cuttings in comparison with the control plot.

The method designed for complex utilization of vegetable resources allows to produce besides animal feeding stuff a liquid organic fertilizer minimizing soil depletions and maintaining its productive capacity.

Keywords: soil fertility, herbage, organic fertilizers.

References

Article received 15.04.2018.
УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

УДК: 551

Статья посвящена проблеме минимизации негативного влияния хвостов добычи и переработки угля на экосистемы окружающей среды путем оптимизации параметров строительства и эксплуатации отвалов. Цель достигается методом математического моделирования аэрогазодинамических процессов на основе системы уравнений Рейнольдса при обтекании воздушными массами породных отвалов.

КЛЮЧЕВЫЕ СЛОВА: хвосты добычи и переработки, уголь, окружающая среда, отвал, математическое моделирование, воздушные массы

Статья поступила в редакцию 19.02.2018.

Грязев М.В., Качурин Н.М., Стась Г.В.

ПЫЛЕГАЗОВЫЕ ВЫБРОСЫ С ПОВЕРХНОСТИ ПОРОДНЫХ ОТВАЛОВ ЛИКВИДИРОВАННЫХ ШАХТ УГОЛЬНОГО БАССЕЙНА

Введение

Аэрогазодинамические процессы протекают на всех этапах существования шахт и рудников. Практика показывает, что самый длительный этап негативных аэрогазодинамических процессов имеет место после их закрытия или ликвидации [1–5]. Экологическая модель геотехнологических периодов отработки запасов угля подземным способом показывает, что аэрогазодинамические процессы, обусловленные подземной разработкой месторождений, должны быть объектами мониторинга и после закрытия шахт (рис. 1). Для терриконов характерно значительное выделение в атмосферу пыли, которая в сухую ветреную погоду сдувается с поверхности отвала и уносится на значительные расстояния, загрязняя атмосферу и поверхностный почвенный слой [6–8].

Интенсивность пылеобразования на породных отвалях зависит от следующих факторов: типа и размеров отвала, его ориентации в пространстве, количества атмосферных осадков, относительной влажности воздуха, прозрачности атмосферы, облачности, значения альбедо поверхности отвала, минералогического состава породной массы и др. На породных отвалях шахт Подмосковного бассейна максимальная интенсивность пылеобразования составляет около 2,6 мг/м²·с. Выпадение пыли за зимний период на расстоянии 300 м от отвала достигает 14,3 г/м². Степень пыления отвалов увеличивается с ростом их высоты. Так, если с отвала высотой 20 м за год сдувается слой пыли толщиной 3,8 см, то с отвала 50 м – 6,5 см.

В зависимости от удельного накопления пыли можно выделить три зоны воздействия техногенных массивов на ландшафт:
- максимального воздействия, с высоким пылевым загрязнением поверхности земли и расположенной, как правило, в радиусе 3–10 км от техногенного массива;
- повышенного воздействия, распространяющуюся на расстояние 15–17 км;
- косвенного влияния с радиусом до 50 км.

Натурные наблюдения показали, что поверхность породного отвала является источником выбросов газовых загрязнителей в приземный слой атмосферы [9–12].

В соответствии с программой реструктуризации и стратегией развития угольной промышленности России предусматривается превращение ее в устойчиво функционирующее и рентабельное предприятие. В результате осуществляющейся реструктуризации угольной промышленности России и ликвидации нерентабельных угледобывающих предприятий произошла ликвидация угольных шахт Подмосковного угольного бассейна. Но воздействие на атмосферу и техногенная активизация геохимического переноса на территориях этих регионов продолжаются.

Материал и методы исследования

Натурные наблюдения за выбросами пыли с породных отвалов ликвидированных шахт. На шахтах Подмосковного угольного бассейна преимущенно использовались конические и крепежные отвалы, при отсыпке которых происходила сегрегация пород по крупности и по составу. Для оценки влияния выпадения пыли на почвы прилегающих к отвалу территорий проведены

1Грязев М.В., Качурин Н.М., Стась Г.В.
анализы содержания тяжёлых металлов в пробах, отобраны в тех же точках, где отбирались пробы снежного покрова. В таблице приведены результаты количественного анализа проб снежного покрова.

При интенсивной эмиссии пыли в окружающую среду на прилегающих к породному отвалу территориях происходит существенное загрязнение окружающей среды тяжёлыми металлами. Анализ состава породной массы показывает, что по большинству шахт превышения ПДК по тяжёлым металлам не наблюдалось. Исключение составляет свинец, превышение концентрации которого достигает 8 ПДК. У свинца четко выражена тенденция к накоплению в почве, так как его ионы малоподвижны даже при низких значениях водородного показателя pH. Поэтому поступающая с отвалов пыль загрязняет прилегающие территории.

Результаты исследований свидетельствуют о существенных различиях распределения свинца и марганца по угольным месторождениям, и по фракциям породной массы в отвалах. Данные натурных наблюдений свидетельствуют о том, что фракционный состав породной массы не оказывает существенного влияния на водородный показатель. Следовательно, пыль любой крупности, поступающая с отвала в окружающую среду, подкисляет почвы.

Моделирование движения потоков воздуха при обтекании породных отвалов. Моделирование движения воздуха при обтекании породных отвалов действующих и ликвидированных угольных шахт становится одним из основных методов анализа качества предлагаемых экологических решений по защите окружающей среды от вредных воздействий отвалов [13–16]. Моделирование аэрогазодинамических процессов при обтекании породных отвалов основывается в общем случае на системе уравнений О. Рейнольдса, описывающих течение вязкого, сжимаемого теплопроводного газа в трехмерной постановке, которая состоит из уравнений сохранения, включающих плотность воздуха; компоненты средней скорости воздуха; время; пространственные координаты; пульсационные

Рис. 1. Экологическая модель геотехнологических периодов отработки запасов угля подземным способом
Fig. 1. Environmental model of geotechnological levels for mining coal reserves by underground method

Содержание тяжёлых металлов в пробах снежного покрова на территориях, прилегающих к отвалу ш. № 67 (Тульская область)
Concentration of heavy metal in samples of snow mantle at the territories near the waste dump of the mine No 67

<table>
<thead>
<tr>
<th>№ п/п</th>
<th>Место отбора пробы / Sampling point</th>
<th>Концентрация, мг/кг / Concentration, milligram/kilogram</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Cr</td>
</tr>
<tr>
<td>1</td>
<td>Породный отвал / The waste dump</td>
<td>91</td>
</tr>
<tr>
<td>2</td>
<td>30 м от отвала / 30 m from the waste dump</td>
<td>26</td>
</tr>
<tr>
<td>3</td>
<td>150 м от отвала / 150 m from the waste dump</td>
<td>44</td>
</tr>
<tr>
<td>4</td>
<td>300 м от отвала / 300 m from the waste dump</td>
<td>64</td>
</tr>
</tbody>
</table>
скорости; статическое давление воздуха; энтропию; эффективную, динамическую и турбулентную вязкость; дельта Кронекера; кинетическую энергию турбулентности; полную и статическую энталпию [10].

Для замыкания данной системы уравнений используется полуэмпирическая модель турбулентности, состоящая из двух уравнений переноса:

- кинетической энергии турбулентности

\[
\frac{\partial (\rho k)}{\partial t} + \frac{\partial (\rho u_k k)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu + \frac{\mu_t}{\sigma_k} \frac{\partial k}{\partial x_j} \right) + S_k + \rho \epsilon, \quad (1)
\]

- скорости диссипации кинетической энергии турбулентности

\[
\frac{\partial (\rho \epsilon)}{\partial t} + \frac{\partial (\rho u_k \epsilon)}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\mu + \frac{\mu_t}{\sigma_\epsilon} \frac{\partial \epsilon}{\partial x_j} \right) + S_\epsilon + \frac{\epsilon}{k} \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} - \frac{2}{3} \frac{\partial k}{\partial x} \frac{\partial u_i}{\partial x_j} \right) - \rho C_\mu \frac{\epsilon^2}{k}, \quad (2)
\]

где \(C_\mu \) - коэффициент \(k \) – э модели турбулентности.

Дискретизация уравнений осуществляется методом конечных объемов [10–12]. Для описания распределения узлов внутри сеточной подобласти вводится понятие потокового элемента, который по своей сути является конечным элементом и на котором определены функции формы конечного элемента. Фундаментальное преимущество метода конечных объемов означает, что потоки в точке интегрирования на соприкасающихся поверхностях соседних контрольных объемов равны, т.е. поток, истекающий из одного контрольного объема и втекающий в прилегающий объем, идентичен. Стандартный подход метода конечных элементов (через функции формы конечного элемента) используется для оценки производных всех диффузионных членов. Производная от функции формы в декартовой системе координат может быть выражена в виде локальных производных функции формы через якобиан матрицы преобразования координат.

Полученные результаты и их обсуждение

Движение потоков воздуха при обтекании породных отвалов. Результаты вычислительных экспериментов представлены на рис. 2, 3. В настоящее время есть программные средства для численной реализации предлагаемого алгоритма и численного моделирования движения воздуха при обтекании породных отвалов любой формы. Вычислительные эксперименты были проведены для конических и хребтовых отвалов высотой 15 м при скорости ветра 5 м/с. Полученные результаты ви-
зуально демонстрируют, что разработанный алгоритм позволяет воспроизводить картину течения воздуха при различных схемах складирования пород на промышленных площадках шахт. Следует также отметить тот факт, что поле скоростей в приземном слое достаточно быстро выравнивается. При моделировании конвективно-турбулентной диффузии пыли и газовых загрязнителей можно использовать одномерное уравнение параболического типа, где конвективный член будет определяться скоростью ветра в приземном слое.

Поля скоростей воздуха при обтекании конического отвала могут превышать значение скорости сдувания твердых частиц практически на 60 % площади поверхности отвала. Площади пылящих поверхностей хребтового отвала не превышают 30 % его общей площади поверхности. Для упрощения расчетов высота струи на входной границе условно принимается не более высоты отвала.

Следующим этапом исследования является инженерный анализ результатов моделирования и разработка технических средств для реализации экологической безопасности территорий, прилегающих к породным отвалам [17–20]. Это позволит повысить качество проектирования и эксплуатации вентиляционных систем.

Одномерная задача о распространении газообразных и пылевых загрязнений дает приемлемые результаты только на некотором расстоянии от отвала, численное значение которого может быть определено решением уравнений Рейнольдса.

Перенос пыли в приземном слое атмосферы зоны действия породного отвала. Результаты вычислительного эксперимента с использованием зависимости (9) представлены рис. 4.

Анализ результатов эксперимента показал, что в процессе переноса пыли происходит довольно интенсивное ее осаждение и накопление на внешней поверхности почвы. При этом интенсивность осаждения пыли во многом определяется величиной скорости витания пыли и значением коэффициента седиментации. В зависимости от скорости ветра и длительности его действия пыли малых фракций могут распространяться на значительные расстояния от пылящего отвала. Этот факт подтверждается и результатами натурных наблюдений.

Таким образом, при оценке воздействия пыли породных отвалов на окружающую среду необходимо решать нестационарную задачу, чтобы прогнозировать динамику пылевой ситуации в зоне действия отвала.

Перенос газовых загрязнителей в приземном слое атмосферы зоны действия породного отвала. Зависимость (9) использована для вычислительного эксперимента (рис. 5).

В процессе переноса газового загрязнителя его
Рис. 3. Обтекание хребтового отвала высотой 15 м, ветер 5 м/с – восточный
Fig. 3. Flowing the crest dump with height 15 m, eastern wind velocity 5 m/s

Рис. 4. Распределение пыли в воздухе, обтекающем отвал: $C_p(x,t) = c_p / c_b$; 1 – $t = 3$ мин; 2 – $t = 5$ мин; 3 – $t = 7$ мин; 4 – $t = 9$ мин; 5 – $t = 16$ мин
Fig. 4. Distribution of a dust in air flowing a dump: $C_p(x,t) = c_p / c_b$; 1 – $t = 3$ minute; 2 – $t = 5$ minute; 3 – $t = 7$ minute; 4 – $t = 9$ minute; 5 – $t = 16$ minute
концентрация меняется незначительно в течение периода действия ветра. При этом выведение газового загрязнителя из воздушного потока осуществляется, в основном, за счет сорбции жидкими и твердыми частицами. В зависимости от скорости ветра и длительности его действия газообразные загрязнители могут распространяться на значительные расстояния от породного отвала, что подтверждается результатами натурных наблюдений.

Выводы

1. По большинству шахт превышений ПДК по тяжелым металлам не наблюдается. Прилегающие территории загрязняются, преимущественно, свинцом.

2. Аэрогазодинамические процессы обтекания породных отвалов описываются уравнением О. Рейнольдса в трехмерной постановке.

3. Интенсивность осаждения пыли определяется величиной скорости витания пыли и значением коэффициента седиментации.

Рис. 5. Концентрация газовых загрязнителей в приземном слое атмосферы: $C_{г.п}(x,t) = c_{г.п}(x,t)/c_1$; 1 – $t = 3$ мин; 2 – $t = 5$ мин; 3 – $t = 7$ мин; 4 – $t = 9$ мин; 5 – $t = 11$ мин.

Fig. 5. Gas pollutant concentration in surface layer: $C_{г.п}(x,t) = c_{г.п}(x,t)/c_1$; 1 – $t =3$ minute; 2 – $t =5$ minute; 3 – $t =7$ minute; 4 – $t =9$ minute; 5 – $t =11$ minute.

Грязев М.В. – обосновал физическую модель диффузионной миграции загрязнителей в почвенный слой, разработал математическую модель диффузионного процесса;

Качурин Н.М. – проводил натурные и лабораторные исследования, написал рукопись и несет ответственность за плагиат;

Стась Г.В. – провела обработку результатов натурных и лабораторных исследований, провела серию вычислительных экспериментов.

Критерии авторства / Contribution:

Грязев М.В. – substantiated physical model of diffusion migrating pollutants into soil seam and created mathematical model of diffusion process;

Качурин Н.М. – investigated field observation and laboratory researches, wrote manuscript, and he responds by plagiarism;

Стась Г.В. – treated data of field observation and laboratory researches and realized calculated experiment.

Конфликт интересов / Conflict of interest:

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.
ЛИТЕРАТУРА:

СВЕДЕНИЯ ОБ АВТОРАХ / Information about authors:

ГРЯЗЕВ Михаил Васильевич – доктор технических наук, профессор, ректор, 300012, Тульский государственный университет, Тула, Россия.

Тел.: +7(4872)35-21-55; ecology_tsu_tula@mail.ru

Mihail V. GRIYZEV – Doctor of Sciences, Full Professor, Rector, Tula State University, 300012, Tula, Russia.

Ph.: +7(4872)35-21-55; ecology_tsu_tula@mail.ru

КАЧУРИН Николай Михайлович – доктор технических наук, профессор, заведующий кафедрой, 300012, Тульский государственный университет, Тула, Россия.

Тел.: +7(4872)35-20-41; ecology_tsu_tula@mail.ru

Nikolai M. KACHURIN – Doctor of Sciences, Full Professor, Chief of a Department, 300012, Tula State University, Tula, Russia.

Ph.: +7(4872)35-20-41; ecology_tsu_tula@mail.ru
DUST AND GAS EMISSIONS FROM THE DUMPS SURFACES OF THE LIQUIDATED MINES OF THE
MOSCOW COAL BASIN

M. V. Gryazev,
N. M. Kachurin,*
G. V. Stas
Tula State University, Tula, Russia, ecology_tsu_tula@mail.ru

Purpose. The work deals with the problem of minimizing the negative impact of the tailings of coal mining and processing on the ecosystems of the environment by optimizing the parameters of the construction and operation of the dumps.

Methods. The object is achieved by a method of mathematical modeling aero–gas–dynamics processes based on the system of Reynolds equations in the flow of air masses of waste rock dumps.

Results. The simulation parameters of aero–gas–dynamics processes in the flow of waste dumps of atmospheric flows were obtained using O. Reynolds equations describing the flow of the viscous, compressible heat-conductive gas in three-dimensional formulation which consists of the basic conservation equations. On the basis of the simulation results the generalized geo–ecological model of technological periods of coal mining by underground method is formulated which is a matrix of the physical models of dust and gas pollutants emission processes in the environmental ecosystems and their mathematically formalized description. It is shown that the intensity of dusting rock dumps depends on a number of factors, the main of which are the dispersed composition, dust humidity, as well as the direction and speed of the wind. The analysis of the results of the computational experiment determined that during the transfer of the gas pollutant its concentration under wind action in the simulated space changes slightly. It was found that the intensity of dust deposition in the area of mines is determined by the value of the dust soaring rate and the value of the sedimentation coefficient.

Summary. The territory of the studied mines is polluted mainly with lead. Calculation aero–gas–dynamics processes parameters of waste dumps flow on the basis of Reynolds equations in three-dimensional formulation gives correct results.

Keywords: production and processing tails, coal, environment, dump, mathematical modeling, air masses.

References
5. Golik V. I., Komashchenko V. I. waste of ferruginous quartzite enrichment as a raw material for metal recovery and use as tab mixtures DOI 10.17580/GZH.2017.03.08. Mining journal, 2017, no 3, pp. 43–47.

Article received 19.02.2018.
Северный Кавказ относится к районам с высоким потенциалом сейсмической опасности. Проходящий непосредственно в южной части территории г. Владикавказа разлом может быть источником сильного землетрясения с максимальной ожидаемой магнитудой М=7,1, что может формировать 9–10-балльные величины сейсмической активности непосредственно в густонаселенном городе. Это обстоятельство необходимо учитывать при сейсмостойком проектировании и практическом строительстве. Сейсмическая безопасность – основа устойчивого развития горных территорий.

В условиях умеренной сейсмической активности, когда записи сильных воздействий на исследуемой территории практически отсутствуют, используются различные модели генерирования синтетических акселерограмм. Одним из методов является стохастический метод, основанный на вероятностных моделях с учетом региональных особенностей очагов землетрясений.

Необходимость расчета зданий и сооружений на сейсмические воздействия в разнообразных сейсмотектонических и инженерно-геологических условиях привела к созданию стохастических моделей сейсмических колебаний грунтов [1–3]. Синтетические акселерограммы строятся на основе вероятностных моделей с учетом региональных особенностей очагов землетрясений [4–9]. В результате появляется возможность разработки региональных кривых коэффициента динамичности на основе стохастического моделирования. Данный метод был применен для территории Северной Осетии на основе подхода, предложенного в работе П. Реквава [2] и в дальнейшем используемого автором для оценки сейсмических воздействий для территории г. Тбилиси [10–12].

Синтетическая акселерограмма воспроизводится для набора параметров, задаваемых в зависимости от класса решаемых задач. В нашем случае, для определения реакции здания на сейсмические воздействия рассматриваются колебания с периодом 0,2–0,5 с и продолжительностью 10–30 с. Данные значения характерны для плотных грунтов. Влияние строения верхней части разреза на спектральный состав колебаний в каждом конкретном случае рассматривается нами отдельно [13–14].

Для моделирования подобных воздействий используется квазистационарная или амплитудно-нестационарная модель. В ней составляющие сейсмического воздействия представляются в виде произведения стационарной случайной функции и детерминистской огибающей. Главной характеристикой стационарного процесса является спектральная плотность, которая, как правило, описывается дробно-рациональной функцией. Поскольку уровень модуляции колебаний не превышает 10–15%, она не учитывается.
Таким образом, сейсмическое воздействие моделируется набором нестационарных Гауссовых процессов, которые отличаются друг от друга преобладающим периодом и продолжительностью колебаний [15]. В результате моделируется разнообразная возможная реализация спектров различных землетрясений территории на основе их региональных особенностей. Каждый i-й элемент этого набора или ускорение грунта Z(t, ωj) представляет собой произведение стационарного Гауссова процесса X(t, ωj) с нулевым математическим ожиданием и детерминированной огибающей A(t, ωj), обеспечивающей соответствующую нестационарность движения грунта, в диапазоне ωmin ≤ ω ≤ ωmax:

Здесь Z(t, ωj) = X(t, ωj)A(t, ωj), (1)

где ωj – преобладающая частота i-го процесса, ее граничные значения ωmin и ωmax задаются на основе эмпирических данных.

Соответствующие функции в выражении (1) определяются на основании статистического анализа акселерограмм землетрясений и данных о возможных очагах землетрясений на исследуемой территории, их параметрах (магнитуда, глубина очага) и связях с параметрами воздействий (сейсмическая интенсивность или амплитуда ускорения, преобразующий период колебаний [16–20].

Анализ инструментальных данных показывает, что даже в пределах одного региона интенсивность, продолжительность и преобладающий период колебаний могут различаться. Поэтому в каждой составляющей в статистической модели рассматривается диапазон частот ωmin ≤ ω ≤ ωmax, с целью учета вариации частот колебаний при различной реализации.

Тогда модель может быть представлена в форме мультипликативных процессов Гаусса, каждый i-й элемент которого рассчитывается по формуле:

Z(t, ωj) = A(t, ωj)σ(ωj)x(t, ωj), (2)

gде ωj – круговая частота, соответствующая преобладающей частоте j-го процесса;

σ(ωj) – среднеквадратичное значение ускорения;

x(t, ωj) – нормализованная случайная функция с нулевым математическим ожиданием, которая характеризуется корреляционной функцией:

K(τ) = e^{-ατ}|t| cos ωjτ, (3)

или

K(τ) = e^{-ατ}|t| cos ωjτ + αj sin ωjτ. (4)

Нормализованная огибающая функция стационарного процесса для фиксированных значений ωj представляется в форме импульса Берлаге:

A(t, ωj) = Ate^{-ετ}; |A|_{max} = 1. (5)

Учитывая нормирование |A(t, ωj)|_{max} = 1 формула (5) принимает вид:

A(t, ωj) = e^{-ετ}. (6)

Для моделирования трехкомпонентных записей используются масштабирующие коэффициенты [12]: для горизонтальных компонент 1,0 и 0,85 и для вертикальной компоненты – 0,7.

Для моделирования случайного процесса с заданной корреляционной функцией был использован следующий численный алгоритм:

1. Построение соответствующей корреляционной матрицы.
2. Факторизация корреляционной матрицы по Холецкому и выделение нижнего треугольного сомножителя.
3. Формирование вектора-столбца из независимых случайных чисел с соответствующим законом распределения, нулевым математическим ожиданием и единичной дисперсией.
4. Умножение нижнего треугольного сомножителя на вектор.

Алгоритм был реализован в среде MATLAB.

В результате, в модели учитывается четыре параметра. Вместе с тем каждый сомножитель, соответствующий определенному значению ωj, задается следующими тремя параметрами:

α – коэффициент корреляции, определяет ширину спектра;

ε – определяет эффективную продолжительность активной фазы колебаний и нестационарности процесса;

σ – интенсивность случайного процесса, которая определяется его дисперсией.

В расчетах была принята следующая функциональная зависимость между параметрами α, ε, σ [15]:

ε = 0,5ω; 0,36ω ≤ α ≤ 0,5ω; (7)

σ = Bo^{0,5}, (8)

где B = 15, 30, 60 для интенсивности 7, 8 и 9 баллов соответственно.

Для определения преобладающего периода T колебаний грунта, продолжительности колебаний D, максимального ускорения U и ожидаемой интенсивности I были использованы эмпирические соотношения, приведенные в работе [16]:

ωmin = 0,05ω; 0,36ω ≤ α ≤ 0,5ω; (7)

σ = Bo^{0,5}, (8)

где B = 15, 30, 60 для интенсивности 7, 8 и 9 баллов соответственно.
Таким образом, исходными данными для расчетов служат максимальная магнитуда M_{max}, глубина очага h и карта разломов. Используя выражения (9) – (10) для максимальных значений магнитуд и минимальных значений гипоцентрических расстояний, представленных в табл. 1, были вычислены параметры, необходимые для генерирования синтетических акселерограмм.

Таблица 1 / Table 1

<table>
<thead>
<tr>
<th>Разлом Fault</th>
<th>M_{max}</th>
<th>Глубина очага h, км Source depth h, km</th>
<th>Минимальное расстояние от зоны до границы города Δ, км Minimal distance from zone to the border of the city, Δ, km</th>
<th>Ожидаемая максимальная интенсивность в г. Владикавказ, I Expected maximum intensity in Vladikavkaz, I</th>
</tr>
</thead>
<tbody>
<tr>
<td>f_3</td>
<td>6,5</td>
<td>15</td>
<td>5</td>
<td>8,8</td>
</tr>
<tr>
<td>f_2</td>
<td>6,5</td>
<td>15</td>
<td>21</td>
<td>8,1</td>
</tr>
<tr>
<td>f_5</td>
<td>7,0</td>
<td>15</td>
<td>33</td>
<td>8,3</td>
</tr>
<tr>
<td>f_1</td>
<td>6,5</td>
<td>15</td>
<td>40</td>
<td>7,3</td>
</tr>
<tr>
<td>f_3</td>
<td>7,0</td>
<td>15</td>
<td>48</td>
<td>7,8</td>
</tr>
<tr>
<td>f_6</td>
<td>6,0</td>
<td>15</td>
<td>75</td>
<td>5,7</td>
</tr>
<tr>
<td>f_{23}</td>
<td>5,5</td>
<td>15</td>
<td>76</td>
<td>4,9</td>
</tr>
<tr>
<td>f_7</td>
<td>7,0</td>
<td>15</td>
<td>77</td>
<td>7,2</td>
</tr>
<tr>
<td>f_{12}</td>
<td>7,0</td>
<td>15</td>
<td>99</td>
<td>6,8</td>
</tr>
<tr>
<td>f_{5}</td>
<td>6,0</td>
<td>15</td>
<td>120</td>
<td>6,5</td>
</tr>
<tr>
<td>f_{22}</td>
<td>6,0</td>
<td>15</td>
<td>122</td>
<td>5,0</td>
</tr>
<tr>
<td>f_{9}</td>
<td>5,5</td>
<td>15</td>
<td>123</td>
<td>4,2</td>
</tr>
<tr>
<td>f_{9}</td>
<td>5,5</td>
<td>15</td>
<td>123</td>
<td>4,2</td>
</tr>
<tr>
<td>f_{2}</td>
<td>6,0</td>
<td>15</td>
<td>125</td>
<td>5,0</td>
</tr>
<tr>
<td>f_{9}</td>
<td>5,5</td>
<td>15</td>
<td>126</td>
<td>4,2</td>
</tr>
<tr>
<td>f_{7}</td>
<td>7,0</td>
<td>15</td>
<td>126</td>
<td>6,4</td>
</tr>
<tr>
<td>f_{2}</td>
<td>7,0</td>
<td>15</td>
<td>141</td>
<td>4,0</td>
</tr>
<tr>
<td>f_{1}</td>
<td>7,0</td>
<td>15</td>
<td>142</td>
<td>6,3</td>
</tr>
<tr>
<td>f_{15}</td>
<td>6,5</td>
<td>15</td>
<td>149</td>
<td>5,5</td>
</tr>
<tr>
<td>f_{16}</td>
<td>6,0</td>
<td>15</td>
<td>149</td>
<td>4,7</td>
</tr>
<tr>
<td>f_{12}</td>
<td>6,5</td>
<td>15</td>
<td>170</td>
<td>5,3</td>
</tr>
<tr>
<td>f_{12}</td>
<td>6,5</td>
<td>15</td>
<td>173</td>
<td>5,2</td>
</tr>
<tr>
<td>f_{4}</td>
<td>6,0</td>
<td>15</td>
<td>176</td>
<td>4,5</td>
</tr>
<tr>
<td>f_{10}</td>
<td>5,0</td>
<td>15</td>
<td>179</td>
<td>2,9</td>
</tr>
<tr>
<td>f_{6}</td>
<td>6,5</td>
<td>15</td>
<td>183</td>
<td>5,2</td>
</tr>
<tr>
<td>f_{6}</td>
<td>5,0</td>
<td>15</td>
<td>193</td>
<td>2,8</td>
</tr>
<tr>
<td>f_{10}</td>
<td>5,0</td>
<td>15</td>
<td>196</td>
<td>2,8</td>
</tr>
<tr>
<td>f_{10}</td>
<td>5,0</td>
<td>15</td>
<td>219</td>
<td>2,6</td>
</tr>
<tr>
<td>f_{8}</td>
<td>7,0</td>
<td>15</td>
<td>224</td>
<td>5,6</td>
</tr>
<tr>
<td>f_{23}</td>
<td>6,0</td>
<td>15</td>
<td>237</td>
<td>4,0</td>
</tr>
<tr>
<td>f_{6}</td>
<td>6,0</td>
<td>15</td>
<td>253</td>
<td>3,9</td>
</tr>
<tr>
<td>f_{23}</td>
<td>5,0</td>
<td>15</td>
<td>253</td>
<td>2,4</td>
</tr>
<tr>
<td>f_{4}</td>
<td>5,5</td>
<td>15</td>
<td>280</td>
<td>3,0</td>
</tr>
<tr>
<td>f_{23}</td>
<td>6,0</td>
<td>15</td>
<td>311</td>
<td>3,6</td>
</tr>
<tr>
<td>f_{2}</td>
<td>5,0</td>
<td>15</td>
<td>330</td>
<td>2,0</td>
</tr>
<tr>
<td>f_{21}</td>
<td>5,0</td>
<td>15</td>
<td>379</td>
<td>1,8</td>
</tr>
</tbody>
</table>
(табл. 2). При определении параметров прогнозируемых землетрясений принимается одинаковая вероятность возникновения очага в пределах каждой зоны.

На рис. 1 представлены акселерограммы, генерируемые из наиболее опасных зон для территории г. Владикавказа. Третья зона (fc_2) характеризуется наибольшей магнитудой и эпицентрическим расстоянием, в силу чего отмечается преобладание более низких частот и увеличение длительности колебаний.

В результате для всех синтезированных акселерограмм были построены кривые коэффициента динамичности и соответствующая огибающая, представленная на рис. 2. Выполнено сравнение с кривой коэффициента динамичности согласно строительным нормам СП 14.13330.2014 (актуализированного СНиП II-7-81* "Строительство в сейсмических районах"). В области 0,4–2 с полученные значения соответствуют кривой СНиП, в короткопериодной части отдельные значения превышены в 1.6–1.7 раз, что обычно и наблюдается при анализе реальных записей землетрясений. Для средних значений превышение составляет 1.3.

Выводы

1. Рассчитаны типовые сейсмические воздействия, позволяющие оценить спектры реакции зданий при сильных землетрясениях от наиболее опасных для территории г. Владикавказа разломов.
2. Использована квазистационарная модель, в которой составляющие сейсмического воздействия представляются в виде произведения стационарной случайной функции и детерминистской огибающей.
3. Получена огибающая кривая, учитывающая влияние всех сейсмических источников для территории г. Владикавказа.
4. В интервале периодов $T = 0.1–0.4$ с ожидаемо го сейсмического воздействия получено превышение в 1.6 раз от нормативной кривой коэффициента динамичности, для средних значений превышение составляет 1.3, в интервале периодов $T = 0.4–2.0$ рассчитанные максимальные значения находятся в пределах проектной кривой.

5. Впервые получена региональная динамиче ская кривая, которая может быть успешно использована при сейсмостойком проектировании и практическом строительстве.

6. Использование новой региональной кривой коэффициента динамичности при сейсмостойком строительстве в Северной Осетии позволит повысить безопасность населения – основу устойчивого развития горных территорий.
УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

Работа выполнена в рамках Программы долгосрочного экономического сотрудничества Российской Федерации и Республики Армения на период до 2020 года (Тема: «Разработка моделей динамического регионального показателя (коэффициент динамической кривой) инженерно-сейсмологических условий территории на основе анализа инструментальных записей сильных и разрушительных землетрясений») / The work is carried out under long-term economic cooperation program of the Russian Federation and Armenia till 2020 (The subject elaboration of the dynamic regional coefficient model for the engineering-seismological areas conditions based on the instrumental records analysis of the strong and breaking earthquakes”).

КРИТЕРИИ АВТОРСТВА / Contribution:

Заалишвили В.Б. – руководство исследованием, постановка задач, анализ результатов; Реквава П.А. – критический анализ результатов, консультирование по вопросам реализации разрабатываемой методики; Мельков Д.А. – программная реализация алгоритмов, расчеты, подготовка иллюстраций / Zaalishvili V.B. – critical analysis of results, advice on the implementation of the developed methodology; Melkov D.A. – software implementation of algorithms, calculations, preparation of illustrations.

КОНФЛИКТ ИНТЕРЕСОВ / Conflict of interest:

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.

ЛИТЕРАТУРА:

СВЕДЕНИЯ ОБ АВТОРАХ / Information about authors:

РЕКВАВА Паата Абесаломович – доктор технических наук, профессор, директор, Национальная ассоциация Грузии по сейсмостойкому строительству и инженерной сейсмологии, Тбилиси, Грузия. e-mail: rekvavapaata@yahoo.com

МЕЛЬКОВ Дмитрий Андреевич – кандидат технических наук, ведущий научный сотрудник отдела геофизики, инженерной сейсмологии и геоинформатики. Геофизический институт – филиал Федерального научного центра "Владикавказский научный центр Российской академии наук", 362002, Владикавказ, Россия

Тел.: +7(8672)76-19-28, e-mail: melkovd@mail.ru

ЗААЛИШВИЛИ Владислав Борисович – доктор физико-математических наук, профессор, директор, заведующий отделом геофизики, инженерной сейсмологии и геоинформатики.

Геофизический институт – филиал Федерального государственного бюджетного учреждения науки Федерального научного центра "Владикавказский научный центр Российской академии наук", 362002, Владикавказ, Россия

Тел.: +7(8672)76-40-84, e-mail: vzaal@mail.ru
The Northern Caucasus that is characterized by moderate seismic activity refers to areas with high seismic hazard potential. In the process of investigation the Kolka glacier in 2002, it was found that the maximum earthquake effect for example in the mountainous regions of North Ossetia was reaching 10–11 points. Analysis of instrumental data shows that even within the same region, the intensity, duration, and predominant period of oscillations may vary. Moreover, it was later found out that the fault in the southern part of the city of Vladikavkaz, the capital of the Republic of North Ossetia-Alania, can be a source of a strong earthquake with a maximum expected magnitude of $M = 7.1$, which can form 9-10 points intensity values directly in densely populated city. This circumstance should be taken into account in seismic design and practical construction.

Seismic safety is the basis for the sustainable development of mountain areas. In conditions of moderate seismic activity, when there are practically no records of strong motions in the area of interest, different models of generating synthetic accelerograms are used. One of the methods is a stochastic one based on probabilistic models taking into account regional features of earthquake sources. To simulate the effects, a quasi-stationary or amplitude-nonstationary model is used. Components of the seismic action are represented as a product of a stationary random function and a deterministic envelope.

Synthetic accelerograms were obtained for the most dangerous for the territory of the city of Vladikavkaz city seismic zones. Curves of the dynamicity coefficient and the corresponding envelope were constructed, taking into account the particular locations of the sources of possible earthquakes on the investigated territory, accounting for which will increase the safety of the population. In the interval of periods $T = 0.1–0.4$ s expected seismic effect is 1.6 times higher than the standard curve of the dynamic coefficient. For average values, the excess is 1.3, in the interval of periods $T = 0.4–2.0$, the calculated maximum values are within the calculated curve. For the first time, a regional dynamic curve was obtained which can be successfully used in earthquake-proof design and practical construction.

Keywords: seismic effects, accelerogram, stochastic method, dynamic factor

References

13. Zaalishvili V.B., Melkov D.A., Kanukov A.S., Dzeranov B.V., Shepelev V.D. Application of microseismic and...

Article received 13.09.2018.
ОБЕСПЕЧЕНИЕ УСТОЙЧИВОГО РАЗВИТИЯ ГОРНОТЕХНИЧЕСКОЙ СИСТЕМЫ НА ЗАВЕРШАЮЩЕЙ СТАДИИ ПОДЗЕМНОЙ РАЗРАБОТКИ ЖИЛЬНЫХ ЗОЛОТОРУДНЫХ МЕСТОРОЖДЕНИЙ УРАЛА

Введение

Жильные золоторудные месторождения Урала имеют ряд особенностей: сложные геологическое строение и условия залегания рудных тел; разнообразные физико-механические свойства пород; тектоническая структура руд и вмещающих пород; высокие гравитационно-тектонические напряжения в горных массивах. Значительная часть запасов золотосодержащих руд месторождений сосредоточена в крутопадающих жилах и жилообразных телах, характеризующихся сложной структурой и наличием нескольких типов руд. Их разработка связана с большим разубоживанием руды и высокими коэффициентами вскрыши, что предопределяет значительные эксплуатационные затраты при использовании традиционных технических средств и технологических методов добычи и переработки руд. Кроме того, доработка месторождений влечет тяжелые социальные последствия, а ликвидация предприятия связана с тяжелыми для среды обитания экологическими последствиями. Основное направление для преодоления негативных социальных явлений, снижения неблагоприятных последствий горных работ на состояние окружающей среды и обеспечения устойчивого развития горнотехнической системы на завершающих стадиях эксплуатации месторождений связано с повышением полноты освоения недр и созданием новых ресурсосберегающих и энергоэффективных технологий комплексного освоения месторождений [1–3].

Особенности завершающей стадии освоения месторождений Урала

В настоящее время эксплуатационные работы на жильных золоторудных месторождениях Урала характеризуются сокращением объема воспроизводства ресурсной базы, снижением качественных характеристик добываемых руд, усложнением геомеханической обстановки, выражающимися ростом интенсивности проявлений горного давления в динамической форме, удорожением добычи, осложнением экологической ситуации и социальных проблем в развитом горнодобывающем регионе.

На современной стадии развития горнотехнических систем в результате длительной эксплуатации месторождений все минерально-сырьевые запасы техногенно изменены, находятся в зоне разгрузки или концентрации касательных и нормальных напряжений, в зоне разупрочнения и обрушения вмещающих пород, подвержены процессам вторичного изменения структуры массива и вещественного состава золотосодержащего сырья [4]. Это обуславливает проявление негативных горно-геологических, горнотехнических и геомеханических факторов, которые в условиях недостоверности горногеологической информации осложняют ведение горных работ и становятся причиной отклонений от проектных технико-экономических показателей разработки месторождений.

При этом наиболее благоприятные для разработки рудные залежи уже извлечены, но остались в недрах локальные выклиники, техногенно измененные участки с элементами деревянной крепи, запасы в охранных целиках. Все эти участки характеризуются более низким, по сравнению со средним в балансовых рудах, содержанием ценных компонентов и более сложными
горнотехническими и геомеханическими условиями разработки. Причем, по ряду участков месторождений, исторически многократно вовлекаемых в эксплуатацию, не сохранилась геологическая и техническая документация, поэтому возникают дополнительные трудности с изучением горно-геологических условий залежания и обоснованием горнотехнических параметров разработки.

Анализ практики отработки жилых месторождений показал, что для завершающей стадии их освоения характерно сложное геолого-техническое строение и изменение условий залегания оставшихся геологических запасов, пониженное содержание ценных компонентов в рудах, наличие второй минерализации вмещающих пород, повышенные значения вертикальных и горизонтальных составляющих напряжений в горных массивах, высокая скорость понижения горных работ и большая глубина разработки, увеличение интенсивности динамических проявлений горного давления, условия ведения очистной выемки в техногенно измененном массиве, рост затрат на транспортирование и подъем рудной массы, малый масштаб и мощность рудных тел, высокое разубоживание и засорение добываемых руд, рост объемов твердых отходов горно-обогатительного производства [5].

Выполненый анализ опыта освоения золоторудных месторождений, разрабатываемых Акционерным обществом «Южуралзолото Группа Компаний» (АО «ЮГК»), показал, что для большинства месторождений характерен относительно небольшой объем оставшихся балансовых запасов и, соответственно, ограниченный срок эксплуатации на завершающей стадии, низкое и весьма изменчивое содержание золота в руде, зачастую – длительный и многовековой период освоения, перешедший в завершающую стадию, когда уже доработаны 75 – 80 % балансовых запасов.

Существующие принципы проектирования горнотехнической системы в данных условиях не обеспечивают стабильных показателей эффективности горного производства и требующую устойчивость в условиях колебаний цен на металлы, изменчивости содержания металла в руде и др., что приводит к снижению технико-экономических показателей и требует иного и более ответственного подхода к обоснованию концепции и выбору технологий освоения месторождения на завершающей стадии.

В то же время анализ вариантов эксплуатации участка недр свидетельствует, что месторождения полезных ископаемых даже на завершающем этапе разработки балансовых запасов имеют значительные неосвоенные георесурсы, которые могут быть эффективно вовлечены в использование: в недрах Земли остались природно-техногенные запасы в различном роде охранных, барьерных, несущих и предохранительных целях, в закладочных массивах, зонах обрушения, запасы на больших глубинах, на удаленных участках месторождения, в выклинках рудных тел. Кроме того, остались ранее некондиционные руды, накоплено техногенное сырье, пройдены горные работы и сформировано выработанное пространство, техногенный ландшафт. В ряде случаев обеспечивается прирост балансовых запасов в ходе эксплуатационных горнотехнологических работ.

Устойчивого развития горнотехнической системы, снижения экологической нагрузки на среду обитания на завершающей стадии возможно добиться путем восполнения производственных мощностей рудников за счет их технического переоснащения и вовлечения в эксплуатацию всего ресурсного потенциала недр комбинированием физико-технических и физико-химических геотехнологий с возможностью утилизации конечных отходов в закладке выработанных пространств [6; 7].

Концепция развития горного предприятия на завершающей стадии жизненного цикла

Анализ практики эксплуатации месторождений на завершающей стадии показал, что под ней необходимо понимать стадию, когда основные запасы (до 80% балансовых) по базовому проекту отработаны, но появились новые технологии добычи и переработки полезных ископаемых, условия для пересмотра концепций, обеспечивающие прирост запасов.

На завершающих стадиях эксплуатации при проектировании устойчивой экологически сбалансированной горнотехнической системы следует исходить из обеспечения выполнения следующих преимуществ освоения недр:

- снижение влияния горно-геологических условий на технологические процессы подземного рудника;
- отказ от первоначальной избирательной отработки наиболее богатых участков месторождения и переход к совместной разработке с возможностью селективной выдачи разносортных руд;
- независимость основных технологических процессов во времени и пространстве;
- высокий уровень информатизации и диспетчеризации технологических процессов;
- формализация и стандартизация основных технологических процессов;
- производство продукции с заданным стабильным качеством;
- стабильность структуры издержек производства в течение основной фазы работы рудника.

Реализация указанных принципов осуществляется на основе воспроизводства новых функций земных недр за счет:

- разработки и совершенствования технологий добывчи и переработки руд оставленных запасов с изменением требований к качеству сырья;
- пересмотра концепций;
- использования выработанных пространств в различных целях;
— перехода на добычу иных полезных ископаемых;
— отработки законсервированных запасов карьера инновационными геотехнологиями;
— освоения запасов полезных ископаемых, которые ранее были отнесены к забалансовым;
— отработки техногенного сырья из отвалов и хвосторазлилии;
— вовлечения в отработку законсервированных запасов в целях различного назначения;
— повышения энергоэффективности горнотехнической системы путем энергосбережения и использования техногенных возобновляемых источников в ходе техногенного преобразования недр.

Комплексное и многоцелевое использование всех видов георесурсов, которые могут быть эффективно вовлечены в эксплуатацию на конкретном участке литосферы в конкретный период его освоения, предполагает внедрение инновационных ресурсосберегающих и энергоэффективных геотехнологий на базе:

— реструктуризации запасов;
— совершенствования технологий добычи руд и управления качеством рудной массы с целью снижения влияния горно-геологических условий на технологические процессы подземного рудника;
— отказа от первоначальной избирательной отработки наиболее богатых участков месторождения и переход к совместной разработке разнообразных руд;
— повышения уровня информатизации, диспетчеризации и стандартизации технологических процессов;
— создания логистической схемы, позволяющей обеспечить перспективный рост производственной мощности рудника;
— перехода на применение комбинированных физико-химических и физико-технических геотехнологий;
— расширения состава вовлекаемых в эксплуатацию георесурсов.

Воспроизводство новых функций земных недр производится согласно алгоритму реструктуризации георесурсов на завершающей стадии, которая включает последовательное выполнение семи этапов: геологических, геомеханических исследований, выбора направления и систем разработки, комплексных и лабораторных испытаний не только природного, но и техногенного сырья (рисунок). Это также определяет возможность воспроизводства электроэнергии, определение перспектив использования выработанных пространств и, с учетом всего перечисленного, проведение эколого-экономического обоснования целесообразности вовлечения в эксплуатацию всех определенных в ходе ресурсоизучения природных и техногенных георесурсов.

Реализация данных требований к освоению месторождений полезных ископаемых на завершающей стадии должна быть основана на применении геотехнологии, обеспечивающей максимальное использование современных достижений в области автоматизации и роботизации производственных процессов с исключением или ограничением присутствия людей в опасных зонах.

Широкое применение автоматизации производственных процессов с обеспечением максимальной эффективности и производительности технологического оборудования в рамках единого технологического комплекса, включающего:

— технологию выемки, обеспечивающую строго упорядоченную добычу различных типов руд во времени и пространстве;
— систему подземной рудоподготовки и транспорта, позволяющую обеспечить требуемое сортность и качество рудной массы;
— технологию закладочных работ, позволяющую за счет утилизации в составе закладочных смесей отходов горного производства и создания закладочного массива с заданными физико-механическими и технологическими свойствами формировать в случае технико-экономической возможности и экономической целесообразности новый вид георесурса в виде будущего техногенного месторождения [8], способно минимизировать потребление материальных, энергетических, трудовых и финансовых ресурсов и существенно повысить полноту и комплексность освоения недр Земли.

Использование возобновляемых источников энергии

Полное раскрытие потенциала ресурсной базы и обеспечение устойчивого безопасного и устойчивого развития горного предприятия на завершающей стадии эксплуатации месторождений неразрывно связаны с рациональным использованием невозобновляемых природных и техногенных источников энергии и переходом на использование возобновляемых источников [10–19]. Для обоснования направлений исследований и поиска технологических решений по повышению энергосбережения и ресурсосбережения горного производства проведена систематизация процессов и устройств для получения возобновляемых источников энергии при комплексном освоении недр.

В результате исследований возможностей использования возобновляемых источников энергии природного и техногенного происхождения в процессе комплексного освоения золоторудных месторождений определен принцип учета потоков гидросмесей. Доказано, что энергетический потенциал этих потоков в горнотехнической системе наибольший и поэтому перспективен для использования в промышленных условиях (рисунок) [20]. Определены условия сбора различных потоков гидросмесей на карьерах и в подземных горных выработках. Это — потоки воды шахтного водоотлива, потоки гидросмесей и закладочной смеси.

Доказано, что с увеличением глубины горных работ объемы перепускаемой шахтной воды растут, по-
Таблица 1 / Table 1

<table>
<thead>
<tr>
<th>Наименование этапа</th>
<th>Содержание работ</th>
</tr>
</thead>
</table>
| **I. Геологические исследования**
Geological research | — определение запасов природных и техногенных образований / determination of reserves of natural and man-made formations;
— карттирование / mapping;
— отбор проб / sampling;
— оценка содержания основных ценных компонентов, вредных примесей / assessment of the content of the main valuable components, harmful impurities. |
| **II. Геомеханическая оценка состояния массива горных пород**
Geomechanical assessment of rock mass condition | — оценка напряженно-деформированного состояния / stress-strain state assessment;
— оценка структуры массива / assessment of massive structure;
— оценка состояния выработанных пространств / assessment of the state of the developed spaces;
— определение параметров процесса сдвижения / determination of the parameters of the movement process;
— оценка устойчивости горнотехнической системы / mining system stability assessment;
— съемка техногенного ландшафта / survey of man-made landscape. |
| **III. Выбор направления и систем разработки**
Direction and systems development choice | **Нисходящая / Downward:**
— подэтажного обрушения / under-floor collapse;
— этажного обрушения / storey collapse;
— с магазинированием / with storage;
— этажно-камерная (самопогашение пустот) / storey chamber (the backfilling);
— этажно-камерная с закладкой / floor-chamber with a filling.
Восходящая / Upward:
— камерная с твердеющей закладкой / chamber with hardening filling;
— камерная с гидрозакладкой / chamber with hydraulic filling;
— подэтажная отбойка / sublevel blasting;
— с закладкой / with filling. |
| **IV. Комплексные лабораторные испытания природного и техногенного сырья**
Complex laboratory tests of natural and man-made raw materials | Изучение вещественного состава, характеристик структуры сырья и физико-механических свойств / Study of material composition, characteristics of raw material structure and physical and mechanical properties:
— определение химического и фазового состава / determination of chemical and phase composition;
— минералогический анализ / mineralogical analysis;
— имидж-анализ / image analysis;
— определение гранулярного состава / determination of granular composition;
— изучение: влажности, пористости, крепости, водопоглощения / study: humidity, porosity, strength, water absorption. |
| **V. Определение возобновляемых источников энергии**
Definition of renewable energy sources | — параметры водоотлива / drainage parameters;
— параметры гидросмесей / parameters of hydraulic mixtures;
— параметры твердеющих смесей / parameters of hardening mixtures;
— рекуперация / recovery;
— энергия горного массива / energy of the mine massive;
— энергия силы тяжести большегрузного транспорта / energy of gravity of heavy transport. |
| **VI. Определение потенциала выработанных пространств и техногенного ландшафта**
Determination of the potential of developed spaces and man-made landscape | — объемы подземных камер / the volume of the underground chambers;
— параметры карьеров / pit parameters;
— параметры хвостохранилищ / parameters of tailing dumps;
— параметры отвалов / dump parameters. |
| **VII. Эколого-экономическое обоснование**
Environmental and economic substantiation | Экологические исследования; экономическая оценка предлагаемых технологий / Environmental studies; economic assessment of proposed technologies:
— масштаб воздействия на сферу обитания / scale of impact on the habitat;
— изменение характеристик среды обитания / changes in habitat characteristics;
— рентабельность использования георесурсов / the profitability of the resources using. |
этому повышаются и возможности по их использова
нию для воспроизводства электроэнергии.

Испытания подтвердили практическую целесоо
бразность и выявили условия воспроизводства элек
троэнергии от техногенных источников на гидроле
ктруктурах малой мощности до 30 кВт. На основе
выполненных исследований предложена методика
определения воспроизводимой мощности и выбора
ГЭУ малой мощности по параметрам рабочих зон в
области предпочтительного использования того или
иного типа гидротурбин [20]. Проведенными опыт
но-промышленными испытаниями доказана возмож
ность получения в шахтных условиях возобновляемой
энергии от потоков гидросмесей: шахтной воды, ги
дравлической закладки на основе текущих и сгущен
ных хвостов обогащения, твердеющей закладочной
смеси с учетом их вещественного состава, плотности
и вязкости [20].

Внедрение системы воспроизводства электроэнер
гии от потока перепускаемой воды и закладочной
смеси на подземном руднике дополнительно позво
лит уменьшить потребление электроэнергии до 20 %.
Предложена каскадная схема последовательного съе
ма энергии потоков гидросмесей (от ГЭУ) на промежуточных горизонтах шахтных вод. Для реализации этого потоков гидросмесей разработаны и апробированы в промышленном масштабе конструкции действующих моделей ГЭУ с электрогенераторами малой (до 100 кВт) мощности с прямоугольными лопастными и ковшовыми рабочими колесами [20].

Комплексное применение закладочных работ на
верхних и нижних горизонтах шахт на Кочкарском
месторождении позволяет прово
дить совместное воспроизводство электроэнергии от потоков закла
dочного смеси и перепускаемых шахтных вод, перемещающихся по вертикальному закладочному тру
бопроводу в зону обслуживания закладочных работ.

Заключение

Таким образом, для горного предприятия завершающая ста
дия – это стадия возможного раз
вития производства на новой кон
цептуальной основе, отличающейся от принятой в базовом проекте разработки месторождения. Она
определяется поэтапным и условно неопределенным развитием горнотехнической си
стемы с вовлечением на каждом из этапов нового вида горнотехнологий в полезное эффективное использо
вание. Эта стадия развития предпри
ятия предполагает проектирование устойчивой экологически сбалансированной горнотехнической системы, обеспечивающей комплексную добычу и переработку оставшихся природных и вол
вление в эксплуатацию техногенных георесурсов.

Обоснована концепция освоения месторождений на завершающих стадиях эксплуатации, включающая ресурсосберегающую концепцию традиционного вспомогательного оборудования и вовлечения в эксплуатацию техногенных георесурсов.

На примере золоторудных месторождений Урала доказано, что полное раскрытие потенциала ресурс
ной базы и обеспечение устойчивого безопасного и гармоничного развития горного предприятия на завершающей стадии эксплуатации месторождений невозможно без комплексного умножения негативных факторов при доработке месторождения за счет внедрения ресурсосберегающих и энергоэффективных геотехнологий.

Работа выполнена при поддержке гранта РНФ № 14–37–00050 / Work is performed with assistance of a grant of RNF No 14-37-00050
КОНФЛИКТ ИНТЕРЕСОВ / Conflict of interest:

Авторы заявляют об отсутствии конфликта интересов / The authors declare no conflict of interest.

ЛИТЕРАТУРА:

1. Горные науки. Освоение и сохранение недр Земли // Под ред. академика К.Н. Трубецкого. М.: Изд-во Академии горных наук, 1997. 478 С.
2. Трубецкой К.Н. Развитие ресурсосберегающих и ресурсоспроизводящих геотехнологий комплексного освоения месторождений полезных ископаемых. М.: ИПКОН РАН. 2014. 196 С.

СВЕДЕНИЯ ОБ АВТОРАХ / Information about authors:

РЫЛЬНИКОВА Марина Владимировна – доктор технических наук, профессор, заведующий отделом теории проектирования освоения недр, Институт проблем комплексного освоения недр им. академика Н.В. Мельникова Российской Академии наук (ИПКОН РАН).

111020, Москва, Россия.
Тел.: 8 (495) 360-29-13; e-mail: rylnikova@mail.ru

Marina VI. RYLNKOVA – doctor of technical Sciences, Professor, head of Department of theory of design development of mineral resources, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of
SUSTAINABLE DEVELOPMENT OF MINING SYSTEM AT THE FINAL STAGE OF UNDERGROUND MINING VEIN GOLD DEPOSITS OF THE URALS

M.V. Rylnikova, *
K.I. Strukov,
E.N. Esina

Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences (IPKON RAS),
rylnikova@mail.ru

At the present stage of development of mining systems as a result of long-term exploitation of gold ore deposits in the Urals, there is a reduction in the volume of reproduction of the resource base, a decrease in the qualitative characteristics of mined ores, the complication of geometrical conditions, expressed in the increase in the intensity of manifestations of mountain pressure in a dynamic form, the rise in the cost of production, the complication of the environmental situation and social problems in the developed mining region. At the same time on the final stage of development of balance reserves have significant undeveloped, which can be effectively engaged in the use of natural and man-made reserves of different kind of security, barrier, carrier, and safety pillars, backfill areas, areas of collapse, the stocks at greater depths, in remote areas of the field. In addition, it was previously off-grade ore accumulated technogenic raw materials, completed the excavation and formed the mined-out area, man-made landscape. It is proved that the concept of field development at the final stages of operation should include the restructuring of reserves and compensation for the impact of negative factors in the refinement of the field through the introduction of resource-saving and energy-efficient geotechnologies. It is shown that the full disclosure of the potential of the resource base and ensuring the sustainable safe and harmonious development of the mining enterprise at the final stage of field operation are inextricably linked with the rational use of non-renewable natural and man-made sources of energy and the transition to the use of renewable sources.

Keywords: mining system, sustainable development, underground geotechnology, the final stage, gold deposits.

References
6. Trubetskoy K. N., Kaplanov D. R., Rylnikova, M. V. Principles of substantiation of the parameters of a sustainable and ecologically balanced development of the solid minerals mining. Mining information-analytical Bulletin (scientific and technical journal). The conditions for the
sustainable functioning of mineral-raw material complex of Russia. 2014, issue 2, 12, pp. 3–10. (in Russian)

Article received 02.06.2018.
ФЛОРА ПАРАБОЧЕВСКОГО ЗАКАЗНИКА И ЕЕ СИСТЕМАТИЧЕСКИЙ АНАЛИЗ

Введение
Одна из важнейших современных проблем – сохранение биоразнообразия, служащего главным средообразующим резервом планеты и обеспечивающим возможность ее устойчивого развития, сохранения естественной среды обитания и биологических ресурсов. Интенсивное использование обществом ресурсов природы неизбежно сопровождается нарушением естественных экосистем, среды и местообитания живых организмов, сокращением их ареала, численности популяций и даже исчезновением отдельных видов. Особо охраняемые природные территории – заповедники, заказники и другие – с их ограниченным режимом хозяйственной деятельности наименее подвержены негативным воздействиям и должны служить целям сохранения естественной среды, охраны и воспроизводства всего биоразнообразия. Но, к сожалению, они не всегда соответствуют своему функциональному назначению.

«Парабочевский» государственный биологический заказник – один из восьми заказников республиканского подчинения. Он основан в 1963 году в долине р. Терек (Шелковской район Чеченской Республики). Его общая площадь – 12,0 тыс. га, в том числе 6 тыс. га лесного фонда. Основное назначение заказника – охрана и восстановление редких и исчезающих видов растений и животных или видов, ценных в хозяйственном научном и культурном отношении природных комплексов и поддержание экологического баланса [1].

К сожалению, до сих пор не изучено современное состояние экосистем, растительного покрова и животного населения заказника. Нет сведений о составе его флоры, в том числе о редких, реликтовых и ценных в научном и практическом отношении видов, нуждающихся в охране, без чего невозможна эффективная природоохранныя и экологически ориентированная деятельность заказника.

Изучение флоры любой территории основывается на инвентаризации видового состава, на котором базируется комплексный ее анализ (таксономической, хронологической, эколого-географической, экологической, биологической и эколого-фенотической и др.). Это необходимо и для оценки флоры в целом, состояния популяций конкретных видов и фиторесурсного потенциала, а также для научного обоснования мероприятий по рациональному использованию, сохранению и воспроизводству биоразнообразия.

Вопросы анализа флоры разрабатывались многими исследователями: Braun-Blanquet J. [2–4], Koch W. [5], Лавренко Е.М. [6], Буш Н.А. [7], Davis P.H. [8], Walter H. et. al. [9], Толмачев А.И. [10; 11], Камелин Р.В. [12], Юрцев Б.А. [13], Середин Р.М. [14] и др. Теоретические и методические вопросы применительно к Предкавказью разработаны в работах А.И. Иванова [15; 16]. Растительный покров территории Чеченской Республики по высотным поясам описан в работе А.И. Галушко [17], в которой дается также общее описание флоры в целом, состояния популяций конкретных видов и фиторесурсного потенциала, а также для научного обоснования мероприятий по рациональному использованию, сохранению и воспроизводству биоразнообразия.

Вопросы анализа флоры разрабатывались многими исследователями: Braun-Blanquet J. [2–4], Koch W. [5], Лавренко Е.М. [6], Буш Н.А. [7], Davis P.H. [8], Walter H. et. al. [9], Толмачев А.И. [10; 11], Камелин Р.В. [12], Юрцев Б.А. [13], Середин Р.М. [14] и др. Теоретические и методические вопросы применительно к Предкавказью разработаны в работах А.И. Иванова [15; 16]. Растительный покров территории Чеченской Республики по высотным поясам описан в работе А.И. Галушко [17], в которой дается также общее описание флоры в целом, состояния популяций конкретных видов и фиторесурсного потенциала, а также для научного обоснования мероприятий по рациональному использованию, сохранению и воспроизводству биоразнообразия.

КЛЮЧЕВЫЕ СЛОВА:
Чеченская Республика, Парабочевский заказник, флора, семейства, роды, реликты, охраняемые и раритетные виды

Статья поступила в редакцию 12.05.2017.
природы и общества. Изучение видового состава конкретных флор позволяет познать их фиторесурсный потенциал, историю и тенденции развития растительного покрова конкретных территорий.

Цель исследований. Изучение состава и систематический анализ флоры особо охраняемой природной территории – Парабочевского заказника, выявление раритетных, реликтовых и ресурсно полезных видов.

Объект и методика исследований.

Результаты исследований. За этот период наблюдений на территории заказника выявлено 266 видов сосудистых растений из 205 родов и 71 семейства. Представители некоторых семейств распространены на территории Чеченской Республики практически во всех пойменных лесах и на равнинных территориях, относящихся в той или иной мере к поймам рек, хотя доля участия конкретных родов и видов в формировании растительного покрова по отдельным лесным кварталам неодинакова. Систематическая структура является самой важной характеристикой любой флоры, а анализ численных взаимоотношений между таксонами (семействами, родами и видами) позволяет определить специфику видов, выявить закономерности, связанные с историческим развитием флоры той или иной территории.

Систематический анализ флоры исследуемого заказника приводится в таблице.

К крупнейшим семействам Парабочевского заказника относятся семейства Asteraceae (13,16% видов флоры заказника), Rosaceae (7,52%), Lamiaceae (6,76%), Fabaceae (5,64%), Poaceae (4,51%), Boraginaceae (4,13%), Brassicaceae (3,75%), Caryophyllaceae (3,00%), Apiaceae (3,00%), Malvaceae (2,63%). На них приходится 111 (54,1%) родов и 145 (64,4%) видов.

Первое, что привлекает внимание – это положение семейств Asteraceae, Rosaceae и Lamiaceae в списках семейств флор Предкавказья (Иванов, 1998) и Парабочевского заказника. Первая тройка семейств соотносит. Ранг остальных общий для сравниваемых флор семейств в спектрах разнятся. Из этого вытекает важное заключение: несмотря на экологическую специфичность, основное ядро флоры Парабочевского заказника принадлежит семействам, определяющим их общую систематическую структуру, но с некоторым повышением роли полупустынных и пустынных семейств (Caryophyllaceae и Boraginaceae). Первые 25 (35,2 %) семейств, содержащие три и более видов, суммарно объединяют 163 рода (79,1 % от общего числа родов) и 205 видов (77,1 % всей флоры). Во флоре заказника относительно высокий процент малочисленных семейств, состоящих из 1–2 видов. Таких здесь более половины – 46 (64,8 %). В сумме они объединяют 62 вида (23,3 % флоры заказника).

Флора заказника представлена 205 родами высших сосудистых растений. Среди них по 5 видов содержат Artemisia и Centaurea; по 4 вида – Potentilla, по 3 вида – Allium, Crataegus, Inula, Populus, Trifolium, Salix, и Viola; по 2 вида – Achillea, Ajuga, Althaea, Bromus, Carex, Cynoglossum, Echium, Euonymus, Euphorbia, Gagea, Galium, Geranium, Lamium, Lathyrus, Malva, Medicago, Menta, Morus, Nonea, Orchis, Plantago, Polygonum, Poa, Prunella, Prunus, Primula, Ranunculus, Rhamnus, Rubus, Rumex, Salvia, Sambucus, Solanum, Stachys, Typha, Ulmus, Verbascum, Veronica, Viburnum, victia. Суммарно перечисленные 50 (24,4 %) родов объединяют 115 (43,2 %) видов.

Общий систематический спектр флоры Парабочевского заказника

General systematic range of flora of the Parabochevsky wildlife area

<table>
<thead>
<tr>
<th>№</th>
<th>Семейства</th>
<th>Кол-во родов</th>
<th>% родов</th>
<th>Кол-во видов</th>
<th>% видов</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Asteraceae – Астровые</td>
<td>24</td>
<td>11,77</td>
<td>35</td>
<td>13,16</td>
</tr>
<tr>
<td>2</td>
<td>Rosaceae – Розоцветные</td>
<td>14</td>
<td>6,83</td>
<td>20</td>
<td>7,52</td>
</tr>
<tr>
<td>3</td>
<td>Lamiaceae – Яснотковые</td>
<td>11</td>
<td>5,36</td>
<td>18</td>
<td>6,77</td>
</tr>
<tr>
<td>4</td>
<td>Fabaceae – Бобовые</td>
<td>10</td>
<td>4,88</td>
<td>15</td>
<td>5,64</td>
</tr>
<tr>
<td>5</td>
<td>Poaceae – Мятликовые</td>
<td>10</td>
<td>4,88</td>
<td>12</td>
<td>4,51</td>
</tr>
<tr>
<td>6</td>
<td>Boraginaceae – Бурачниковые</td>
<td>8</td>
<td>3,90</td>
<td>11</td>
<td>4,13</td>
</tr>
<tr>
<td>7</td>
<td>Brassicaceae – Капустные</td>
<td>10</td>
<td>4,88</td>
<td>10</td>
<td>3,75</td>
</tr>
<tr>
<td>8</td>
<td>Apiaceae – Сельдерейные</td>
<td>8</td>
<td>3,90</td>
<td>8</td>
<td>3,00</td>
</tr>
<tr>
<td>9</td>
<td>Caryophyllaceae – Гвоздичные</td>
<td>8</td>
<td>3,90</td>
<td>8</td>
<td>3,00</td>
</tr>
<tr>
<td>10</td>
<td>Malvaceae – Мальвовые</td>
<td>5</td>
<td>2,44</td>
<td>7</td>
<td>2,63</td>
</tr>
<tr>
<td>11</td>
<td>Salicaceae – Ивовые</td>
<td>2</td>
<td>0,97</td>
<td>6</td>
<td>2,25</td>
</tr>
<tr>
<td>12</td>
<td>Scrophulariaceae – Норичниковые</td>
<td>4</td>
<td>1,97</td>
<td>6</td>
<td>2,25</td>
</tr>
<tr>
<td>13</td>
<td>Orchidaceae – Орхидные</td>
<td>4</td>
<td>1,97</td>
<td>5</td>
<td>1,88</td>
</tr>
<tr>
<td>14</td>
<td>Ranunculaceae – Лютиковые</td>
<td>4</td>
<td>1,97</td>
<td>5</td>
<td>1,88</td>
</tr>
<tr>
<td>15</td>
<td>Dipsacaceae – Ворсянковые</td>
<td>4</td>
<td>1,97</td>
<td>4</td>
<td>1,50</td>
</tr>
<tr>
<td>16</td>
<td>Polygonaceae – Гречишные</td>
<td>2</td>
<td>0,97</td>
<td>4</td>
<td>1,50</td>
</tr>
<tr>
<td>17</td>
<td>Rubiaceae – Мареновые</td>
<td>3</td>
<td>1,46</td>
<td>4</td>
<td>1,50</td>
</tr>
<tr>
<td>18</td>
<td>Solanaceae – Пасленовые</td>
<td>3</td>
<td>1,46</td>
<td>4</td>
<td>1,50</td>
</tr>
<tr>
<td>19</td>
<td>Liliaceae – Лилейные</td>
<td>4</td>
<td>1,97</td>
<td>4</td>
<td>1,50</td>
</tr>
<tr>
<td>20</td>
<td>Alliaceae – Луковые</td>
<td>3</td>
<td>1,46</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>21</td>
<td>Asclepiadaceae – Ластовенные</td>
<td>3</td>
<td>1,46</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>22</td>
<td>Betulaceae – Березовые</td>
<td>3</td>
<td>1,46</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>23</td>
<td>Geraniaceae – Гераниевые</td>
<td>2</td>
<td>0,97</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>24</td>
<td>Rhamnaceae – Крушиновые</td>
<td>2</td>
<td>0,97</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>25</td>
<td>Violaceae – Фиалковые</td>
<td>1</td>
<td>0,48</td>
<td>3</td>
<td>1,13</td>
</tr>
<tr>
<td>26</td>
<td>Apoxyraceae – Кутровые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>27</td>
<td>Cannabaceae – Коноплевые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>28</td>
<td>Sambucaceae – Бузиновые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
<tr>
<td>29</td>
<td>Celastraceae – Бересклетовые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>30</td>
<td>Convulaceae – Вьюнковые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>31</td>
<td>Cornaceae – Кизиловые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>32</td>
<td>Cyperaceae – Осоковые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>33</td>
<td>Euphorbiaceae – Молочайные</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>34</td>
<td>Oleaceae – Маслиновые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>35</td>
<td>Onagraceae – Кипрейные</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>36</td>
<td>Papaveraceae – Маковые</td>
<td>2</td>
<td>0,97</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>37</td>
<td>Plantaginaceae – Подорожниковые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>38</td>
<td>Primulaceae – Первоцветные</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>39</td>
<td>Typhaceae – Рогозовые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>40</td>
<td>Ulmaceae – Ильмовые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>41</td>
<td>Viburnaceae – Калиновые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>42</td>
<td>Moraceae – Тутовые</td>
<td>1</td>
<td>0,48</td>
<td>2</td>
<td>0,75</td>
</tr>
<tr>
<td>43</td>
<td>Equisetaceae – Хвощевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
<tr>
<td>44</td>
<td>Ophioglosaceae – Ужовниковые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
<tr>
<td>45</td>
<td>Salviniaceae – Сальвиниевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
<tr>
<td>46</td>
<td>Aceraceae – Кленовые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
<tr>
<td>47</td>
<td>Araceae – Ароидные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
</tr>
</tbody>
</table>
нение в составе ведущих семейств Fabaceae указывает на принадлежность изучаемой экологической группы растений, как элементов флоры, к Туранской флористической подобласти.

Во флоре заказника присутствует много видов, занесенных в Красную книгу Чеченской Республики [20]: Allium paradoxum, Althaea armeniaca и A. officinalis, Amygdalus nana, Cephalanthera damasonium, Cucubalus baccifer, Cydonia oblonga, Eryanthus ravennae, Hedera pastuchovii, Iris pseudacorus, Malus orientalis, Ophyoglossum vulgatum, Orchis picta и O. purpurea, Periploca graeca, Primulama crocalyx и P. woronowii, Salvinia natans, Tulipa biebersteiniana, Vitis sylvestris. Все они подлежат строгой охране как редкие или ценные в хозяйственном или научном отношении виды.

Редкими на территории заказника являются также Allium ursinum, Chelidinium majus, Clematis orientalis, Listera ovata, Physalis alkekengi, Oenothera biennis, Orobanchaceae, Papaver rhoeas, Scilla sibirica, Viburnum tatarica, Vinca herbacea. Учитывая малочисленность их популяций и бесконтрольные сборы некоторых из них (Allium ursinum – для пищевых целей, а Scilla sibirica – на букеты как декоративное растение), необходимо предпринять меры по их охране и воспроизводству.

Древняя природа лесов Парабочевского заказника подтверждается обилием третичных реликтов как в древесной флоре (Euonymus europaea, Carpinus caucasica, Corylus avellana, Cydonia oblonga, Ligustrum vulgare, Lonicera caprifolium, Malus orientalis, Periploca graeca, Populus hybrida, Pyrus caucasica, Quercus robur, Rubus caesius, Salix alba, Sambucus nigra, Tilia cordata, Ulmus suberosa, Viscum album, Vitis sylvestris), так и среди трав (Alliaria petiolata, Allium ursinum, A. paradoxum, Arum maculatum, Convallaria transcaucasica, Humulus lupulus, Tilia cordata, Vitis sylvestris). Вопрос о реликтовости флоры заказника, особенно травянистой, требует дополнительных исследований.

Флора заказника богата хозяйственно полезными (пищевыми, лекарственными, декоративными, медоносными, древесно-сырьевыми и др.) видами. Разmere и численность популяций некоторых из них сильно сократились из-за бесконтрольных заготовок для пищевых целей (Allium ursinum, A. paradoxum) и на букеты для продажи (Convallaria transcaucasica, Primula woronowii и P. macrocalyx, Scilla sibirica).

Для сохранения естественного биоразнообразия и полезного генофонда флоры необходимо строгое соблюдение охранного режима заказника, на научной основе наладить мониторинг за состоянием популяций редких и реликтовых видов и экосистемы.

Окончание / Ending

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>Araliaceae – Аралиевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>49</td>
<td>Asparagaceae – Спаржевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>Campanulaceae – Колокольцевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>51</td>
<td>Caprifoliaceae – Жимолостные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>Convallariaceae – Ландышевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>Cistaceae – Кутровые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>Dioscoreaceae – Диоскорейные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>Elaeagnaceae – Лоховые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>Fabaceae – Буковые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>Hypericaceae – Зверобойные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>Juglandaceae – Ореховые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>Junaceae – Ситниковые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>Iridaceae – Ирисовые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>Liliaceae – Лилейные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>Lythraceae – Дербенниковые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>Orobanchaceae – Заразиховые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>Santalaceae – Санталовые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>Simaroubaceae – Симарубовые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>Tamaricaceae – Гребенникоевые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>Tiliaceae – Липовые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>Urticaceae – Крапивные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>69</td>
<td>Valerianaceae – Валериановые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>Verbenaceae – Вербеновые</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>71</td>
<td>Vitaceae – Виноградные</td>
<td>1</td>
<td>0,48</td>
<td>1</td>
<td>0,38</td>
<td></td>
</tr>
</tbody>
</table>

Итого / Total 205 100 266 100
На лесных территориях Парбочевского заказника, где представлено большее количество травянистых и древесных видов, играющих неодинаковую роль в формировании растительного покрова и фитоценозов, представляет интерес дифференцированный подход к анализу флоры (травянистой и древесной). На наш взгляд, это позволит дополнить наши подходы к пониманию направлений исторической миграции видов, участвовавших в формировании флоры конкретных территорий.

Охрана реликтовых пойменных лесов, выполняющих комплексы природоохранных, средообразующих, социальных функций и содержащих богатый генофонд реликтовых, полезных в хозяйственном и научном отношениях видов – важнейшее условие сохранения экосистем и биоресурсного потенциала бассейна р. Терек.

Заключение

1. Во флоре Парбочевского заказника Чеченской Республики выявлено 266 видов высших сосудистых растений из 205 родов и 71 семейства.
2. Крупнейшими семействами флоры являются Asteraceae, Rosaceae, Lamiaceae, Fabaceae, Poaceae, Boraginaceae, Brassicaceae, Caryophyllaceae, Apiaceae, Malvaceae, объединяющие 111 (54,1%) родов и 145 (64,4%) видов.
4. К краснокнижным видам флоры относятся: Allium paradoxum, Althaea armeniaca, A. officinalis, Amygdalus nana, Cephalanthera damasonium, Cucubalus baccifer, Cydonia oblonga, Eranthis ravenae, Hedera pastuchovi, Iris pseudacorus, Malus orientalis, Ophyoglossum vulgatum, Orchis picta, и O. purpurea, Periploca graeca, Primulama crocalyx и P. woronowii, Salvinia natans, Tulipa biebersteiniana, Vitis sylvestris.
5. Редкими на территории заказника являются Allium ursinum, Chelidinium majus, Clematis orientalis, Listera ovata, Physalis alkekengi, Oenothera biennis, Orobanche coerulescens, Platanthera bifolia, Scilla sibirica, Viburnum lantana, Vinca herbacea.
6. Флора богата хозяйственно полезными видами, популяции которых резко сокращаются в связи с заготовками для пищевых целей (Allium ursinum, A. paradoxum) и на букеты для продажи (Convallaria transcaucasica, Primula woronowii и P. macrocalyx, Scilla sibirica).
7. Дана рекомендации по сохранению и воспроизводству биоресурсов флоры Парбочевского заказника.

Литература:

10. Толмачев А.И. Введение в географию растений. Л.: Изд-во ЛГУ, 1974. 244 с.
SUSTAINABLE DEVELOPMENT OF MOUNTAIN TERRITORIES

TAISUMOV Musa Anasovich – doctor of biological sciences; chief researcher of the Department of biology and ecology, Academy of Sciences of the Chechen Republic; academician of the Academy of Sciences of the Chechen Republic; head of the laboratory of ecology of the Kh. I. Ibragimov Integrated Research Institute, Russian Academy of Sciences. 364051, Grozny, Chechen Republic, Russia

Tel.: 8(928)948-81-01 (mob.);
e-mail: musa_taisumov@mail.ru

UMAROV Mukhadi Umarmovich – doctor of biological sciences; head of the Department of biology and ecology, Academy of Sciences of the Chechen Republic; academician of the Academy of Sciences of the Chechen Republic; head of the laboratory of ecology of the Kh. I. Ibragimov Integrated Research Institute, Russian Academy of Sciences. 364051, Grozny, Chechen Republic, Russia

Tel.: 8(928) 737-43-91 (mob.);
e-mail: umarovbiolog@mail.ru

GAPAЕВ Яндарбек Сайдбекович – senior researcher of the laboratory of ecology, Academy of Sciences of the Chechen Republic; researcher at the laboratory of ecology of the Kh. I. Ibragimov Integrated Research Institute, Russian Academy of Sciences. 364051, Grozny, Chechen Republic, Russia

Tel.: 8(928)948-81-01 (mob.);
e-mail: kniiran@.ru

PARABOCHEVSCIY RESER FLORA AND ITS SYSTEMATIC ANALYSIS

1, 2 Umarov M. U.,* 1,2 Gapaev Y. C, 1, 2 Taisumov M. A.

1 Complex Research Institute named after Kh. I. Ibragimov of the Russian Academy of Sciences, Grozny, Russia,
umarovbiolog@mail.ru

2 Academy of Sciences of the Chechen Republic, Grozny, Russia

Parabochevsky State Biological Reserve was founded in 1963 in the valley of the r. Terek (Chechen Republic) on an area of 12.0 thousand hectares. But information about its nature including flora is very limited.

The purpose of the work. The study of the composition and systematic analysis of the flora, the identification of rare, relict and resource-useful species.

Research methodology. Floristic studies were carried out in 2012–2015 in different seasons of the year along routes covering different sites and habitants of the reserve. To clarify the types 3-volume determinant A.I. Galushko "Flora of the North Caucasus" (1978–1980) was used. The attention is paid to the systematic composition of the flora, the presence of relics, rare and economically useful species.

Results. The reserve has revealed 266 species of vascular plants from 205 genera and 71 families. The largest
families – Asteraceae, Rosaceae, Lamiaceae, Fabaceae, Poaceae, Boraginaceae, Brassicaceae, Caryophyllaceae, Apiaceae, Malvaceae – accounted for 111 (54.1%) genera and 145 (64.4%) species. The largest are genus, including by (Artemisia, Centaurea), 4 species (Potentilla), 3 species each (Allium, Crataegus, Inula, Populus, Trifolium, Salix, and Viola). 2 species contain 40 genera. A total of 50 (24.4%) genera numbered 115 (43.2%) species. In the remaining 155 genera – one type. The Red Book Books (Allium paradoxum, Althaea officinalis, Amygdalus nana, Cephalanthera damasonium, Cucubalus baccifer, Cypripedium oblonga, Eryanthus ravens, sites, sites, sites, sites . woronowii, Salvinia natans, Tulipa oblonga, Eryanthus ravens, sites, sites, sites, sites, sites, sites, sites, sites, sites . woronowii, Salvinia natans, Tulipa oblonga, Eryanthus ravens, sites, sites, sites, sites, sites, sites, sites, sites, sites . woronowii, Salvinia natans, Tulipa oblonga, Eryanthus ravens, sites, sites, sites, sites, sites, sites, sites, sites, sites.

Conclusions. The flora of the reserve which is rich in systematic composition (266 species from 205 genera and 71 families) contains many relic, rare and economically useful species, most of which should be protected and reproduced.

Keywords: Chechen Republic, Barabashevskiy reserve, flora, family, genus, relics, protected and rare species.

References

Article received 12.05.2017.
МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ ЭВОЛЮЦИИ ЛЕДНИКА ДЖАНКУАТ В СОВРЕМЕННЫХ КЛИМАТИЧЕСКИХ УСЛОВИЯХ

Введение
Стратегическое планирование социально-экономического развития горных регионов и их выход в перспективе на траекторию устойчивого развития требует оценки природных ресурсов территории и, не в последнюю очередь, водных ресурсов. Проблема оптимизации использования водных ресурсов остро стоит во многих регионах мира, которые можно отнести к горным и предгорным, и где речной сток в большой степени зависит от состояния горного оледенения.

В настоящее время регулирование водных ресурсов на Кавказе, впрочем, как в других регионах мира (в частности в Альпах), затруднено фрагментированным водопользованием, неравным доступом к воде, противоречивой правовой системой в области регулирования водопользования [1]. В условиях изменения климата, которое непосредственно затрагивает горные территории и выражается, прежде всего, в постепенном росте приземной температуры воздуха и в изменении режима выпадения осадков, прогностические расчеты ледникового стока представляются одной из наиболее актуальных задач разработки стратегий регионального развития.

Ледниковый сток является одним из основных источников пресной воды в обширных регионах. Петраков и др. [2], ссылаясь на отчет Международной группы экспертов по изменению климата, приводят данные о том, что в Средней Азии талая вода горных ледников составляет 20–40% летнего стока рек. В жаркие засушливые годы эта доля доходит до 70–80%. Согласно другим оценкам [3], во влажных климатических областях доля стока с гор составляет примерно 30–40% (тут, скорее всего, имеется в виду весь сток, а не только ледниковый). Этот факт объясняется тем, что горы производят больше стока, чем предгорья и низменности в расчете на единицу площади, что связано со сравнительно высоким количеством осадков и сравнительно небольшим испарением. В засушливых областях вышеуказанная доля может составлять 50–95% [3].

Горные ледники представляют собой, по-видимому, наиболее уязвимую для климатических изменений часть криосферы. В 20-м и начале 21-го века была отмечена устойчивая тенденция сокращения площади и объема горного оледенения Кавказа [4; 5]. В условиях изменяющегося климата эта тенденция, вероятно, сохранится [6]. Надежные прогностические оценки эволюции отдельных ледников возможно получить, используя метод математического моделирования. Проблема заключается в том, что исходных данных для аккуратного выполнения численных экспериментов крайне недостаточно, в связи с чем усилия по проведению прогностических расчетов приходится концентрировать на отдельных опорных (типичных по ряду показателей) ледниках, и в дальнейшем экстраполировать результаты на достаточно большой регион.

Для Центрального Кавказа таковым опорным ледником является ледник Джанкуат. Это уникальный природный объект с точки зрения обилия длительных и комплексных наблюдений. Например, непрерывные масс-балансовые наблюдения продолжаются здесь на протяжении последних пятидесяти лет.

1 Филиал Института природно-технических систем, г. Сочи, Россия
2 Сочинский научно-исследовательский центр РАН, г. Сочи, Россия, o.o.rybak@gmail.com
3 Институт глобального климата и экологии Росгидромета и РАН, г. Москва, Россия
4 Московский государственный университет им. М.В. Ломоносова, г. Москва, Россия

КЛЮЧЕВЫЕ СЛОВА: горный ледник, математическая модель, баланс массы, моренный чехол, ледниковый сток
Итоги первого десятилетия наблюдений были подведены в монографии [7], ставшей, по сути дела, классической, выводы и обобщения которой не потеряли актуальности до настоящего времени. По материалам наблюдений на Джанкуате написаны десятки статей, диссертаций, студенческих работ. Объем полученного и обработанного материала в значительной степени облегчает стандартные в математическом моделировании ледниковых объектах процедуры калибровки, верификации и валидации модели.

По своим морфометрическим и прочим характеристикам ледник Джанкуат (рис. 1) можно считать типичным для Центрального Кавказа. Его площадь – 2,7 кв. км [8], площадь поверхностной морены на нем по данным на 2010 г. – чуть больше 0,3 км² [9]. Средняя площадь долинных и карово-долинных ледников, составляющих основную массу оледенения Центрального Кавказа, составляет соответственно 3,6 и 1,6 км² при средней площади морены 0,3 и 0,1 кв. км [11]. Поверхностная морена по своим теплофизическим характеристикам резко отличается от чистой поверхности льда. Так, если характерное альбедо льда лежит в пределах 0,2–0,4, то характерное альбедо осыпного материала – 0,05–0,15. Соответственно, моренный чехол эффективнее поглощает коротковолновую радиацию, радикально меняет интенсивность аблиции, следовательно, режим и объем стока талой воды [9]. В то же время моренный чехол выполняет теплоизолирующую (экранную) функцию. Если толщина моренного чехла не превышает критического значения («критической толщины»), то его наличие способствует усилению аблиции через механизм уменьшения альбедо [12]. Максимального значения по сравнению с чистой поверхностью таяние достигает при толщине слоя, которая носит название «эффективной» [13]. Значения эффективной и критической толщины моренного чехла варьируются в широком диапазоне – от нескольких миллиметров до нескольких сантиметров (см. табл. 1 в [14]).

Задачи настоящего исследования заключались в том, чтобы выяснить:
1) находится ли ледник Джанкуат в равновесии с условиями современными климатическими условиями;
2) какова роль поверхностной морены в формировании полей составляющих поверхностного баланса массы;
3) как поверхностная морена влияет на приспособление ледника к заданным климатическим условиям.

Постановка и проведение численных экспериментов
Основные блоки математической модели – динамический (для расчета скорости течения льда),
климатический (для задания климатических переменных, используемых в численном эксперименте) и масс-балансовый (для расчета поверхностного баланса массы). Поскольку все перечисленные блоки и взаимодействие между ними достаточно подробно описаны ранее [15; 16 и ссылки в этих работах], мы не будем останавливаться на разборе структуры модели. Напомним лишь основные определения, которые используются ниже. В настоящей работе, удельный баланс массы (далее – баланс массы) горного ледника SMB определяется как разность между суммарной аккумуляцией ACC и суммарным стоком RO:

$$SMB = \sum_{t=1}^{365} (ACC - RO).$$

Аккумуляция рассчитывается как сумма выпавших твердых осадков, из которой вычитается количество испарившейся влаги с поверхности SU, лавинного питания LF и метелевого переноса MF:

$$ACC = PS - SU + LF + MF.$$

Величина стока складывается из массы растаявшего снега и льда M, которая уменьшается на количество замерзшей воды RF. Особенности оценки аккумуляции детально обсуждаются в [16], а алгоритм расчета подморенного таяния – в [17; 18].

В качестве исходных климатических переменных были использованы осредненные за десять балансовых лет (1999/2000 – 2008/2009) значения приземной температуры воздуха на метеостанции (МС) Терскол и суммы осадков на МС Местиа (рис. 2). Обе метеостанции расположены поблизости от ледника. На самом леднике вблизи от снегоевой линии в течение последнего десятилетия в летний сезон работает автоматическая метеостанция (АМС Джанкуат). Сопоставление данных наблюдений за приземной температурой воздуха на ней и на МС Терскол позволило построить простую линейную зависимость между рядами и, таким образом, приводить наблюдения на МС Терскол к условиям ледника, учитывая также и температурный скачок. Расчет скорости таяния методом энергетического баланса представляет собой достаточно рутинную задачу и ранее выполнялся для моренных чехлов [15].

Сложнее обстоит дело с приходной частью баланса массы. Согласно оценке Панова и др. [5], основными источниками питания ледников Кавказа (приходной части баланса массы) являются атмосферные осадки (более 50%), метелевый перенос (10–42%) и снежные лавины (3–76%). Приблизительный подсчет, основанный на анализе данных регулярных снегомерных съемок, показывает, что зимние осадки на леднике Джанкуат должны вдвое превышать годовые суммы осадков измеренных на МС Терскол и МС Местиа (на обеих метеостанциях годовые суммы осадков приблизительно одинаковы). По всей видимости, причиной повышенного количества осадков являются особенности местной атмосферной циркуляции [7]. Разброс выше-приведенных оценок метелевого переноса и лавинного питания не позволяет разработать единую параметризационную схему, которая бы обеспечивала реалистичные результаты для всех ледников. Вместо этого приходится производить калибровку и настройку формирования приходной части баланса для каждого отдельно взятого ледника. Настройка масс-балансового блока для условий ледника Джанкуат была выполнена для балансового десятилетия 1999/2000–2008/2009 гг. с учетом оценки вклада лавинного питания [15].

Перед началом экспериментов «климатические» ряды (рис. 2) считывались в модель каждый год, пока масс-балансовый блок модели (при отключенном динамическом блоке) не выходил на стационарный режим – расчеты повторялись до тех пор, пока составляющие баланса массы на достигали постоянных значе-
ний, что потребовало нескольких моделей лет. Это моделирование показано на рис. 4. Очевидно, что моренный покров выполняет не только экзарирующую функцию, поскольку его толщина в некоторых областях превышает 0,5 м. Разница в результатах, представленных на рис. 4а и 4б, наблюдается только в областях, покрытых моренным чехлом.

Горизонтальные компоненты скорости течения u и v находятся путем решения системы нелинейных эллиптических уравнений [14]:

$$
4 \frac{\partial}{\partial x} \left[\eta \frac{\partial u}{\partial x} \right] + 2 \frac{\partial}{\partial y} \left[\eta \frac{\partial u}{\partial y} \right] + \frac{\partial}{\partial z} \left[\eta \frac{\partial u}{\partial z} \right] + \frac{\partial}{\partial x} \left[\eta \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial y} \left[\eta \frac{\partial v}{\partial y} \right] + \frac{\partial}{\partial y} \left[\eta \frac{\partial v}{\partial z} \right] = \rho \frac{\partial s}{\partial x},
$$

где η — эффективная вязкость, равная:

$$
\eta = \frac{1}{2} A(T)^{-1/n} \times \left[\left(\frac{\partial u}{\partial x} \right)^2 + \left(\frac{\partial v}{\partial y} \right)^2 + \frac{\partial u}{\partial x} \frac{\partial v}{\partial y} + \frac{1}{4} \left(\frac{\partial u}{\partial y} \right)^2 + \frac{1}{4} \left(\frac{\partial v}{\partial z} \right)^2 \right]^{(n+1)/2n}.
$$

$A(T)$ — реологическая функция, зависящая от температуры льда; s — высота поверхности ледника, ρ — плотность льда, g — ускорение свободного падения, $n=3$. В настоящей работе реологическая функция заменяется на параметр A_{sp}, поскольку ледник считается изотермическим и «теплым», то есть находящимся при температуре плавления. Вектор скорости базального (глыбового) скольжения считается пропорциональным напряжению на нижней границе в третьей степени:

$$
\left. u \right|_b = -A_{sp} \tau^{3/2}_{b},
$$

где A_{sp} — коэффициент трения.

Для решения уравнений системы (1) применялся метод сжатых градиентов. Сама система решалась итерационно методом Пикара с применением специального рекакционного алгоритма [14]: первое и второе уравнения из (1) решаются независимо друг от друга, далее найденные значения u и v подставляются в (2), после чего обновленное значение η подставляется в оба уравнения (1), и процедура повторяется. Были использованы те же значения параметров A_{sp} и A_{rp}, как и в моделях динамики ледника Марух и Мортерач [14]. Поля амплитуд скорости поверхностного течения и базального скольжения показаны на рис. 5а и 5б. Максимальные значения скорости на поверхности ледника превышают 50 м/год на участке, где толщина льда превышает 100 м при относительно большой крутизне склона (рис. 5а). На всем протяжении правого притока и на практически ровном Джантуганском плато в верхней части ледника поверхностная скорость не превышает 0,1 м/год. Следует отметить, что толщина льда на Джантуганском плато не измерялась (за исключением небольшого участка, где толщина превышает 60 м (см. рис. 3б), что, во-первых, связано с труднодоступностью плато, а, во-вторых, с его пограничным положением (гранича ледника проходит по плато, и часть его находится на территории сопредельного государства). Нельзя исключить, что граница ледника, проходящая по ледоразделу на Джантуганском плато, показанная на рис. 3б, постоянно мигрирует. Возможно, что фактическая площадь ледника меняется от положения этой границы. Напомним, что Джантуганское плато является областью питания и для ледника Лекзыр, самого большого ледника Грузии.

Численные эксперименты производились на кластере (HP XC Cluster Platform 4000) компьютерного центра Свободного университета Брюсселя (Vrije Universiteit Brussel/Université libre de Bruxelles).

Результаты и обсуждение

После того как масс-балансовый блок был выведен на стационарный режим, подключался динамический блок. Ввод рядов климатического форсинга осуществлялся ежегодно на протяжении девяти модельных лет. Вполне естественно, что в результате свободной эволюции менялась конфигурация ледника. Очевидно, что на момент начала численных экспериментов, ледник не находится в равновесии с климатическими условиями 1999–2008 гг. Из-за этого происходит отступание ледника более, чем на 900 м и отчленение правого рукава (рис. 6а). Характерно, что при учесть влияния моренного чехла происходит постепенное отступание языка ледника более, чем на 900 м и отчленение правого рукава (рис. 6а). В то же время, если учитывается экзарирующий эффект поверхностной морены, то отступание языка ледника значительно меньше — менее 200 м, и правый рукав остается соединенным с основным телом ледника (рис. 6б). При этом прифронтовой участок, защищенный моренным покровом, соединен с самим ледником лишь узкой перемычкой.

Сокращение толщины льда, что вполне естественно, учитывая экзарирующий эффект моренного чехла, наиболее значительно на участках с чистым льдом (рис. 6а и 6б). В целом оси течения (рис. 5а) формируются участки уменьшения и увеличения толщины льда (рис. 6а и 6б), которые, очевидно, носят динамический генезис (в частности, очаг уменьшения толщины находится в зоне аккумуляции). Сокращение толщины в прифронтовой области связано с процессом таяния, которое не может быть компенсировано
Адвекцией льда с участков, расположенных выше по течению. Наконец, увеличение толщины льда на Джантуганском плато обусловлено тем, что снегонакопление здесь преобладает над таянием, а скорости течения крайне малы для эффективного перемещения льда вниз по течению. С этим же связано увеличение толщины льда в верхней части правого рукава, находящегося выше снеговой линии (и которая отчленяется от основной части ледника в численном эксперименте без учета экранирующей роли морен – рис. 6а).

То обстоятельство, что Джанкуат находится в дисбалансе с современными климатическими условиями, подтверждается сокращением его площади в обоих численных экспериментах (рис. 7а) При этом, если моренный чехол учитывается, то сокращение площади идет относительно равномерно, постепенно затухая после 2080 г. Без учета экранирующей роли поверхностной морены ледник теряет 15% площади в первое десятилетие, после чего процесс замедляется, и площадь ледника стабилизируется после 2065 г. на уровне 78% от современной.

Резкое уменьшение объема на 5% сменяется ростом в 2030 г. до практически современного уровня в 2100 (рис. 7б). Интересно, что при учете моренного чехла при уменьшении площади происходит увеличение объема ледника приблизительно на 4% к 2100 г. При этом основной рост приходится на период 2050–2060 гг., после чего объем меняется крайне незначительно. По всей видимости, за 40–50 лет ледник приходит в равновесие с современным климатом. Если же влияние поверхностной морены не учитывается, то приспособление происходит за горизонтом 2100 г. (судя по продолжающемуся росту объема).

Для прогностических оценок доступных водных ресурсов важны расчеты ледникового стока. В более реалистических условиях, когда учитывается моренный чехол, ледниковый сток к концу столетия должен сократиться на 18–19% (рис. 8а). Стабилизация стока после 2020 г. отчасти объясняется тем, что в стационарных климатических условиях площадь ледника меняется мало.

В целом по леднику учет экранирующей роли поверхностной морены позволяет уточнить прогноз ледникового стока на 9–10% (рис. 8б). Максимальный экранирующий эффект достигается в прифронтовой части, где доля подморенного таяния составляет 35–55% относительно таяния чистой поверхности льда (рис. 9). В меньшей степени этот эффект сказывается выше по течению на правом рукаве (60–80%).

Полученные результаты сопоставимы со сделанными ранее оценками. Ламбрехт с соавторами [17] подсчитали, что годовая сумма абляции на заморенных участках Джанкуат сокращается на 26%, что вполне соответствует подморенному таянию на правом рукаве, но несколько ниже, чем в прифронтовой части. Оценки Пелто [18], сделанные для двух ледников в Британской Колумбии (Канада), более близки к нашим: годовая абляция под за-
Рис. 4. Скорость поверхностного таяния (мм/год), (а, б), поверхностный баланс массы (в, г) при отсутствии (а, в) и при наличии (б, г) моренного чехла. Черной жирной линией показана снеговая линия (в, г).

Fig. 4. Melting rate (mm/year), (a, b), surface mass balance (v, g) under condition of absence (a, v) and presence (b, g) of the debris cover. Bold black line indicates equilibrium line.

Рис. 5. Амплитуды поверхностной (а) и базальной (б) скоростей течения льда (м/год).

Fig. 5. Amplitudes of surface (a) and basal (b) ice flow velocities (m/year).
моренными участками сокращается на 25–30% по сравнению с «чистыми», а абляция в поздний летний период, когда исчезает весь сезонный снежный покров – на 30–40%.

Полученные оценки, разумеется, имеют смысл только в условно неизменном климате и к тому же не учитывают разрастание моренного покрова в будущем. Хотя, по мнению Поповнина и др. [9], за все время мониторинга не произошло принципиальной смены механизма, обусловливающего пространственные закономерности в распределении обломочного материала по поверхности ледника, однако масса литогенной мантии, влекомой ледником на своей поверхности, увеличилась в количественном исчислении. Последнее является причиной постоянного разрастания поверхностной морены. Оценить масштабы разрастания моренного покрова – задача чрезвычайно сложная. Обломочный материал попадает на поверхность ледника в результате трудно формализуемых процессов (камнепады, запыление, вытаивание и др.). Более трех десятков лет назад была разработана модель вытаивания моренного материала из тела ледника [13]. Однако большое количество допущений, принятых в модели, делают ее применение в прогностических расчетах с большой заблаговременностью очень проблематичным.
Рис. 7. Эволюция площади (км²) (а) и объема (км³) (б) ледника Джанкуат в численных экспериментах
Fig. 7. Evolution of the area (km²) (a) and of the volume (km³) (b) of Djankuat glacier in numerical experiments

Заключение

В работе были рассмотрены особенности эволюции ледника Джанкуат в современном климате, который условно считался неизменным до конца текущего столетия. Было установлено, что геометрия ледника находится в дисбалансе с климатом десятилетия 1999–2008 гг. Чтобы прийти в равновесие, леднику, с учетом влияния бронирующей роли моренного чехла, частично покрывающего зону абляции, требуется около полувека. Без учета такого ледник не достигает состояния равновесия до конца текущего столетия.

Бронирующая роль поверхностной морены выражается в том, что годовая сумма таяния под ним снижается на 20–65% в зависимости от толщины чехла. В целом для ледника при учете моренного чехла годовая сумма талой воды снижается на 9–10%, когда ледник приходит в равновесие с климатом.
КРИТЕРИИ АВТОРСТВА / Authorship criteria:

Рыбак О.О. – является автором компьютерных программ, провел расчеты и написал черновой вариант статьи; Рыбак Е.А. – подготовила графический материал и исходные данные для численных экспериментов; Корнеева И.А. – оформление, редактирование и корректировка статьи; Поповнин В.В. – участвовал в сборе данных полевых наблюдений, в написании и редактировании статьи / Rybak O. O. – is the author of computer programs, made calculations and wrote a draft version of the article; Rybak E. A. – prepared graphical data for numerical experiments; Korneva I. A. – edited and corrected the article; Popovnin V. V. – participated in the collection of field observations and in the writing and editing of the article.

КОНФЛИКТ ИНТЕРЕСОВ / Conflict of interests:

Авторы заявляют об отсутствии конфликта интересов / The authors state that there is no conflict of interests.

ЛИТЕРАТУРА:

2. Петраков Д.А., Лаврентьев И.И., Коваленко Н.В., Усубаляев Р.А. Толщина льда объем и современные изменения площади ледника Сары-Тор (Массив Ак-Шыррак, внутренний Тибет-Шань) // Криосфера Земли. 2014. Т. 18. N3. С. 91–100

Т.10. №4(38), 2018 г.
Information about authors:

Oleg O. Rybak – Doctor of Science (Physics and Mathematics), chief researcher, Branch of Institute of Natural and Technical Systems (Sochi); Provisional director Sochi Research Center of RAS. 354000, Sochi, Russia.

Tel.: 8(918)207-17-86; o.o.rybak@gmail.com

Irina Al. Korneva – Candidate of Science (Geography), Branch of Institute of Natural and Technical Systems (Sochi), researcher; Institute of Global Climate and Ecology of Roshydromet and RAS, senior researcher. 107258, Moscow, Russia.

Tel.: 8(916)435-47-90; comissa@mail.ru

Elena Al. Rybak – Candidate of Science (Physics and Mathematics), Branch of Institute of Natural and Technical Systems (Sochi), leading researcher; Sochi Research Center of RAS, leading researcher. 354000, Sochi, Russia, elena.rybak@gmail.com

Victor Vl. Popovnin – Candidate of Science (Geography), department of cryolithology and glaciology, faculty of geography, Lomonosov Moscow State University, docent. 119234, Moscow, Russia.

Ph.: +7(495)939-36-73; begemotina@hotmail.com

Glaciers in the Caucasus have been continuously shrinking during the 20th and in the beginning of the 21st century. Mountain glaciers provide up to 70% of the total river runoff in the adjacent territories. Realistic prediction of future glacial run-off is a key problem of water supply in mountain and piedmont regions. The task of prediction can be solved by means of dynamical modeling of mountain glaciers. Because of lack of regular observations, it is feasible to focus on several reference glaciers in the region and to further extrapolate modeling results on the whole glaciated area.

In the paper, we report about application of a 3D higher-order ice flow model coupled to a surface mass-balance model for carrying out prognostic numerical experiments aimed at simulation of future dynamics of Djankuat Glacier. Djankuat is a typical valley glacier on the northern slope of the main Caucasus chain. It is one of the most studied glaciers in Russia, which has been continuously monitored during the last fifty years. From the point of view of completeness and duration of observations, Djankuat is an ideal glacier for mathematical modeling. Considerable parts of the ablation zone of Djankuat are covered with debris. Heat and physical properties of the debris layer are very different from those of ice. Debris layer determines ablation rate and run-off regime. Dependently on thickness, it can accelerate ablation or totally isolate ice cover from melting.

To force the model, we utilized observations from the...
nearest weather stations (Terskol and Mestia), as well as accumulation and ablation field measurements as controls. In the prognostic numerical experiments, we simulated possible Djankuat evolution until the year 2100 under stationary climatic conditions.

We established that geometry of the glacier in imbalance with the climatic conditions of the decade 1999–2008 years. To reach the equilibrium, the glacier will need nearly half a century taking into account insulating role of the debris partially covering ablation zone. In case debris cover is not considered, the glacier does not reach equilibrium until the end of the current century. Supraglacial moraine is responsible for 20–65% reduction of the annual melting under the debris layer dependently on its thickness. For the whole glacier, with the debris cover taken into account, the annual amount of melt water reduces by 9-10% when the glacier equilibrates with climate.

Keywords: mountain glacier, mathematical model, mass balance, debris, glacial run-off

References

Article received 19.03.2018.
Introduction

An important component of Global Goals for Sustainable Development is a goal associated with industry and innovation. Minerals are raw materials essential for modern society. The mining and quarrying industry is very important to industrial, social, and technological progress.

One of the basic characteristics determining significance of raw materials for metallurgical enterprises is their permanent high recovered grade in the fed ore concentrate. It can be provided only when all processes of ore processing from mining to concentration and sintering are subject to continuous efficient control [1–4].

Automated control systems (ACS) of processes are widely used in mining and metallurgy. At magnetic and concentrating plants, their efficiency depends greatly on the choice of controlling algorithms and the capacity of systems to provide IT support them [5–7].

Thus, increasing efficiency of automated control over iron ore magnetic concentration is a research problem which is essential for Ukraine’s economy. Its solution allows improving the end product quality and reducing energy consumption at current mining enterprises’ operating capacity [8–11].

Problem statement

The research is aimed at developing a system of adaptive control of magnetic separation of iron ores to reduce the period of searching for the extremum of the objective control function, maintaining the optimal ratio of the concentrate yield and the grade contained under conditions of changing quality of initial ores and the equipment state. There are determined conditions and the best parameters of searching for the extremum in the system of adaptive control over iron ore magnetic separation under disturbances and noises in controlled signals. They can be achieved when deviations of static and dynamic characteristics from rated ones do not exceed ±25%.

Review of the literature

In [12; 13] and others, iron ore concentration controlled through improving operation of magnetic separators of iron ores of primary concentration is substantiated. The choice of the control structure, application of some criteria in creating systems of automated optimization are determined by their software and algorithmic support, i.e. the possibility to receive online data on current parameters of concentration and their efficient application to controlling impacts.
Magnetic separators of iron ores are basic concentrating machines in a technological line of iron ore magnetic and concentrating plants. In [12–16], a magnetic separator is regarded as a controlled object with a single input (feed) and two outputs (tailings and concentrate). Fig. 1 shows basic parameters determining magnetic separation. It includes controlled variables: (the magnetic iron content in the middling product ($β_\text{пп}$), the middling product yield ($γ_{пп}$); disturbing impacts (the magnetic iron content in the fed product (the magnetic separator feed) ($α$) and the recovered grade ($ψ$); controlling impacts (the classifier drain density ($ρ_\text{сл}$), the auxiliary water consumption in the separator bath (Q_B), the magnetic field strength of the separator (H_0), the rotation rate of the separator drum (n_0).

![Fig. 1. Basic parameters of magnetic separation](image)

As shown in [12; 17–18], the magnetic iron content $α$ and the degree of mineral release in the classifier drain $ψ$ are basic disturbing impacts in magnetic separation. The slurry density changed in case of classifier drain causes changes in the granulometric composition of the solid phase slurry, thus altering ratios between its strongly-, feebley- and non-magnetic fractions. The $ρ_\text{сл}$ increased reduces the yield of released ore grains while that of strongly-magnetic fraction $γ_{пп}$ increases because of the increased yield of strongly-magnetic aggregates. The strongly-magnetic fraction yield is proportional to the magnetic iron content $α$ in the fed ore. The reduced density of the classifier drain makes the strongly-magnetic fraction yield be close to the output equal to $α$ (the magnetic iron content).

In [18], there are suggested simple expressions determining the yield of strongly-magnetic fraction $γ_{пп}$, the yield of released ore grains $γ_{рз}$ and strongly-magnetic ore aggregates $γ_{рп}$:

$$γ_{пп} = α + K_1 \cdot \overline{d} \cdot (0.7 - α);$$

$$γ_{рз} = α - K_1 \cdot \overline{d} \cdot (0.7 - α);$$

$$γ_{рп} = (K_1 + K_3) \cdot \overline{d} \cdot (0.7 - α),$$

where $\overline{d} = K_3 (ρ_\text{сл} - ρ_\text{п})$ is the average size of solid particles in the slurry; K_1 and K_3 are coefficients depending on the size of ore impregnations; K_3 is the coefficient depending on physical and mechanical properties of the fed ore and grinding modes.

The changed textural and structural characteristics of the fed ore change coefficients K_1, K_2 and K_3, causing changes in the quality of separation products. Thus, coefficients K_1, K_2 and K_3 determine the value of basic disturbing impacts in relation to magnetic separation. A. N. Mariuta received the ratio equation of the solid slurry density of the classifier drain $ρ_\text{сл}$ and the iron content $α$:

$$ρ_\text{сл} = \frac{ρ_\text{п} - ρ_\text{п}}{5 - 2.2α},$$

where $ρ_\text{п}$ is pure magnetite density; $ρ_\text{п}$ is quartz density.

A detailed analysis and systematized criteria of improving mineral concentration including technological, thermodynamic, kinetic, static, technical-economic, economic ones, etc were proposed in [19]. It is indicated that technological criteria mathematically expressed as a combination of basic concentration parameters are notable for their efficiency, simplicity and visualization.

Analysis of technological criteria results in the Hancock criterion substantiated by Luiken, Birbauer, Din, Chechott, Verkhovskyi [19] and others.

This criterion can be expressed as follows

$$J = \frac{γ(β - α)}{α \left(1 - \frac{α}{β\text{п}}\right)},$$

where $γ$ is the concentrate yield; $α$ is the recovered grade in the feed product; $β$ is the recovered grade in the concentrate; $β\text{п}$ is theoretically maximum recovered grade.

The popularity of this criterion is explained not only by its physical and geometrical interpretation, but also by the fact that it is simple, universal, contains all basic parameters ($γ$, $β$, $α$) and is statistically efficient [19].

A.N. Mariuta indicates that it is reasonable to apply this criterion to evaluation of the magnetic separator efficiency [18]. Formula (5) reveals that maximum values of E for various values of $α$ can be achieved only when there is a certain ratio between $γ$ and $(β - α)$. The classifier drain increased makes the concentrate yield $γ$ greater and reduces the difference $β - α$. The reduced drain density produces the reverse effect.

In [18], Mariuta suggests a complex criterion of efficiency E_j which partially reflects the course of the process from both the technological and the economic viewpoints

$$J_j = β + k_λ γ \rightarrow \text{max},$$

where $k_λ$ is the coefficient characterizing weight ratios between variables $β$ and $γ$.

The coefficient $k_λ$ indicates how the Fe content can be reduced in the concentrate to increase its yield and vice versa. The values of $k_λ$ depend on $α$ and other properties of the fed ore. Formulæ (5) and (6) allow controlling magnetic separation in the most efficient way.

Materials and methods

The mentioned above allows us to conclude that the classifier drain density is the basic controlling impact in
the “classifier-magnetic separator” system. Operation of the magnetic separator can be assessed on the basis of the data on the recovered grade (Fe) in its products or the solid slurry density considering (4). The model of magnetic separation should consider changed textual and structural characteristics of processed ores, grinding modes and equipment conditions. Overall quality indices of concentration are determined by the ore quantity fed to the mill.

The material-balance equation for the magnetic separator looks like [19; 20]

$$\frac{dm}{dt} = M - (M_e - M_w),$$ \hspace{1cm} (7)

or considering that

$$\frac{d\psi}{dt} = \alpha Q - \beta Q - \theta Q_w,$$ \hspace{1cm} (8)

where M, M_e, M_w, Q, Q_e, Q_w indicate weight and volume consumption of the fed material, concentration and tailings; V is the volume of the working area of the magnetic separator; m is the iron quantity in the slurry in the working area of the separator.

Considering the fact that under the current mode, the Fe content in the working area of the separator is equal to that in the concentrator we obtain

$$W(p) = \frac{\beta}{\alpha} = \frac{\kappa}{\kappa_T + 1},$$ \hspace{1cm} (9)

where $\kappa = \frac{\beta}{\alpha}$. $\beta = \beta$ with $t \to \infty$, β_w is the established Fe content in the concentrator at the separator output.

Synthesize and study models of technological aggregates and a concentration line as a whole were presented in [14; 15; 18; 20]. For instance, [20] provides a system of equations combining characteristics of the output product of the classifier with parameters of the middling product and tailings of the magnetic separator.

$$5 \frac{d\zeta}{dt} + \zeta = 0.53 \zeta_w(t-2);$$ \hspace{1cm} (10)

$$\beta = -0.695 \zeta_w^2 + 0.893 \zeta_w + 0.712;$$ \hspace{1cm} (11)

$$9\% < \zeta_w < 32\%;$$ \hspace{1cm} (12)

$$5 \frac{d\beta}{dt} + \beta = \beta(t-2),$$

where ζ_w is the slurry density at the classifier drain; β and ζ indicate the Fe content in the middling product and tailings.

As is shown, the magnetic separator represents a sequence of two links—non-linear static and output linear ones. To consider dynamic properties of the input part of the magnetic separator, the given model should be supplemented with input dynamic links along each control channel.

Taking into account the feed material Q balance equation, the concentrate C and tailings T for the magnetic separator it can be written as follows [19; 21]

\[
\begin{align*}
\beta &= -0.695\zeta_w^2 + 0.893\zeta_w + 0.712 \\
K_{12}(p) &= \frac{\beta}{\beta'} = \frac{e^{-2p}}{5p+1} \\
\end{align*}
\]

\[
\begin{align*}
K_{12}(p) &= \frac{q_m}{\zeta_w} = \frac{0.53e^{-2p}}{5p+1} \\
\end{align*}
\]

Fig. 2. The structural scheme of the magnetic separator model

Рис. 2. Структурная схема модели магнитного сепаратора

\[
Q\alpha = C\beta + (Q - C)\delta; \hspace{1cm} (13)
\]

\[
Q\alpha = (Q - T)\beta + T\delta, \hspace{1cm} (14)
\]

where Q, C, T indicate the mass of the feed material, concentrate and tailings; α, β, δ are the Fe content in the feed material, concentrate and tailings.

Then the concentrate yield is determined by the expression

$$\gamma_k = \frac{C}{Q} \cdot 100 = \frac{\alpha - \theta}{\beta - \theta} \cdot 100\%.$$ \hspace{1cm} (15)

Thus, (5) results in

$$E = \gamma(\beta - \alpha) = \left(\frac{\alpha - \theta}{\beta - \theta}\right) \left(\frac{\beta - \alpha}{\beta_T}\right).$$ \hspace{1cm} (16)

It follows from (16) that the Hancock criterion can be calculated either on the basis of measurements of the Fe content in the feed material, concentrate and tailings or measurements of the feed material and concentrate mass and the Fe content in these products. In the latter case, the values of Q and C can be measured by one of the known methods, e.g. the ultrasonic one.

In this case, the object equation looks like

$$x = J(\beta + f, \alpha); \hspace{1cm} y = x + k; \hspace{1cm} (17)$$

where $f(t)$ is the external disturbance applied to the object input with the controlling parameter; $k(t)$ is the disturbance accompanying the measurement of the object output; $y(t)$ is the measured variable (the result of the x measurement).

Functions f and x are random processes with unknown laws of distribution. Yet, it is known that they have zero mathematical expectation and limited dispersion. One should find the algorithm of searching for the extremum under which the mathematical expectation of the output $M[J(\beta+f, \alpha)+k]$ reaches the minimum value [22–27].

To simplify the solution of the problem, let us consider $f=0$ and then the equation (17) will look like

$$x = J(\beta, \alpha); \hspace{1cm} y = x + k.$$ \hspace{1cm} (18)
According to the stochastic approximation method, every measured condition of an object should be used to measure the controlling impact so that the condition is observed at the limit \(\beta = \beta_1 + \beta_2 + \ldots + \beta_n \).

Let us measure the controlling impact according to the algorithm

\[
\beta[\ell (k + 1)T] = \beta(kT) - \frac{a_k}{2\Delta \beta_k} \left[J(\beta(kT) + \Delta \beta_k, \alpha) - J(\beta(kT) - \Delta \beta_k, \alpha) \right]
\]

\[k = 0, 1, 2, \ldots . \]

Here, the measurement results are used

\[
J(\beta(kT) + \Delta \beta_k, \alpha) = J(\beta(kT) + \Delta \beta_k, \alpha) + \kappa^{(1)}_k \quad \text{and} \quad J(\beta(kT) - \Delta \beta_k, \alpha) = J(\beta(kT) - \Delta \beta_k, \alpha) + \kappa^{(2)}_k,
\]

where \(\kappa^{(1)}_k \) and \(\kappa^{(2)}_k \) are random values realizing measurement disturbances in the interval \([k-1,T_k,T_k] \), while \(\kappa^{(1)}_k \neq \kappa^{(2)}_k \) as they are measured at different times within the given interval. It should be noted that unlike (20), the value \(\Delta \beta_k \) of testing steps is not constant and measured with \(k = 0, 1, 2, \ldots \).

The stochastic approximation method allows finding parameters of the working and testing steps within the given interval. It should be noted that unlike the parameters of the working and testing steps measured with \(k = 0, 1, 2, \ldots . \)

The stochastic approximation method allows finding the extremum \(J \) (fulfillment of condition (19) under disturbances. They are known to have zero mathematical expectation and limited dispersion.

Let us determine parameters of the working and testing steps. To achieve the search algorithm convergence (20) the parameters of the working and testing steps should satisfy the condition

\[
\lim_{k \to \infty} a_k = 0, \quad k = 0, 1, 2, \ldots ; \quad \sum_{k=1}^{\infty} a_k^2 = \infty .
\]

\[\sum_{k=1}^{\infty} \left[\frac{a_k}{\Delta \beta_k} \right]^2 < \infty . \] (24)

The given conditions are observed if

\[a_k = \frac{1}{k^\rho}; \quad \Delta \beta_k = \frac{1}{k^\mu}; \]

\[2(\rho - \mu) > 1, \quad \text{where} \quad 0 \leq \rho \leq 1; \quad \mu > 0 . \]

Considering (21) and (22), let us write down the algorithm (20) as follows

\[
\beta[\ell (k + 1)T] = \beta(kT) - \frac{a_k}{2\Delta \beta_k} \left[J(\beta(kT) + \Delta \beta_k, \alpha) - J(\beta(kT) - \Delta \beta_k, \alpha) \right] +
\]

\[+ \frac{a_k}{2\Delta \beta_k} \left[\kappa^{(1)}_k - \kappa^{(2)}_k \right] =
\]

\[\beta(kT) - a_k \hat{r}_k + \frac{a_k}{2\Delta \beta_k} \left(\kappa^{(1)}_k - \kappa^{(2)}_k \right), \quad k = 0, 1, 2, \ldots . \] (25)

As the testing steps are quite small \((a_k = r_k) \) and considering \(M\{ \kappa^{(i)}_k \} = 0, \quad i = 1, 2 \), we calculate the mathematical expectation of the \(k \)-th step efficiency:

\[
M\{ \beta_k \} = M \left\{ \frac{\beta[\ell (k + 1)T] + \beta_k}{\beta(kT) - \beta_k} \right\} = 1 - \frac{2\Delta \beta_k}{\beta(kT) - \beta_k} .
\]

(26)

Proceeding to the condition (24), we calculate the mathematical expectation and dispersion of the working step \(\Delta \beta(kT) \). It is evident that

\[
M\{ \Delta \beta(kT) \} = -\frac{a_k}{2\Delta \beta_k} \left[J(\beta(kT) + \Delta \beta_k, \alpha) - J(\beta(kT) - \Delta \beta_k, \alpha) \right] ;
\]

\[
M\{ \Delta \beta(kT) \} \times M\{ \Delta \beta(kT) \} = M \left\{ \left(\kappa^{(1)}_k - \kappa^{(2)}_k \right) \right\}^2 =
\]

\[-\frac{a_k^2}{4\Delta \beta_k^2} \left[\sigma^2 + \sigma^2 \right], \quad k = 0, 1, 2, \ldots . \]

where \(\sigma^2 \) \((i=1, 2)\) – are dispersions of random values \(\kappa^{(1)}_k, \kappa^{(2)}_k \).

It is evident that the sum of dispersions of the arbitrary large number of working steps taken during the search should be limited

\[
\sum_{k=1}^{\infty} \frac{a_k^2}{\Delta \beta_k^2} < \sigma^2 = \frac{\sum_{k=1}^{\infty} a_k^2}{\Delta \beta_k^2} < \infty ,
\]

where \(\sigma^2 = \max \left\{ \sigma^2 + \sigma^2 \right\} / 4 < \infty . \) (27)

Hence follows a condition (24) indicating that the value of the testing step \(\Delta \beta_k \) should go to zero more slowly than \(a_k \), as otherwise dispersion values of the working steps will become intolerably large according to (27).

Let us consider the search for the extremum of multi-parameter objects under disturbances

\[x = J(\beta_1, \beta_2, \alpha_1, \alpha_2); \quad y = x + \kappa. \] (28)

In this case, adaptation algorithms will be written as:

\[
\beta_1[\ell (k + 1)T] = \beta_1(kT) - \frac{a_k}{2\Delta \beta_k} \left[J(\beta_1(kT) + \Delta \beta_1, \beta_2(kT), \alpha_1, \alpha_2) - J(\beta_1(kT) - \Delta \beta_1, \beta_2(kT), \alpha_1, \alpha_2) \right] ;
\]

\[k = 0, 1, 2, \ldots ; \]

\[
\beta_2[\ell (k + 1)T] = \beta_2(kT) - \frac{a_k}{2\Delta \beta_k} \left[J(\beta_1(kT), \beta_2(kT) + \Delta \beta_2, \alpha_1, \alpha_2) - J(\beta_1(kT), \beta_2(kT) - \Delta \beta_2, \alpha_1, \alpha_2) \right] ;
\]

\[k = 0, 1, 2, \ldots ; \]

where the measurement results are
J′ (β_i (kT) + Δβ_i, β_2 (kT), α_i, α_z) =
= J (β_i (kT) + Δβ_i, β_2 (kT), α_i, α_z + κ_i i)
J′ (β_i (kT) − Δβ_i, β_2 (kT), α_i, α_z) =
= J (β_i (kT) − Δβ_i, β_2 (kT), α_i, α_z + κ_i i)
J′ (β_i (kT), β_2 (kT) + Δβ_i, α_i, α_z) =
= J (β_i (kT), β_2 (kT) + Δβ_i, α_i, α_z + κ_i i)
J′ (β_i (kT), β_2 (kT) − Δβ_i, α_i, α_z) =
= J (β_i (kT), β_2 (kT) − Δβ_i, α_i, α_z + κ_i i),
where Δβ_i is a testing step taken as the same for both controlling impacts; κ_i, i = 1, 2, 3, 4, indicate realization of the random process x(t) with four measurements of the object output at the interval [(k-1)T, kT].

For determining the search convergence, parameters of the working and testing steps should satisfy conditions (23) and (24) for a single-parameter object as well. The condition (24) looks like
\[\sum_{k=1}^{N} \frac{a_k^2}{\Delta \beta_i^2} < \infty, \] \tag{31}
and indicates that the increased k should make the testing step greater and exceed the working step parameter. It should be noted that the stochastic approximation method suggests that
\[\lim_{k \to \infty} \Delta \beta_i = 0. \] \tag{32}

Besides, the method imposes an auxiliary condition on the function J as in the area of its extremum an inequality should be observed
\[(\beta_i - \beta_i) \frac{\partial J}{\partial \beta_i} + (\beta_2 - \beta_2) \frac{\partial J}{\partial \beta_2} > 0, \] \tag{33}
and the rate of increase of J should not exceed that of the square parabola when leaving the target.

To optimize the system dynamic characteristics determined by the initial linear part of the controlled object, a method determining the constant value of z(∞) of the initial signal z of the object, i.e. the object’s initial signal on the basis of the initial part of the transfer process caused by the changed input signal at the step Δτ is applied. The value z(∞) can be calculated for a small time period and the time lag Δτ between steps can be insignificant, which reduces the search time of the extremum greatly.

With complete compensation of dynamics and time delays in the object, the search for the extremum would be based on the object’s static characteristics. In this case, the actuator’s reversion is determined by the following inequality
\[f(x_i) - f(x_{i+1}) + \delta \leq 0, \] \tag{34}
where δ is the optimizer’s insensibility area.

The change of the object’s output signal as a result of the n-th step of the actuator is determined by
\[\Delta z_n = f(x_i) - f(x_{i+1}) - z_{n+1}B; \]
\[z_{n+1} = z_n + \sum_{i=1}^{N} \Delta z_i; \]
\[A = 1 - q_1; \]
\[B = 1 - q_2; \]
\[C = q_1 - q_2; \]
\[q_1 = e^{-\frac{\Delta t}{T}}; \]
\[q_2 = e^{-\frac{\Delta t}{T}}. \]

For \(f(x_i) \) and \(f(x_{i+1}) \) recurrent formulae look like
\[f(x_i) = \left[\Delta z_n - f(x_{i+1}) + \left(z_n + \sum_{i=1}^{N} \Delta z_i \right) B \right] A^{-1}; \] \tag{35}
\[f(x_{i+1}) = \left[\Delta z_{i+1} - f(x_{i+1}) + \left(z_{i+1} + \sum_{i=1}^{N} \Delta z_i \right) B \right] A^{-1}. \] \tag{36}

According to the mentioned results, the control is formed in compliance with this expression
\[U = \Delta z_n - \Delta z_{i+1}A^{-1} - \left[\Delta z_n - \Delta z_{i+1} \right] B A^{-1}. \] \tag{37}

Thus, to calculate the operator U, two recent changes of the object’s output coordinate are measured in the time period Δt between the actuator’s steps Δz_n and Δz_{i+1}, as well as two recent changes of the output z during the pure time delay τ read from the actuator’s step moment.

Experiments

Fig. 3 presents an experimental dependency between the Fe content increment in the concentrate of the primary magnetic separators and the classifier drain density, while Fig. 4 depicts dependency of the concentrate yield on this parameter.

The given dependencies were obtained at the concentration plant of the PJSC “ArcelorMittal Kryvyi Rih”. The research suggested that with formed constant levels of the section capacity and the identical initial raw materials, the classifier drain density and the size of the material fed for the primary separation changed. Changes in the Fe content of the middling product and tailings were traced as well as the yield of these products. Besides, the influence of the changed capacity of the feed ore section on the magnetic separator operation characteristics was determined when the classifier drain density was maintained at a given level by changing the auxiliary water fed to its bath. Fluctuations of the magnetic iron content in the feed ore were insignificant and as a result of obtained data, while calculating the weight-average content for each density, they were in the limits of an admissible error. During the whole set of experiments, feed density, strength and working parameters of the separators remained constant.

Fig. 5 shows experimental dependencies of the Fe content in the middling product of primary concentration. Fig. 6 depicts dependencies of the middling product yield of primary concentration on the initial feed at the following formed levels of the classifier drain slurry density: 1 – 1700 g/l; 2 – 1800 g/l; 3 – 1900 g/l; 4 – 2000 g/l; 5 – 2100 g/l; 6 – 2200 g/l.

The dependencies in Fig. 3 and 4 reveal that the in-
increased classifier drain density increases the middling product yield, while the Fe increment in the middling product reduces. Thus, controlling the classifier drain density, one can achieve an optimal ratio between quantity and quality of the primary middling product.

Analysis of dependencies in Fig. 3 and 4 shows that although their overall view remains the same for different levels of the classifier drain density, the impact of the feed ore section capacity on operation of the magnetic separator is notable for significant ambiguity and depends on particular maintained density.

The increased classifier drain density and the ore section capacity increase this ambiguity caused by the classifier’s unstable mode under conditions changing the granulometric composition of the magnetic separator feed.

Results

With the improved search, testing and working disturbances within controls u_1 and u_2 are formed so that corresponding transients should attenuate in a minimum of time in the object’s input linear parts. All necessary limitations as to controls u_1, u_2 and phase coordinates x_1, x_2 are observed. At the same time formed disturbances are used to change increments of the value z to identify static characteristics of the object’s non-linear part for each control channel.

Fig. 7 provides a model of the developed system of adaptive control of iron ore magnetic separation, which is synthesized in the subsystem Simulink 4 of Matlab 6.01 [28–31].

The static characteristics of the non-linear controlled object is set in block Fcn4 as function $f(u)$. Inertial properties of the non-linear controlled object are simulated by means of transfer function blocks (aperiodic links) Transfer Fcn2 and Transfer Fcn3. To form transport delay for the object’s input and output, blocks of fixed signal delay (Transport Delay) are used. Input dynamic links are united into the block Subsystem, the output ones – into the block Subsystem 1. As in real control systems there are some disturbances, the model includes blocks imitating them: Dead Zone, Backlash и Band-Limited White Noise.

Functions of the extreme regulator are simulated by means of signum-reley Sign1. The object’s static characteristics are pre-computed in the block Subsystem 5 (Fig. 7). The control adaptation algorithm is realized in the block Subsystem 2. Parameters of separate elements of the ACS are optimized by means of the block Nonlinear Control Design (NCD).

Fig. 8 provides the flowchart of the system of adaptive control over magnetic separation on the basis of ultrasonic control in the Hancock criterion variant.

The system of adaptive control over magnetic separation functions according to the above mentioned algorithm.

The behavior of the ASAC (Automated System of
changes of the object’s static and dynamic characteristics, the best parameters of the search, the trajectory of which does not change, are achieved if these characteristics change within \(\pm 25\% \) thus fully meeting the technological requirements.

There are formulated conditions and specified regularities of the search for the objective function extremum in the discrete system of automated optimization of iron ore magnetic separation. It is determined that with changing physical-mechanical and chemical-mineralogical characteristics of processed ores, the minimum search period can be provided if the controlling impact is formed on the basis of differences of not less than two simultaneously changed values of the controlled object’s input coordinate between the actuator’s steps during the pure time delay. The latter is determined considering the current position of the controlled coordinate regarding the extremum point in the form of piecewise constant functions with limited values of acceptable controls, the parameters of which are conditioned by the object’s input dynamic characteristics.

There are determined regularities of forming the extreme control over inertial objects with time delays and changing static and dynamic characteristics ensuring the minimum time of transients in the system of control over magnetic separation based on measured values of the controlled coordinate at intervals between the actuator’s steps formed according to the object’s current static and dynamic characteristics, which are determined under intensive disturbances in the form of unclear sets, the membership of which is set by ratio predicates.

There are determined conditions and parameters of the stable search for the extremum in the system of automated control over iron ore magnetic separation, which realizes suggested search principles under intensive disturbing impacts on the object in controlled signals.

Conclusions

The developed adaptive system controlling magnetic separation allows reducing time of searching for the ob-

Adaptive Control) with changed static and dynamic characteristics of the object, parameters of disturbing impacts and noises are studied. Fig. 9 shows results of the search for the objective function extremum in the adaptive system of extreme control with noises in the controlled signal.

Discussion

Conducted investigations indicate that the period of searching for the extremum in the ASAC is stable if the static characteristic drifts within \(\pm 50\% \) of the rated value, the dynamic link parameters change within \(\pm 70\% \) and noise power from 0 to 0.12. In case of arbitrary and short
Fig. 7. The flowchart of the model of the system of the adaptive control over iron ore magnetic separation

Рис. 7. Блок-схема модели адаптивной системы управления процессом магнитной сепарации железных руд

Fig. 8. The flowchart of the system of adaptive control over magnetic separation: 1 – mill; 2 – classifier; 3 – magnetic separator; 4 – feeder-conveyor; 5 – bin; 6 – actuating motor; 7 – controlled valve of water consumption; 8, 10 – Fe-content sensors; 9, 11 – flowmeters; 12 – input signal former; 13 – optimizer; 14 – controlling impact former; 15 – system controlling water feed into the mill; 16 – system controlling water consumption in the classifier

Рис. 8. Блок-схема адаптивной системы управления процессом магнитной сепарации: 1 – мельница; 2 – классификатор; 3 – магнитный сепаратор; 4 – конвейер-питатель; 5 – бункер; 6 – приводной двигатель; 7 – регулируемый клапан расхода воды в классификатор; 8, 10 – датчики содержания железа; 9, 11 – расходомеры; 12 – формирователь входного сигнала; 13 – оптимизатор; 14 – формирователь управляющих воздействий; 15 – система управления подачей руды в мельницу; 16 – система управления расходом воды в классификатор
Objective control function, maintaining the optimal ratio of the concentrate yield and the grade contained under conditions of changing quality of initial ores and equipment. There are determined conditions and the best parameters of searching for the extremum in the system of adaptive control over iron ore magnetic separation under disturbances and noises in controlled signals. They can be achieved when deviations of the object’s static and dynamic characteristics from rated ones do not exceed ±25%.

CONTRIBUTION / Долевое участие авторов

Morkun V. S. – carried out research and analysis of regularities of formation of extreme control of inertial objects with delay with varying static and dynamic characteristics; Morkun N. V. – developed the theoretical basis for the formation of control actions in the system of extreme control of dynamic objects; Tron V. V. – conducted the development of the structure of the adaptive control system of the magnetic separation process in the process of ore material enrichment and the study of its operation under various conditions; Dotsenko I. A. – conducted a study of the control system in conditions of disturbances and noises in controlled signals.

CONFLICT OF INTEREST / Конфликт интересов

The authors declare no conflict of interest / Авторы заявляют об отсутствии конфликта интересов.
ЛИТЕРАТУРА:

АДАПТИВНАЯ СИСТЕМА УПРАВЛЕНИЯ ПРОЦЕССОМ МАГНИТНОЙ СЕПАРАЦИИ

1 В. С. Моркун*
2 Н. В. Моркун
1 В. В. Трон
2 А. И. Доценко

1 Криворожский Национальный университет, Кривой Рог, Украина, morkunv@gmail.com
2 Академия горных наук Украины, Кривой Рог, Украина

DOI: 10.21177/1998-4502-2018-10-4-545-557

Цель. В рамках устойчивой индустриализации целью работы является создание теоретической базы и разработки адаптивной системы управления процессом магнитной сепарации железных руд, минимизирующей время поиска экстремума характеристик динамических объектов в условиях воздействия возмущений и помех в контролируемых сигналах.

Методы. В статье использованы методы оптимального управления, метод стохастической аппроксимации для повышения эффективности оптимального управления, методы численного моделирования для синтеза и анализа математической модели системы экстремально- го управления, компьютерные информационные и программные технологии для реализации разработанного
алгоритма поиска экстремума в виде программного обеспечения.

Результаты. В статье приведена теоретическая база формирования управляющих воздействий в системе экстремального управления динамическими объектами, позволяющих при налишем возмущениях и помех в контролируемом сигнале достигнуть экстремума характеристики объекта управления за минимальное время. Установлены закономерности формирования экстремального управления инерционными объектами с задержкой и изменяющимися статическими и динамическими характеристиками, обеспечивающими минимальное время переходных процессов в системе управления процессом магнитной сепарации железных руд на базе измеренных значений регулируемой координаты через промежутки времени между шагами исполнительного механизма, формируемые в соответствии с текущими значениями статических и динамических характеристик объекта, которые определяются в условиях действия интенсивных возмущений. Разработана адаптивная система управления процессом магнитной сепарации железных руд, минимизирующей время поиска экстремума характеристик динамических объектов в условиях воздействия возмущений и помех в контролируемых сигналах.

Выводы. Разработанная адаптивная система управления процессом магнитной сепарации железных руд позволяет минимизировать время поиска целевой функции управления, поддерживать оптимальное соотношение между выходом концентрата и содержанием полезного компонента в нем в условиях изменяющегося качества исходной руды и состояния технологического оборудования. Установлены условия и впервые определено, что наилучшие параметры поиска экстремума в системе автоматического управления процессом магнитной сепарации железных руд, которая реализует предложенные принципы поиска, при наличии возмущений и шумов в контролируемых сигналах достигаются в том случае, когда отклонение статических и динамических характеристик объекта управления от номинального значения не превышает ±25%.

Ключевые слова: адаптивная система управления, магнитная сепарация, железная руда, пульпа, поиск экстремума.

Литература
5. Kupin A., Muzyka I., Kuznetsov D., Kumchenko Y.
27. Зайченко Ю. П. Исследование операций. Киев: Вища школа, 1975.

Статья поступила в редакцию 30.07.2018
ИСПОЛЬЗОВАНИЕ ОСОБЕННОСТЕЙ СЛОЖНОГО РЕЛЬФЕРА ДЛЯ УСТОЙЧИВОГО РАЗВИТИЯ ГОРНЫХ ТЕРРИТОРИЙ

Введение

Последнее десятилетие ознаменовалось пристальным вниманием мировой общественности к вопросам горной тематики и связанным с ней развитием человеческой цивилизации. Общественность приходит к осознанию того, что устойчивость и стабильность развития стран невозможны без всесторонней поддержки горных районов и их населения, являющихся хранилищами и хранителями ценнейших природных ресурсов и этнокультурного наследия и находящихся в неравных условиях по сравнению с равнинными и урбанизированными территориями.

В связи с обострением экологической и социальной ситуации в горных регионах отмечается усиление внимания к комплексному изучению градостроительной проблемы в аспекте среды зон «Горы-город-человек».

Горы влияют на градоэкологическое состояние атмосферной городской среды большими колебаниями высотных отметок, сложным рельефом, обусловливающим исключительно многообразие и пестроту климатических условий, в отличие от равнинных территорий, где климатические изменения прослеживаются по горизонтали, в горах резкие различия наблюдаются и по вертикали. Здесь что ни склон или долина, то своеобразный климат. Все это затрудняет проблему зонирования территории сложного горного рельефа по климатическим характеристикам и впоследствии принцип проектирования зданий и их комплексов.

Сложный рельеф, с учетом освоения под застройку территорий, характеризуется совокупностью форм расчленения земной поверхности. По величине этого расчленения различают мега-, макро-, мезо-, микро- и нанорельеф, который в разной степени используется при решении конкретных градостроительных задач.

Изучению режима ветров в горах был посвящен ряд исследований отечественных и зарубежных ученых [1–4]. Значительный вклад в проблему градостроительного аспекта освоения сложного рельефа внесли авторы, представленные в трудах [5–20]. Горной тематикой занимаются многие международные организации, градостроительные аспекты освоения горных районов изучались рядом исследовательских институтов, отечественных и зарубежных ученymi [5–20]. В них отмечается, что основным циркуляционным процессом, формирующим климатические условия в пределах горно-долинных систем (ГДС) низкогорья и среднегорья является горно-долинная циркуляция (ГДЦ).

Цель исследования. С целью устойчивого развития горного рельефа следует учесть уникальность природно-экологического ландшафта застраиваемых территорий на сложном рельефе, а также специфику климатических особенностей, обусловленных местными условиями ландшафта, существующей архитектурной и градостроительной ситуации жилых зданий и их планировочной организации для территорий освоения систематизирована, дополнена и уточнена, сформированная в ее рамках методика проектирования актуализирована.

КЛЮЧЕВЫЕ СЛОВА: рельеф, горный рельеф, градостроительство, устойчивое развитие, планировка, застройка, орография, морфология

Статья поступила в редакцию 05.10.2018.

1 Гиясов А.А., 2 Тускаева З.Р., 3 Гиясова И.В.
Формообразования рельефа потенциального строительства

Таблица 1 / Table 1

<table>
<thead>
<tr>
<th>Размеры, формы</th>
<th>Крупнейшие (мезорельеф)</th>
<th>Крупные (макрорельеф)</th>
<th>Средние (нейрельеф)</th>
<th>Мелкие (микрорельеф)</th>
<th>Мельчайшие (анорельеф)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>The largest (mesorelief)</td>
<td>Large (macrorelief)</td>
<td>Medium (neorelief)</td>
<td>Small (microrelief)</td>
<td>The smallest (anorelief)</td>
</tr>
<tr>
<td>Горизонтальные</td>
<td>Десятки и сотни тысяч квадратных километров</td>
<td>Сотни тысяч квадратных километров</td>
<td>Сотни тысяч квадратных километров</td>
<td>Десятки и сотни метров</td>
<td>Метры, десятки метров</td>
</tr>
<tr>
<td>Vertical</td>
<td>Hundreds and thousands of square kilometers</td>
<td>Hundreds of thousands of square kilometers</td>
<td>Hundreds of thousands of square kilometers</td>
<td>Tens of meters</td>
<td>Meters, tens of meters</td>
</tr>
<tr>
<td>Примеры рельефа</td>
<td>Горные страны, нагорья, обширные возвышения и низменности</td>
<td>Отдельные горы, горные хребты, большие речные долины, межгорные владины, котловины</td>
<td>Холмы, овраги, барханы</td>
<td>Бугры, курганы, промоины</td>
<td>Слоистые котловины, долины</td>
</tr>
<tr>
<td>Examples of relief</td>
<td>Mountains, highlands, vast hills and lowlands</td>
<td>Separate mountains, mountain ranges, large river valleys, intermontane depressions, hollows</td>
<td>Hills, ravines, barchan chains</td>
<td>Hillocks, barrows, gullies</td>
<td>Slopes of hollows, valleys</td>
</tr>
</tbody>
</table>

Формы рельефа

Градостроительное освоение
Urban development

Строение цепных стран, города крупные, крупные населенные пункты
The structure of entire countries, cities are large, large settlements

Города средние и мелкие, города средние и мелкие, населенные пункты
Cities are medium and small, large settlements

Населенные пункты, здания и комплексы
Settlements, buildings and complexes

Здания и комплексы
Buildings and complexes

Объемно-планировочная структура городов, населенных пунктов зданий
Volumetric and planning structure of cities, settlements and buildings

Разработать методические предложения по планированию объемно-пространственной структуры города, застройке, проектированию жилых и жилых комплексов, по способу компоновки в формообразовании рельефа и относительно склона.

На основе изучения отечественного и зарубежного опыта проектирования и строительства зданий и застройки на сложном рельефе обобщена и систематизирована проблема формообразования рельефа с выявлением зон потенциального строительства. На базе методики оценки фоновых и разработанной авторами методике оценки местных особых климатических условий сформулированы формы рельефа по крупности для градостроительного освоения.

Изучена территория сложного рельефа с морфологической, микроклиматической и биоклиматической позиции с выявлением градостроительной маневренности рельефной ситуации. На этой основе разработана объемно-пространственные и архитектурно-планировочные структуры городов, населенных пунктов и зданий.
Формирования планировочной организации объектов

Форма рельефа
Form of relief

Принципы освоения рельефа
Principles of development of relief

Форма рельефа
Form of relief

Принципы освоения рельефа
Principles of development of relief

<table>
<thead>
<tr>
<th>Форма рельефа</th>
<th>Принципы освоения рельефа</th>
<th>Форма рельефа</th>
<th>Принципы освоения рельефа</th>
</tr>
</thead>
</table>
| Повторяемость рельефа
Repeatability of the relief | Линейное размещение
Linear placement | Свободное размещение
Free accommodation |
| Противопоставление рельефу
Relativity to the relief |
| Слияние с рельефом
Merger with relief |
| Подчинение рельефу
Subordination to the relief |
| Коллективная форма
Hollow form |
| Групповая форма
Group form |
| Гармоническая форма
Harmonic form |
Составленная классификация рельефа местности по степени сложности, а также материалы градостроительной науки, освещающие особенности формирования городских структур и строительства зданий на территориях со сложным рельефом, позволили оценить влияние сложного рельефа на планировочные и проектные решения объектов градостроительного проектирования.

Формулировка и метод решения задачи оптимизации
При анализе проблем градостроительства на сложном рельефе становится ясно, что существует некий пробел в области градоэкологических исследований в особенности экстремальных жарко-штилевых климатических условиях.

Несмотря на множество исследований по изучению вопросов формирования тепло-ветровых процессов горного района, вызванных природно-климатическими условиями и орографией, а также термическими условиями деятельного слоя склона, имеется ряд проблем.

Главной причиной формирования горно-долинного и склонного ветра пересеченной местности является неравномерное распределение важного климатообразующего фактора – солнечной радиации по склонам разной экспозиции и крутизны.

В пределах территории горного рельефа формируются следующие виды направленности действия ГДС: широтные, меридиональные, раскрытые на север, раскрытые на восток, раскрытые на юг, раскрытые на запад.

В условиях развития городов и населенных пунктов эти зоны преобразуются в потенциальные очаги наиболее концентрации загрязнения вредными и ядовитыми примесями антропогенного происхождения, что делает их опасными в экологическом отношении.

Ветровой режим в горных районах определяется в значительной степени орографическими особенностями местности. В высокогорных районах наблюдается наибольшая повторяемость (50…60%) мало-ветреных условий. Во внутригорном пространстве и горной котловине преобладает штиль.

Климат южных регионов в целом характеризуется большими различиями в характере климата горной и равнинной частей. Во внутригорном пространстве и горной котловине преобладает штиль.

Климат южных регионов в целом характеризуется обилием тепла и сухостью. Однако существуют большие различия в характеристике климата горной и равнинной частей. Во внутригорном районе климат умеренный полусухой и довольно жаркий в долинах. Внешнегорный район имеет сухой климат с жарким летом со средней температурой воздуха в июле +23°C. Низменная зона характеризуется жарким летом со средней температурой июля +25°C.

Солнечная радиация является основным источником тепловой энергии для всех природных процессов, развивающихся в атмосфере и в верхних слоях литосферы. Наряду с этим использование энергии для формирования микроклимата имеет исключительное значение в архитектурно-строительной практике. Распределение по территории прямой солнечной радиации на горизонтальную поверхность соответствует распределению по ясным небе: приход в целом по территории увеличивается с севера на юг от 2605 до 3110 Мдж/м². Выделяются район открытых горных котловин, где прямая радиация достигает 4325 Мдж/м².

На температурный режим горных районов, кроме высо- соты местности, оказывает влияние также форма рельефа. Дневные нагревания воздуха и ночные охлаждения его имеют минимальные значения на выпуклых формах (вершинах, открытых склонах), а максимальные – над вогнутыми (замкнутыми впадинами, долинами). Наиболее высокие температуры отмечаются в июле. В низменно-степных районах территории средняя температура июля составляет +26…+27°C.

В жаркое лето абсолютный максимум температуры воздуха в июле – августе может достигать +42…+44°C в котловине и в низменных частях территории.

По гипсометрическому положению, характеру и форме рельефа территории по вертикали разделены на:

gоры по высоте от уровня моря: низкие – 1000…1500 м, средние – около 2000 м, высокие – более 3000 м;
равнины по высоте от уровня моря: низменности – 0…250 м, озеро-возвышенностей – 250…500 м, плоскогорья – более 500 м.

По величине уклона участки делятся на: ровные – < 3%; с малым уклоном – 3–8%; со средним уклоном – < 20%; с крутым уклоном – > 20%.

Результаты оптимального проектирования
В зависимости от масштабности климатических явлений, изучаемых под строительство территории были подразделены на макро-, мезо-, микро-зоны, которые имеют свою специфику.

Для оценки мезо-, микро- и нано-климатических явлений территорий со сложным рельефом, применяются методы количественной и качественной оценки масштабных климатических явлений территорий со сложным рельефом, откорректированной методологии оценки геоморфологической характеристики (уклон, экспозиция, крутизна, расчлененность, геометрическая высота) рельефа с целью применения в строительстве зданий и градостроительстве.

Морфометрическая карта конкретных участков исследования выявила характеристики конкретной формы рельефа, что позволило определить объемно-планировочные структуры городских застроек в зависимости от формообразования рельефа потенциального строительства.
Выводы
На основе ландшафтной структуры горного региона, общего климатического фона, микроклиматического фона, морфологической спецификации рельефной ситуации, инсоляционного режима сформулирован ряд архитектурно-планировочных и объемно-пространственных композиций жилых комплексов городов и населенных пунктов (табл. 1 и 2).
Учитывая уникальность природного ландшафта застраиваемых территорий со сложным рельефом, а также климатические особенности, обусловленные местными условиями ландшафта, существующая архитектурная типология жилых зданий и их планировочная организация для территорий со сложным рельефом с учетом особенностей местного климата ландшафта систематизирована, дополнена и уточнена, а сформированная в ее рамках методика проектирования актуализирована. Разработаны методические предложения по планированию планировочно-пространственной структуры жилой застройки, проектированию жилья и жилых комплексов, исключающую негативное воздействие на рельеф.
На основе проведенного исследования созданы качественные архитектурно-градостроительные решения населенных пунктов, жилых образований и комплексов на сложном рельефе и склонах, которые способствуют формированию реального градостроительного элемента в общем образе поселений в гармонии со специфическими природно-климатическими особенностями местности.
Рекомендации
В каждой конкретной ситуации необходимо учесть целостность восприятия градостроительного потенциала естественного рельефа, обеспечить подчинение объемно-планировочной организации объектов объемным формам рельефа, органичному включению архитектурного объекта в орографическую ситуацию и окружающую среду.
Литература:
Сведения об авторах

ГИЯСОВ Адхам — доктор технических наук, профессор кафедры «Проектирования зданий и сооружений».
Область научных интересов — энергоэффективные здания, архитектурно-строительная физика, инсоляция, аэродинамика, градоэкология. Автор более 200 научно-практических и методических трудов, более 10 учебных пособий.
Научно-исследовательский университет Московского государственного строительного университета, 129337, Москва, Россия
Тел.: 8(985)4818033; E-mail: adham52@mail.ru

ГИЯСОВА Ирина Викторовна — кандидат экономических наук, доцент.
Сфера научных интересов — энергоэффективность в строительстве, проблемы развития рынка арендного жилья в РФ, оценка экономической эффективности реконструкции зданий. Автор 50 научных публикаций, 15 учебно-методических разработок, 1 изобретения.
Тамбовский государственный технический университет, 392000, Тамбов, Россия
Тел.: 8(910)651-63-52; e-mail: timrus64@mail.ru

ТУСКАЕВА Залина Руслановна — доцент, заведующая кафедрой «Строительное производство».
Сфера научных интересов — конкурентоспособность строительных организаций, экологическая безопасность в строительстве, управление парком строительной техники, организационные структуры в строительстве, энергоэффективность зданий.
Автор свыше 150 научных публикаций, 30 учебно-методических пособий.
Северо-Кавказский горно-металлургический институт (государственный технологический университет), 362021, г. Владикавказ, Россия, e-mail: tuskaevazalina@yandex.ru

Zalina R. TUSKAeva – Associate Professor, head of the Department "Construction production".
North-Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia, e-mail: tuskaevazalina@yandex.ru
Research interests: competitiveness of construction companies, environmental safety in construction, management of construction equipment Park, organizational structures in construction, energy efficiency of buildings.
Author of more than 150 scientific publications, 30 teaching AIDS.

563
COMPLEX LANDSCAPES PECULIARITIES USE FOR SUSTAINABLE DEVELOPMENT OF MOUNTAIN TERRITORIES

1A. Giyasov,
2Z.R. Tuskaeva,*
3Lv. Giyasova
1Moscow State University of Civil Engineering, 129337, Moscow, Russia
2North-Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia,
e-mail: tuskaevazalina@yandex.ru
3Tambov State Technical University, 392000, Tambov, Russia

Purpose. In order to develop the architectural typology of the residential buildings and their planning organization for the development territories, the analysis of the problem of the sustainable development of mountainous territories, taking into account the uniqueness of the natural and ecological landscape of the built-up areas in the difficult territories, the specific climatic features due to local conditions of the landscape was carried out.

The article deals with the features of designing and improving the volume-planning structure of cities and residential buildings in the complex territories, taking into account the orographic features of the structure and climatic conditions of the area. The problem of the mountain region development for the purpose of planning structure of the inhabited formations and settlements considering the local climatic features is studied.

In the practice of complex areas urban development, there is a significant gap in the field of the urban environmental studies in terms of the comfortable eco-environment for cities and settlements formation, characterized by a complex orographic situation, causing specific local climatic conditions.

Methods. The study area of the complex topography with morphological, microclimatic and bioclimatic positions with the identification of the urban maneuverability of the relief situation, updated, expanded and refined is shaped in the framework of the design procedure. On this basis, the method of organization of spatial and architectural-planning structure of cities, settlements and buildings was carried out.

Results. Based on the study of domestic and foreign experience in the design and construction of buildings and buildings on complex terrains the problem of shaping the terrain to identify the areas of the potential construction were generalized and systematized. Using the method of background evaluation and method of assessment of local special climatic conditions formulated landforms for urban development elaborated by the authors.

For the purpose of the sustainable development of mountain relief, taking into account the uniqueness of the natural and ecological landscape of built-up areas on difficult terrain, as well as the specificity of climatic features due to local landscape conditions, the existing architectural typology of residential buildings and their planning structure for development areas is systematized and refined. The methodological proposals for planning the spatial structure of urban development, design of housing and residential complexes, the method of layout in the landforms and relative to the slope were developed.

The classification of the terrain according to the degree of complexity, as well as the materials of urban science, covering the features of the formation of the urban structures and construction of buildings in areas with complex terrain allowed to estimate the impact of complex terrain on the planning and design solutions of urban design.

Conclusions. The developed methodological proposals for the planning – spatial structure design of residential buildings, housing design and residential complexes, the method of layout in the formation of the relief and the slope are scientific and practical skills for the sustainable development of mountain areas.

Keywords: relief, mountain relief, urban planning, sustainable development, planning, building, orography, morphology.

References

10. Suvorov V. O. Typology of housing in conditions of complex relief on the architectural and spatial layout relative to the slope. Fundamental and applied problems of science, Materials of the 8th International Symposium, Moscow, vol. 7, 2013, pp. 11 –16.
12. Kharchenko S. V. Development of ideas about relief

Article received 05.10.2018.

УДК 62-50

Представлены полученные в Московском авиационном институте результаты теоретических исследований и разработок транспортных одноосных колесных модулей (ОКМ) как носителей аппаратуры мониторинга: покрытый дорож; инфраструктуры аэродромов; окружающего воздушного пространства горных территорий. Рассмотрены варианты построения ОКМ, в которых управление угловой ориентацией их платформ реализуется посредством направленного формирования инерционных, гравитационных, гироскопических и реактивных маховичных силовых воздействий. Представлена обобщенная математическая модель движения ОКМ как модель гироскопического стабилизатора, располагающего платформой с верхней маятникостью и перемещающегося без проскальзывания по подстилающей поверхности. Изложен обобщенный принцип управления движением ОКМ по заданной пространственно-временной траектории и указаны возможности обеспечения инвариантности угловых движений его платформы по отношению к порождаемым траекторией движениям момента сил инерции. Проведены особенности аппаратно-программного обеспечения ОКМ.

КЛЮЧЕВЫЕ СЛОВА: одноосный колесный модуль, платформа, мониторинг, горная территория, управление ориентацией, управление движением по траектории

Введение
Применительно к решению разнообразных народнохозяйственных задач на больших устойчиво развивающихся, в частности горных и предгорных, территориях необходим регулярный и разнообразный по функциональному назначению мониторинг окружающей среды [1; 2], а именно: динамики состояния дорожных покрытий; придорожных природных образований и инженерных сооружений, дорожных уклонов; состояния и уклонов аэродромных покрытий, а также послелетопелетного состояния наружных поверхностей фюзеляжа; крыльев и шасси воздушных судов; окружающего воздушного пространства с целью выявления, например, беспилотных летательных аппаратов в стратегически важных районах. Перспективным является применение для этих целей наземных транспортных колесных модулей как носителей аппаратуры мониторинга, размещаемой на дополнительных управляемых стабилизированных платформах, устанавливаемых на борту носителя. Традиционно в качестве таких носителей используются специально оборудованные четырехколесные транспортные средства. Вместе с тем представляет существенный интерес применение в качестве носителей одноосных колесных модулей (ОКМ). Основным достоинством ОКМ является то обстоятельство, что он представляет собой фактически наземный колесный гирокопический стабилизатор с одно- или двухстепенной управляемой стабилизированной платформой. Физической основой построения такого стабилизатора является наличие у ОКМ естественной степени свободы его платформы относительно земной поверхности вокруг оси колесной пары.

Таким образом, ОКМ, в отличие от двухосных трехколесной или четырехколесной конструкции, совмещает функции наземного транспортного модуля и стабилизированной платформы с возможностью автономного управления угловой ориентации платформы с носимой аппаратурой; при этом отсутствует необходимость в использовании на борту ОКМ дополнительной управляемой платформы. Кроме того, ОКМ, как компактные высокоманевренные транспортные средства — носители разнообразной измерительной и управляющей аппаратуры, удобно также использовать в качестве объектов студенческих исследований в учебно-научных лабораториях университетов [3; 4].

Известны публикации [5–8], посвященные разработке и исследованию ОКМ, включающих платформу, обладающую верхней маятникостью и имеющую одну вращательную степень свободы относительно оси колесной пары, перемещающихся без проскальзывания по подстилающей поверхности. В этих работах рассматриваются режимы функционирования ОКМ только как средства транспортировки полезной нагрузки по заданной пространственно-временной траектории (ПВТ). При этом решается задача стабилизации неустойчивого положения платформы в плоскости горизонта на основе принципа инерционной стабилизации моментами сил инерции относительно оси колесной пары, развиваемыми за счет направленного ускоренного перемещения модуля, как это реализуется, в частности, в известном транспортном средстве Segway.

*Московский авиационный институт (национальный исследовательский университет), Москва, Россия
Однако в указанных работах практически отсутствует решение задачи управления угловой ориентацией платформы ОКМ относительно плоскости горизонта при произвольном поступательно-вращательном движении модуля. В ОКМ с инерционной стабилизацией платформы, обладающей только одной вращательной степенью свободы относительно оси колесной пары, невозможно обеспечить полное совмещение платформы с плоскостью горизонта при движении по неровной поверхности.

Кроме того, существует необходимость курсовых разворотов ОКМ при наведении линии визирования аппарата мониторинга, жестко привязанной к платформе, на заданную точку в пространстве. Последнее обстоятельство существенно влияет на характер траекторного движения ОКМ, в то время как эффективный мониторинг предполагает независимость процессов траекторного движения и наведения линии визирования.

Целью настоящей работы является обобщение результатов теоретических исследований и разработок ОКМ, проводимых на кафедре «Автоматизированные комплексы систем ориентации и навигации» Московского авиационного института (МАИ). Эти работы направлены на создание ОКМ как эффективных транспортных средств для решения задач мониторинга и управления угловой ориентацией их платформенных средств при наведении на объекты мониторинга, жестко привязанного к платформе.

На рис. 1 использованы следующие обозначения: O_{xyz} – стартовая инерциальная система координат (СК); $O_{x,y,z}$ – сопровождающая (ее оси параллельны соответствующим осям СК O_{xyz}); $O_{x,y,z}$ – траекторная (ось O_{x} лежит в горизонтальной плоскости, ось O_{y} совпадает с осью колесной пары, ось O_{z} – дополнительная СК до правой тройки); $O_{x,y,z}$ – связанная с платформой ($O_{x,y,z}$ соответствует продольная и поперечная оси платформы, ось O_{z} дополнительная СК до правой тройки). На рис. 1 обозначены также: линейная скорость V перемещения центра оси колесной пары O_1 ОКМ относительно подстилающей поверхности; y углы собственного вращения соответствующего первого и второго колес; α – угол отклонения платформы от плоскости горизонта вокруг оси стабилизации платформы O_{z} в ОКМ на рис. 1 а, б (рамы с платформой от плоскости горизонта вокруг оси стабилизации рамы O_{z} в ОКМ на рис. 1 а); β – угол отклонения платформы от плоскости горизонта вокруг оси стабилизации платформы O_{x} в ОКМ на рис. 1 а; Ψ, Ψ, Ψ, Ψ – углы поворотов маховиков соответственно относительно рамы и платформы вокруг осей их собственного вращения; r, r, r, r – перемещение управляемых грузов по направляющим соответствуют раме и платформе; δ, δ, δ, δ – углы превышения соответственно первого и второго силовых двухступенчатых гироскопов; x, y, z – координаты центра O_e в стартовой
УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

Рис. 1. Варианты структур ОКМ / Fig.1. Variants of UWM structures

СК; θ — угол курса, отсчитываемый вокруг оси Oz_1 (угол между осями Ox_c и Oz_1).

В ОКМ на рис. 1а стабилизация платформы в плоскости горизонта вокруг оси колесной пары по углу α осуществляется на основе принципа инерционной стабилизации моментом силы инерции $mV\dot{\psi}$. При этом линейное ускорение центра оси колесной пары \dot{V} формируется за счет нормированного ускоренного вращения колес, на двигателях которых от блока инерционной стабилизации платформы (БИСП) поступают управляющие сигналы в функции измеряемого БИНС угла α.

Управление угловой ориентацией платформы по углу α и стабилизация ее относительно плоскости горизонта вокруг оси колесной пары в ОКМ на рис. 1б осуществляются на основе принципа силовой гироскопической стабилизации при помощи гироскопа l с кинетическим моментом H [11; 12]. При наличии возмущающего момента $M_{\alpha,y}$ приложенного к платформе вокруг оси Oy, гироскоп прецессирует относительно платформы с угловой скоростью δ и первоначально парирует возмущающий момент гироскопическим моментом $N\delta$. Одновременно по сигналу об угле прецессии δ, гироскопа осуществляется перемещение груза 1 массой m_{gr} параллельно оси OX_p на величину p_1, что порождает момент силы тяжести $m_{gr}g$, парирующий в конечном счете $M_{\alpha,y}$.

Собственно управление угловой ориентацией платформы по углу α осуществляется с помощью датчика момента (ДМ) гироскопа, на который поступает управляющий сигнал о потребной ориентации платформы.

Дополнительно на платформе установлен маховик 3 с осью вращения, параллельной Oy. В соответствии с принципом А.Ю. Ишлинского скорость вращения маховика ψ формируется на основе соотношения

$$ \psi = -m_{gr}V/J_y^3 \tag{1.1} $$

где J_{y}^3 — момент инерции маховика 3 относительно оси его вращения.

При выполнении приложенного к платформе момента силы инерции $m_{y}V\dot{\psi}$, компенсируется реакциным моментом — $J_{y}^3\dot{\psi}$, приложенным к платформе со...
стороне приводного двигателя третьего маховика [13]. Тем самым обеспечивается инвариантность платформы ОКМ по отношению к силам инерции, порождаемым его ускорением \dot{V}.

В ОКМ на рис. 1 б управлене угловой ориентацией платформы и стабилизация ее относительно плоскости горизонта вокруг оси O_y по углу α и вокруг оси платформы O_X, по углу φ также осуществляются на основе принципа силовой гироскопической стабилизации при помощи гирокоспов $l, 2$ с кинетическими моментами H [14]. При этом возмущающие моменты, приложенные к раме $M_{1,2}$, и к платформе $M_{3,4}$, компенсируются соответствующими гироскопическими моментами $H_{\delta l}$ и $H_{\delta 2}$, а также моментами сил тяжести m_{gp1} и m_{gp2}, создаваемыми при управляемых перемещениях первого и второго грузов. Дополнительные соответствующие стабилизирующие моменты формируются как реактивные моменты $-J^{m1}_{x} \psi_{1}$ маховика 1, установленного на раме, и $J^{m2}_{x} \psi_{2}$ маховика 2, установленного на платформе (J^{m1}_{x}, J^{m2}_{x} – моменты инерции соответственно маховиков $l, 2$ относительно их осей собственного вращения). Управляющие моменты двигателей этих маховиков являются функциями соответствующих углов процесса гироскопов δ_{l} и δ_{2}. Ограничение скоростей вращения маховиков $\dot{\psi}_{1}$ и $\dot{\psi}_{2}$ осуществляется естественным образом за счет управляемых перемещений p_{1}, груза l и p_{2}, груза 2 в функции соответственно $\dot{\psi}_{1}$ и $\dot{\psi}_{2}$. Собственно управление угловой ориентацией платформы по углам α и φ реализуется с помощью ДМ соответственно гироскопов l и 2. Маховик 3, помимо функции компенсации момента сил инерции $m_{3} \dot{V}_{\alpha}$ (по аналогии с ОКМ на рис. 1 б), обеспечивает при выполнении (1.1) и компенсацию своим гироскопическим моментом $J^{m3}_{\alpha} \dot{\psi}_{3}$, момента центробежных сил инерции $-m_{3} \dot{V}_{\alpha}$, приложенного к платформе вокруг оси O_X, в процессе разворотов ОКМ по углу курса θ. При этом обеспечивается инвариантность платформы по отношению к силам инерции, порождаемым как ускорением \dot{V}, так и ускорением $\dot{V} \dot{\theta}$. По существу ОКМ на рис. 1 б и в представляют собой соответственно одноосный и двухосный силовые гироскопические стабилиторы с несбалансированными платформами, инвариантные по отношению к силам инерции, возникающим при поступательно-вращательном движении ОКМ по горизонтальной подстилающей поверхности.

2. Обобщенная математическая модель ОКМ

Наиболее общей математической моделью для моделей разрабатываемого ряда является модель ОКМ, представленного на рис. 1 б. Состояние ОКМ, перемещающегося без проскальзывания по горизонтальной подстилающей поверхности, будем определять указанными на этом рисунке координатами $\gamma_{1}, \gamma_{2}, \alpha, \beta, \psi_{1}, \psi_{2}, \psi_{3}, \rho_{1}, \rho_{2}, \delta_{1}, \delta_{2}, \chi, \gamma, \theta$. Перемещения ОКМ по координатам x, y, z по углу курса θ и изменению скорости V центра оси колесной пары в процессе навигации ОКМ по заданной ПВТ реализуются путем управления вращениями колес с помощью моментов сил, развиваемых приводными двигателями колес $С$. При отсутствии проскальзывания колес имеют место следующие соотношения для скоростей ОКМ:

$$V = \frac{r}{2} (\gamma_{1} + \gamma_{2}), \quad \dot{\theta} = \frac{L}{2b} (\gamma_{2} - \gamma_{1}).$$

(2.1)

Используя уравнения Лагранжа для неголономных систем [15], соотношение (2.1), а также соотношение $x = \frac{x_{c} + y_{c}^{2}}{2}$, пренебрегая динамикой малоинерционных исполнительных двигателей элементов ОКМ, можно получить систему из одиннадцати уравнений движения ОКМ в координатах $\alpha, \beta, \delta_{1}, \delta_{2}, \rho_{1}, \rho_{2}, \psi_{1}, \psi_{2}, \psi_{3}, \theta, V$. В частности, применительно к задаче стабилизации платформы ОКМ в плоскости горизонта при его произвольных движениях по ПВТ в предположении малости величины $\alpha, \beta, \delta_{1}, \delta_{2}, \rho_{1}, \rho_{2}, \psi_{1}, \psi_{2}, \psi_{3}, \theta, \dot{\theta}$ соответственно система упрощенных уравнений имеет вид [14]:

$$J_{y} \ddot{\gamma}_{y} - m_{g} g \dot{\gamma}_{y} \alpha - H (\beta + \delta_{1}) - m_{g} \rho_{1} + J_{x}^{m2} \psi_{2} \dot{\theta} + m_{g} \dot{V} = -M_{a1} - M_{a2} - M_{a3} - M_{a4} - M_{a5} + M_{b,y}.$$

(2.2)
УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

УСТОЙЧИВОЕ РАЗВИТИЕ ГОРНЫХ ТЕРРИТОРИЙ

Т.10. №4(38), 2018 г.

Условия отсутствия продольного и поперечного проскальзывания колес при этом имеют вид [11]:

\[
\lambda_1 \leq \phi_{\text{long}1} R_1; \quad \lambda_2 \leq \phi_{\text{long}2} R_2; \quad \lambda_3 \leq \phi_{\text{lat}1} R_1 + \phi_{\text{lat}2} R_2, \tag{2.14}
\]

где \(\phi_{\text{long}1}, \phi_{\text{long}2} \) и \(\phi_{\text{lat}1}, \phi_{\text{lat}2} \) – коэффициенты соответственно продольного и поперечного сцеплений с подстилающей поверхностью первого и второго колес.

В системе уравнений (2.2) – (2.10) подсистема (2.2) – (2.10) определяет процессы угловой стабилизации и ориентации относительно плоскости горизонта платформы ОКМ, а подсистема (2.11), (2.12) – движение центра оси колесной пары по ПВТ. При этом в подсистеме (2.2) – (2.10) стабилизация платформы реализуется рациональным выбором управляющих моментов маховиков \(M_{\text{m1}}, M_{\text{m2}}, M_{\text{m3}} \) и грузов \(M_{\text{p1}}, M_{\text{p2}} \), а управление угловой ориентацией – выбором моментов \(M_{\text{m1,x}}, M_{\text{m2,x}} \), развязываемых датчиками моментов гироскопов. В подсистеме (2.11), (2.12) формирование движения ОКМ по заданной ПВТ реализуется выбором моментов \(M_{\text{m1,z}}, M_{\text{m2,z}} \), развиваемых двигателями колес.

Трансформацией системы (2.2) – (2.12) путем удержания в ней только тех уравнений, которые описывают динамику элементов, из которых состоит тот или иной ОКМ, с учетом функциональных особенностей формирования в них управляющих моментов нетрудно получить математические модели ОКМ, представленные на рис. 1а и 1б.

3. Управление движением ОКМ по заданной пространственно-временной траектории

В процессе мониторинга возникает задача, общей сложности, вывода ОКМ на заданную ПВТ из произвольной точки подстилающей поверхности и последующего движения по ПВТ. Эта задача эффективно решается на основе использования ДСУ, включающей траекторную и локомоционную подсистемы (рис. 2) [9].

В траекторной подсистеме вырабатываются потребные значения скоростей \(V \) и \(\dot{\theta}_x \) ОКМ, реализация которых обеспечивает устойчивый выход ОКМ на заданную ПВТ и движение по ней. Эти скорости соотносятся с их текущими значениями \(V \) и \(\dot{\theta}_x \), имеющими БИНС ОКМ, поступают на формирование моментов \(M_{\text{m1}}, M_{\text{m2}} \) и \(M_{\text{p1}}, M_{\text{p2}} \) двигателей колес через ПНД-регуляторы локомоционной подсистемы. Потребные значения скоростей \(V \) и \(\dot{\theta}_x \) управляющих локомоционной подсистемой, вырабатываются в траекторной подсистеме. Собственно заданная ПВТ определяется программным вектором \(\mathbf{q}_{\text{up}} \):

\[
\mathbf{q}_{\text{up}} = \begin{bmatrix} x_{\text{up}}(t) & y_{\text{up}}(t) & \theta_{\text{up}}(t) \end{bmatrix}^T, \tag{3.1}
\]

где \(x_{\text{up}}(t), y_{\text{up}}(t), \theta_{\text{up}}(t) \) – соответствующие программные координаты; \(T \) – символ трансформирования.

Учитывая отсутствие проскальзывания ОКМ в перечном направлении (вдоль оси колесной пары), условие которого имеет вид:
-х в sin θ в + y в cos θ в = 0,

как модель движения ОКМ можно представить так:

\[
\dot{\theta}_n = \begin{bmatrix}
\cos \theta_n & 0 \\
\sin \theta_n & 0
\end{bmatrix}
\begin{bmatrix}
V_n \\
\dot{\theta}_n
\end{bmatrix}.
\]

Эту модель можно трактовать как уравнение движения объекта с вектором состояния (3.1) и вектором программного управления \(U_n \):

\[
U_n = \begin{bmatrix}
V_n \\
\dot{\theta}_n
\end{bmatrix}.
\]

где \(V_n = \pm \sqrt{x_n^2 + y_n^2} \), \(\dot{\theta}_n = \frac{\dot{x}_n \sin \theta_n - \dot{y}_n \cos \theta_n}{x_n^2 + y_n^2} \).

Текущие координаты \(x_n, y_n, \theta_n \) отличаются от программных \(x_n^*, y_n^*, \theta_n^* \), на участках выхода из произвольной точки на программную траекторию, а также, в частности, вследствие нарушения условий непосредственной магнитной модели машины (модуля), целесообразно формировать так:

\[
\begin{bmatrix}
V_n \\
\dot{\theta}_n
\end{bmatrix} = \begin{bmatrix}
V_n \cos e_1 + k_1 e_1 \\
\dot{\theta}_n + V_n k_2 e_2 + k_3 \sin e_1
\end{bmatrix},
\]

где \(e_1, e_2 \) и \(e_3 \) соответственно тангенциальная, нормальная и угловая компоненты вектора ошибки \(e \) траекторного управления \(e = \begin{bmatrix}
\cos \theta_r & \sin \theta_r & 0 \\
-\sin \theta_r & \cos \theta_r & 0 \\
0 & 0 & 1
\end{bmatrix} \begin{bmatrix}
x_n - x_r \\
y_n - y_r \\
\theta_n - \theta_r
\end{bmatrix} \)

где \(k_1, k_2, k_3 \) — положительные коэффициенты [18–20].

Основные характерные параметры ОКМ, представленного на рис. 16, указаны в таблице.

В [14] применительно, например, к режиму управления движения ОКМ по заданной траектории с одной временной стабилизацией его платформы в плоскости горизонта приведены результаты синтеза моментов \(M_{x1}, M_{y1}, \) \(M_{x2}, M_{y2} \) и моментов \(M_{x1}^*, M_{y1}^*, M_{x2}^*, M_{y2}^* \) являющихся линейными функциями координат ОКМ, развиваемых соответственно приводными двигателями управляющих маховиков и управляющих грузов, и обеспечивающих высокоточную стабилизацию платформы в плоскости горизонта. Показано также, что эффективное управление движением ОКМ по заданной пространственно-временной траектории достигается при формировании весовых коэффициентов ошибок в (3.6) на основе соотношений:

\[
k_1 = k_3 = 2 \xi \cdot \left(\dot{\theta}^2 + (\xi \nu)^2 \right);
k_2 = \eta \cdot |\nu|,
\]

где \(\xi, \nu, \eta \) — положительные параметры.

На рис. 3 представлена обозначенная цифровая I характерная траектория типа «звезда» \(x(t) = 40 \sin(t/100), \ y(t) = 40 \sin(t/1000) \), по которой осуществлялась навигация ОКМ в процессе численного эксперимента.

Цифрами 2 и 3 обозначены траектории ОКМ с участками выхода на траекторию I из произвольных точек подстилающей поверхности. На всех участках характерной траектории условия (2.14) отсутствуют проскальзывания колес выполняются. На рис. 4 приведены соответствующие процессы стабилизации платформы ОКМ, на которых всплески отклонений по \(\alpha \) и \(\beta \) возникают на участках курсовых разворотов и при изменениях скорости.

Укрупненно на рисунке представлены процессы стабилизации платформы на участке начального разгона ОКМ. Видно, что отклонения платформы от плоскости горизонта, порождаемые специально траекторными возмущениями, при характерном плавном изменении скорости малы.

4. Особенности аппаратного и программного обеспечения ОКМ

БИНС каждого из ОКМ включает инерциальный измерительный модуль (изделие Analog Device), состоящий из трех микромеханических датчиков угловой скорости, трех микромеханических акселерометров со взаимно ортогональными осями чувствительности и векторного магнитометра, а также включает цифровой сигнальный процессор [21; 22]. Электропривод колес состоит из двух блоков, содержащих контроллеры и двигатели постоянного тока Faulhaber с энкодерами, на базе сигналов которых формируются измерения угловых скоростей и ускорений колес. Центральный вычислитель реализует функции управления аппаратным обеспечением ОКМ в
Характерные параметры ОКМ / Characteristic parameters of UWM

<table>
<thead>
<tr>
<th>Элемент / Element</th>
<th>Параметры / Parameters</th>
<th>Масса, кг / Mass, kg</th>
<th>Моменты инерции, кгм² / Moments of inertia, kgm²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Маховик 1 / Flywheel 1</td>
<td>-</td>
<td>2</td>
<td>4.23·10⁻²</td>
</tr>
<tr>
<td>Маховик 2 / Flywheel 2</td>
<td>-</td>
<td>2</td>
<td>8.7·10⁻²</td>
</tr>
<tr>
<td>Маховик 3 / Flywheel 3</td>
<td>-</td>
<td>2</td>
<td>4.23·10⁻²</td>
</tr>
<tr>
<td>Грузы 1, 2 / Loads 1, 2</td>
<td>n=0.1 м, lгр1 = 0.3 м</td>
<td>3</td>
<td>-</td>
</tr>
<tr>
<td>Гироскопы 1, 2 / Gyroscopes 1, 2</td>
<td>H = 17 Н·м·с</td>
<td>2</td>
<td>4.23·10⁻²</td>
</tr>
<tr>
<td>Колеса 1, 2 / Wheels 1, 2</td>
<td>b = 0.4 м, r = 0.25 м, j = 1, a = 1·10⁻³ м, ϕ̅ = ϕ̅ = 0.7</td>
<td>1</td>
<td>3.29·10⁻²</td>
</tr>
<tr>
<td>Платформа / Platform</td>
<td>lц = 0.2 м</td>
<td>12</td>
<td>0.512</td>
</tr>
<tr>
<td>Рама / Frame</td>
<td>-</td>
<td>6</td>
<td>0.357</td>
</tr>
</tbody>
</table>

Рис. 4. Переходные процессы при стабилизации платформы / Fig. 4. Transition processes during platform stabilization

Рис. 5. ОКМ для мониторинга аэродромной инфраструктуры / Fig. 5. UWM for aerodrome infrastructure monitoring

целом, синхронизирует время в различных подсистемах, обеспечивает взаимодействие с оператором. Программное обеспечение (ПО) центрального вычислителя разделено на ряд отдельных подпрограмм, объединенных при помощи пакета Robot Operation System (ROS). Каждая подпрограмма выполняет одну узкоспециализированную задачу, что позволяет учитывать специфику каждого из разрабатываемых ОКМ. ПО состоит из следующих основных подпрограмм: опроса датчиков; расчета навигационных координат в стартовой СК, а также параметров угловой ориентации ОКМ; определения запретных зон (препятствий); планирования ПВТ; реализации алгоритмов в ДСУ; связи с интерфейсом оператора.

На рис.5 для примера представлен разработанный в МАИ вариант ОКМ, предназначенного для...
решения задач мониторинга аэродромной инфраструктуры.

Заключение

Изложены проводимые в Московском авиационном институте (национальном исследовательском университете) результаты исследований и разработок одноосных колесных модулей как носителей аппаратуры мониторинга окружающего пространства, в частности, в условиях предгорных территорий. Осуществлено обобщение этих результатов в части: разработки структур ОКМ; построения их математических моделей как устройств с неголономными связями; формирования способов управления угловыми ориентацией и стабилизацией их платформ; разработки алгоритмов управления движением ОКМ по заданной пространственно-временной траектории. Указаны некоторые общие для всех ОКМ особенности их аппаратного и программного обеспечения. Моделирование и экспериментальные исследования показали эффективность предложенных технических решений ОКМ. В целом создан инструментарий, обеспечивающий возможность эффективного выбора того или иного типа из ряда разрабатываемых ОКМ применительно к требованиям, выдвигаемым решаемой задачей мониторинга.

Благодарности

Авторы выражают благодарность сотрудникам Московского авиационного института: научному сотруднику Максимову В.Н., инженеру Лелькову К.С., аспиранту Михееву В.В. за обсуждение текста при подготовке статьи и помощь в ее оформлении.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Литература:

1. Умаров Р.Д., Бекеев А.Х., Магомедов Ф.М., Меликов И.М. Ресурсосберегающая технология и устройство для механизации технологических операций по уходу за виноградниками для устойчивого развития горных территорий // Устойчивое развитие горных территорий. 2015. №3. С. 39–43
2. Кортиев Л. И., Кортиев А. Л., Ванеев С. Д., Тедеев В. Б. Подпорные стены и их применение для обеспечения безопасности движения на дорогах при освоении горных территорий // Устойчивое развитие горных территорий. 2016. №3. С. 231–235
10. Максимов В.Н., Черноморский А.И. Комплексная система навигации и локального картографирования для

Сведения об авторах / Information about authors:

КУРИС Эдуард Давыдович – кандидат технических наук, старший научный сотрудник кафедры «Автоматизированные комплексы систем ориентации и навигации», Московский авиационный институт, 125993, Москва, Россия. Тел.: 8(499)-158-43-60; ekuris@mail.ru

KURIS Eduard Davydovich – Candidate of Technical Sciences, senior researcher, Department of Automated systems of orientation and navigation, Moscow Aviation Institute, 125993, Moscow, Russia. Ph.: +7(499)-158-43-60; ekuris@mail.ru

Boris S. ALESHIN – Dr of Technical Sciences, Academician of the Russian Academy of Sciences, head of the Department "Automated systems of orientation and navigation", Moscow Aviation Institute, 125993, Moscow, Russia. Ph.: +7 (499)158-43-59.

CHERNOMORSKIY Alexander – Candidate of Technical Sciences, associate Professor, Professor of the Department "Automated systems of orientation and navigation systems", Moscow Aviation Institute, 125993, Moscow, Russia. Ph.: +7 (499)158-43-59.
GROUND VEHICLE MODULES FOR SOLVING THE TASKS OF ENVIRONMENTAL MONITORING IN THE MOUNTAINOUS AREAS

B. S. Aleshin,
A. I. Chernomorskiy,
E. D. Kuris*
Moscow Aviation Institute (National Research University), Moscow, Russia, ekuris@mail.ru

The purpose. This paper is devoted to the generalization of the theoretical research and uniaxial wheeled modules (UWM) development results, conducted at the department of “Automated complexes of orientation and navigation systems” of the Moscow Aviation Institute (MAI). This work is aimed at the development of UWM as efficient vehicles for solving various monitoring tasks in the steady developing areas, in particular – mountains and foothills. It includes monitoring the state of pavement dynamics, roadside natural formation and engineering structures as well as the airfield infrastructure and the surrounding airspace.

The methods. In the UWM structures development process we used the gyroscopic stabilizers construction methods, in particular, the method of ensuring UWM’s platform invariance to the inertia forces arising from its arbitrary movement along the space-time trajectory (STT). The generalized UWM’s mathematical model is obtained based on the second kind Lagrange equations for non–holonomic systems. When forming the signals for UWM platforms angular orientation control and stabilizing them in the horizon plane, we used inertial, gyroscopic, gravitational and flywheel methods and their combinations. For the stable UWM’s movement along given STT all structures use two-circuit control method.

The results. The functional features defining the variants of the UWM structures and including the number of platform’s degrees of freedom relative to the wheels set axis, as well as the ways to control its angular orientation are summarized. A generalized UWM mathematical model has been constructed, and the particular UWM models can be derived from it. It is proposed to use a unified approach to the UWM movements along given STT control system construction. Common UWM’s software and hardware features are revealed. Present UWM simulation results have confirmed the effectiveness of the proposed technical solutions.

Conclusion. The generalizations of the work done at MAI was carried out, in particular, UWM structures development, mathematical models development, the formation of ways to control the angular orientation and stabilization of UWM platforms, development of the motion control algorithms for UWMs moving along given STT. In general, we have created the toolkit that makes it possible to effectively select one or another type of the developed UWM in relation to the current monitoring task requirements.

Keywords: uniaxial wheel module, platform, monitoring, mountain area orientation control, trajectory control

References
8. Orientation, navigation and stabilization uniaxial wheeled module / Aleshin B. S., black A. I., S. V. Feshchenko et al. Under the editorship of B. S. Aleshin, the black sea A. I. Moscow, Publishing house of Moscow Aviation Institute, 2012.

Article received 03.10.2018.
ОБЕСПЕЧЕНИЕ ЭКОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ПРИ РАЗРАБОТКЕ КТИ-ТЕБЕРДИНСКОГО ВОЛЬФРАМОВОГО МЕСТОРОЖДЕНИЯ

Введение

По мере истощения общемировых запасов твердых полезных ископаемых безопасность России все больше зависит от своевременного воспроизводства минерально-сырьевой базы и ее эффективной промышленной эксплуатации [1]. В настоящее время особенно актуальным является добыча руд редких металлов, из которых одним из важнейших для обеспечения технологической и экономической безопасности нашей страны является вольфрам.

Вольфрам используется как конструкционный материал для космических и других аппаратов, эксплуатируемых при высоких температурах, для изготовления бронебойных снарядов, деталей самолетов и двигателей, незаменим в атомной промышленности, ракетостроении и других высокотехнологичных отраслях. Несмотря на то, что Россия занимает второе место после Китая по объемам добычи и получения вольфрама, на внутреннем рынке наблюдается значительный дефицит вольфрамового сырья, который может быть частично или полностью скомпенсирован за счет ввода в эксплуатацию новых месторождений.

Северо-Кавказский регион является одним из главных производителей вольфрама в России. Правительством Карачаево-Черкесской Республики принято решение о строительстве Аксаутского горно-обогатительного комбината (ГОКа) для добычи и переработки вольфрамовых руд Кти-Тебердинского месторождения. Строительство Аксаутского ГОКа позволит не только увеличить производство вольфрама в России, но и заметно повысить промышленный потенциал Карачаево-Черкесской Республики и создать порядка 600 новых рабочих мест [2].

Между тем Кти-Тебердинское месторождение находится в непосредственной близости от Тебердинского государственного биосферного заповедника, включенного во Всемирную сеть природных резерватов [3]. Тебердинский заповедник является природоохранным, научно-исследовательским и эколого-просветительским учреждением федерального значения. В центре заповедника расположен широко известный и активно развивающийся спортивно-оздоровительный комплекс и горнолыжный курорт «Домбай». Популярные туристические маршруты проложены по всей территории заповедника. В связи с этим даже незначительные негативные изменения географической и природной обстановки территории месторождения могут нанести серьезный ущерб уникальной природной зоне заповедника, а следовательно, они недопустимы.

Общие концепции модернизации и развития горных территорий Северного Кавказа достаточно подробно рассмотрены в работах [4–7], однако конкретные мероприятия и условия развития промышленного производства в непосредственной близости от особо охраняемых природных территорий в них не отражены.

Таким образом, предметом рассмотрения настоящей статьи являются технологические решения по освоению Кти-Тебердинского месторождения, обеспечивающие экологическую безопасность прилегающих территорий, в том числе Тебердинского заповедника.

1 Институт горного дела Уральского отделения Российской Академии наук, Екатеринбург, Россия, geotech@igdurau.ru

Соколов И.В.,*, Смирнов А.А., Никитин И.В.

УДК: 622.7

Целью настоящей работы явились разработка и оценка технологических решений и мероприятий по обеспечению экологической безопасности и сохранности окружающей территории, особенно близлежащего Тебердинского государственного биосферного заповедника, при строительстве и эксплуатации Аксаутского горно-обогатительного комбината на базе Кти-Тебердинского вольфрамового месторождения.

Проведены анализ горно-геологических условий и изучение опыта разработки месторождений цветных металлов, оценка экологической обстановки территории залегания месторождения. Предложены технические решения и организационные мероприятия, позволяющие экономически эффективно и экологически безопасно отрабатывать Кти-Тебердинское вольфрамовое месторождение.

КЛЮЧЕВЫЕ СЛОВА: вольфрамовое месторождение, горная территория, экологическая безопасность, горно-обогатительный комбинат, схема вскрытия, система разработки, технология обогащения

Статья поступила в редакцию 07.06.2018.
Общие сведения о месторождении
Кти-Тебердинское месторождение расположено в Зеленчукском районе Карачаево-Черкесской Республики на северном склоне Главного Кавказского хребта в истоках реки Аксаут и приурочено к горному массиву Кургашин-Чат с абсолютной отметкой вершины 3302 м [8]. Район месторождения является типичной высокогорной областью с резко расчлененным рельефом. Склоны ущелий имеют форму отвесных скал, водоразделы изобилуют гребневидными и пикообразными вершинами. Склоны горных массивов крутые (30–40°), часто с обрывами. Превышение водоразделов над руслами рек составляет 1000–1700 м.

Особенности рельефа местности обуславливают перемещение четвертичных отложений и скатывание обломков коренных пород с высоких отметок на низкие. Наиболее опасными являются камнепады, обваль, осыпи, оползни. Высока степень лавинной опасности в зимний период. Данные природные явления потенциально опасны для всех возможных участков размещения зданий и сооружений производственной и социальной инфраструктуры вблизи месторождения, а также для транспортных коммуникаций.

Климатические условия района характеризуются коротким дождливым летом и холодной снегообильной зимой. Количество осадков составляет 1300–1900 мм в год, преимущественно в виде снега. Толшина снежного покрова 2–3 м, в понижениях рельефа – до 8 м. Среднемесячная положительная температура +9°С, отрицательная -6°С.

Основной водной артерией района является река Аксаут с притоками Кти-Теберда и Джаловчет с постоянным водным режимом, зависимым от интенсивности таяния ледников и снежников.

Рядом с месторождением находится поселок геологоразведчиков, от которого по долине реки Аксаут проходит грунтовая дорога до автотрассы Черкесск-Зеленчукская.

Приуроченность месторождения к Южному крылу Кти-Тебердинской антиклинали обуславливает моноклинальное залегание пород, осложненное большим количеством разрывных нарушений с амплитудами смещения от первых до нескольких сотен метров (рис. 1). Вкраепленно-прожилковые (вольфрамовые) руды залегают в амфиболитах на одном структурном уровне, в пределах которого выделено четыре рудных тела с углом падения 20–40° и мощностью 2–15 м, на отдельных участках до 25 м [9]. Руды и породы средней крепости и крепкие, средне- и малотрещиноватые, в основном достаточно устойчивые; в зонах дробления, приуроченных к тектоническим нарушениям – сильнотрещиноватые и неустойчивые.

Гидрогеологические условия месторождения до статично благоприятные в связи с тем, что большая
часть запасов находится выше русла прилегающих рек (рис. 2). Приток воды определяется уровнем атмосферных осадков и интенсивностью таяния ледников и снежников. В связи с этим объем водопритоков оценивается от 170 м³/час (зимой) до 650 м³/час (летом), в среднем около 370 м³/час.

Выполнена детальная разведка месторождения. Для этого пройдены три геологоразведочных штольни и достаточно большое количество протяженных разведочных выработок на трех горизонтах.

Для месторождения на основании ТЭО постоянных кондиций (Институт «Гипроцветмет», 1986 г.) подсчитаны и утверждены балансовые запасы руды в количестве около 30 млн. т.

Основной рудообразующий минерал – шеелит (около 98%).
Среднее содержание триоксида вольфрама WO₃ в рудах – 0,366%, присутствие других полезных компонентов незначительно.

Основные технические решения по освоению месторождения, обеспечивающие экологическую безопасность прилегающих территорий

При выборе способа разработки Кти-Тебердинского месторождения одним из основных требований является полное сохранение земной поверхности. Это требование предопределит подземный способ разработки всех запасов, в том числе находящихся непосредственно у земной поверхности [10].

Институтом «Гипроцветмет» при разработке ТЭО кондиций годовая производительность рудника принята 650 тыс. т руды в год. Исходя из анализа запасов месторождения и ориентировочной оценки горных возможностей можно принять производственную мощность рудника в 1 млн. т руды в год.

На основании исследований и полупромышленных испытаний по обогащению руды Кти-Тебердинского месторождения, выполненных в ВИМСе и Центральной лаборатории ПГО «Севкавказгеология», авторами [11] предложена схема обогащения руды с получением шеелитового концентрата с содержанием триоксида вольфрама WO₃, равным 55–60%. Схема включает дробление добытой руды, рентгенолюминесцентную сепарацию, измельчение обогащенного продукта в мельницах, трехстадийную флотацию и химическую доводку концентрата. Извлечение триоксида вольфрама WO₃ в концентрат составит 85%, выход концентрата – 0,5–0,6%.

При данной схеме обогащения выход хвостов обогащения очень высок: сухие хвосты рентгенолюминесцентной сепарации составят около 40% от объема добытой руды, шламы флотации – почти 60%. Таким образом, общий объем шламов при отработке месторождения составит около 18 млн. т (примерно 8,2 млн. м³), для размещения которого потребуется выделение значительных площадей. При этом необходимо строительство гидротехнических сооружений для обезвоживания шламов и очистных сооружений шламовых вод, предотвращающих загрязнение водных источников района месторождения. Следует учитывать, что шламохранилища являются источником мощного техногенного воздействия на окружающую природную среду [12–16]. Вследствие этого, основным способом обеспечения экологической безопасности при освоении Кти-Тебердинского месторождения является максимально полное размещение отходов обогатительного производства и прежде всего шламов в выработанном пространстве [17–20]. Данное положение в значительной степени определяет выбор технологии подземной добычи руды.
Малая мощность рудных тел и значительная глубина их залегания на большей части месторождения в принципе позволяет применять системы с обрушением руды и вмещающих пород. Обрушение при этом не выйдет на поверхность, но не исключаются локальные подвижки налаивающего массива, образование в нем трещин с аэродинамической связью с поверхностью и нарушение температурного режима вышележащих ледников. Кроме того, при данных системах практически исключено размещение в выработанном пространстве пустых пород и отходов обогащения.
Вследствие этого наиболее целесообразным выглядит применение систем разработки с закладкой выработанного пространства хвостами обогащения. При этом оптимальным является восходящий порядок отработки рудных тел, поскольку их сравнительно не большой угол падения практически исключает подработку вышележащих запасов.
Перспективной в рассматриваемых условиях выглядит камерно-столбовая система разработки восходящими горизонтальными слоями с сухой или гидравлической закладкой выработанного пространства. В этом случае поддержание налаивающего пород обеспечивается оставлением неизвлекаемых столбчатых или ленточных целиков. После выемки очередного слоя выработанное пространство заполняется сухой или гидравлической закладкой из хвостов обогащения. Закладка служит почвой вышележащего отрабатываемого слоя. Все производственные процессы добывы руды выполняются при помощи комплекса самоходных машин, что позволяет обеспечить достаточную экономическую эффективность и высокую производительность труда. Данная система разработки успешно применяема при отработке Саткинского месторождения магнезита [21].
Основным недостатком камерно-столбовой системы является высокий уровень потерь руды в неизвлекаемых целиках до 20–25%. Для снижения указанных потерь возможна полная или частичная замена рудных целиков на искусственные (бетонные), в том числе в виде искусственных потолочин добычных блоков [22].
Вторым возможным вариантом является применение системы разработки с закладкой выработанного пространства твердеющими смесями (рис. 3). При данных системах происходит достаточно полное заполнение выработанного пространства закладкой с надежным поддержанием висячего бока и минимальным оседанием налаивающего пород [23]. Несомненным преимуществом системы является высокое извлечение руды (потери 3–4%) при незначительном разубоживании. Недостатком системы с твердеющей закладкой является повышенная на 25–30% по сравнению с другими системами разработки себестоимость добычи руды. Для оценки возможности использования отходов обогащения для приготовления твердеющих смесей должны быть проведены специальные исследования.
Следует учитывать, что объем выработанного пространства будет недостаточен для размещения всех хвостов обогащения, к которым следует прибавить и пустую породу от проходки выработок. Поэтому несмотря на часть сухих хвостов и пустых пород придется складировать их в отвалах на поверхности, а в выработанное пространство помещать шламы флотации.
Наиболее распространенным способом транспортировки закладочных смесей на рудниках является...
самотечный трубопроводный транспорт, но для его осуществления комплекс приготовления закладочных смесей должен располагаться выше отрабатываемых рудных тел. В нашем случае строительство такого комплекса вблизи вершины горного массива Курган-Чат затруднительно и экологически небезопасно, а подъем всего объема закладочного материала к нему нерационален. Кроме того, при использовании жидкой гидравлической или твердеющей закладки выработанного пространства возникают сложности в ее обезвоживании, отводе воды и строительстве переходов. Вследствие этого наиболее предпочтительным выглядит предварительное сгущение и обезвоживание шламов и размещение их в выработанном пространстве в виде сухой закладки, транспортируемой автотранспортом или конвейерами [24; 25]. Однако это потребует введения в состав обогатительного комплекса специального отделения для сгущения и обезвоживания шламов, что также является немаловажным для предотвращения загрязнения водных источников района месторождения (реки Аксаут с ее притоками).

Институтом «Гипроцветмет» при разработке ТЭО постоянных кондиций предложено вскрывать местообитание штольнями и двумя вертикальными стволами (клетевым и вентиляционным) при средней высоте этажа 65 м.

Учитывая расположение рудных тел и восходящий порядок их отработки вскрытие месторождения целесообразно осуществлять штольнями и автотранспортным уклоном для транспорта руды и перемещения самодействующей техники (рис. 4), отказавшись при этом от проведения вертикальных стволов. Наряду с исключением ресурсо- и трудоемкого процесса строительства вертикальных стволов, предлагаемая схема позволяет осуществить поэтапное вскрытие месторождения, тем самым сократить капитальные затраты и срок ввода рудника в эксплуатацию. Кроме того, существующие геологоразведочные выработки, в том числе штольни, после их обследования и восстановления можно использовать для вентиляции рудника и в качестве запасных выходов. Наиболее целесообразной выглядит нагнетательная схема проветривания с размещением главной вентиляторной установки на нижней главной штольне и выдачей загрязненного воздуха через выщерасположенные штольни.

Характер поверхности, опасность оползней и камнепадов, лавиноопасность как в пределах горного отвода, так и в ближайшей местности вызывает трудности с выделением достаточных подходящих площадей для размещения обогатительного комплекса, особенно с учетом размещения рудных складов, отвалов и сопутствующих коммуникаций. Вследствие этого в проекте комбината должен быть рассмотрен альтернативный вариант с полным или частичным размещением обогатительного передела в подземном пространстве. Выполненные нами исследования [26; 27] показывают, что стоимость строительства подземного обогатительного комплекса сопоставима или даже несколько ниже стоимости строительства аналогичного поверхностного комплекса. Подземный обогатительный комплекс может быть расположен в околосрубном горном массиве с горизонтальной площадью 200х200 м и высотой 100–120 м, при этом объем горно-капитальных выработок составит не более 120–150 тыс. м³.

Достаточная глубокая переработка руды приводит к тому, что объем конечной продукции комбината сравнительно невелик – от 4 до 6 тыс. т шеелитового концентрата в год. Учитывая имеющиеся транспортные коммуникации и перспективы их развития в высокогорной местности, целесообразно ориентироваться на автомобильный транспорт концентрата до объектов его переработки. Для строительства рудника и транспортировки продукции комбината потребуется реконструкция существующей автодороги до станицы Зеленчукская длиной около 70 км.

Безопасные площади для размещения объектов
промышленной и социальной инфраструктуры вблизи месторождения весьма ограничены и требуют защиты от лавин и обвалов. Так, например, поселок для работников комбината можно расположить только ниже по течению реки Аксат в 7 км от месторождения. Вследствие этого на Аксатском комбинате целесообразна вахтовая организация работы со строительством вахтового поселка.

Заключение

1. При строительстве и эксплуатации Аксатского ГОКа основным требованием является обеспечение экологической безопасности и сохранность окружающей территории, а особенно прилегающего к району месторождения Гоби-целенчукской государственного биосферного заповедника.

2. Для сохранения земной поверхности рекомендуется подземный способ разработки системами с закладкой выработанного пространства и восходящим порядком выемки рудных тел. Наиболее рациональным является применение системы горизонтальных слоев с сухой или гидравлической закладкой и использованием самоходной техники. Альтернативными вариантами являются камерно-столбовая система с оставлением незвлекаемых целиков или система с твердеющей закладкой для поддержания висячего бока.

Литература:

5. Потапенко Ю.Ю. Геологические маршруты в Приэльбрусье. КЧГПУ, 2002. 165 с.

СОКОЛОВ Игорь Владимирович – доктор технических наук, заведующий лабораторией подземной геотехнологии, действительный член академии горных наук. ORCID 0000-0001-7841-5319.
Институт горного дела Уральского отделения Российской академии наук.
620075, г. Екатеринбург, Россия.
Тел.: 8(343)350-71-28, E-mail: geotech@igduran.ru

Алексей Алексеевич – кандидат технических наук, старший научный сотрудник лаборатории подземной геотехнологии. Институт горного дела Уральского отделения Российской академии наук.
620075, г. Екатеринбург, Россия.
Тел.: 8(343)350-71-28

Igor VI. SOKOLOV – doctor of technical sciences, the head of the laboratory of underground geotechnology, current member of the Academy of mining Sciences. Institute of Mining of the Ural branch of Russian Academy of Sciences. ORCID 0000-0001-7841-5319.
620075, Ekaterinburg, Russia.
Ph.: +7(343)350-71-28; E-mail: geotech@igduran.ru

Alexey Al. SMIRNOV – candidate of technical sciences, senior research worker; senior research worker of the laboratory of underground geotechnology. Institute of Mining of the Ural branch of Russian Academy of Sciences.
620075, Ekaterinburg, Russia.
Ph.: +7(343)350-71-28.
ENSURING ECOLOGICAL SAFETY AT THE MINING OF THE KTI-TEBERDA TUNGSTEN DEPOSIT

I.V. Sokolov,*
A.A. Smirnov,
I.V. Nikitin
Institute of Mining of the Ural branch of Russian Academy of Sciences, Ekaterinburg, Russia, geotech@igduran.ru

The purpose of this work is the development and evaluation of technological solutions and measures to ensure ecological safety and preservation of the surrounding area, especially the nearby Teberdinsky state biosphere reserve, during the construction and operation of the Aksaut mining and processing plant on the basis of the Kti-Teberda tungsten deposit.

Method of research. Analysis of mining and geological conditions and studying the experience of development of deposits of nonferrous metals, evaluation of the ecological situation of the territory of occurrence of the deposit.

Results. According to the results of the research it was established:
- for ensure ecological safety and preservation of the surrounding area is recommended that the underground method of development of the Kti-Teberda tungsten deposit of systems with the tab of the developed space and the ascending order of excavation of ore bodies. The most rational is the use of a system of horizontal layers with a dry or hydraulic tab and the use of self-propelled machinery. The most rational is the use of mining system of horizontal slicing with a dry or hydraulic backfill and the use of self-propelled machinery. Alternative options are a chamber-and-pillar system with the leaving of non-attracted pillars or a system with a hardening tab to maintain the hanging side.
- the scheme of ore processing of the deposit involves deep enrichment with a high yield (up to 99%) of dry tailings and flotation sludge. To eliminate the adverse impact of sludge storage on the environment, sludge should be placed in the developed space, with the appropriate pre-thickening and dehydation of sludge.
- the opening of deposit is recommended by adits and transport slope, while refusing the carrying out of vertical shafts. Given the existing transport communications and prospects of their development in the highlands, it is advisable to focus on road transport concentrate to its processing facilities.
- for the construction of the underground mine and transportation of products of the mining and processing plant, it is necessary to reconstruct the existing road to the village Zelenchukskaya with a length of about 70 km. Along with servicing the needs of the plant, the road will improve the transport accessibility of the district and expand the development opportunities in the region of other sectors of the economy of the Karachay-Cherkessia Republic.

Conclusions. The proposed technical solutions and organizational measures allowing economic efficiency and ecological safety to mining of the Kti-Teberda tungsten deposit.

Keywords: tungsten deposit, mountain territories, ecological safety, mining and processing plant, scheme of opening, mining system, enrichment technology.

References
7. Onishchenko V.V., Artanova Z.U. Geocological aspects of sustainable development of mountain territories (on the
example of the Karachay-Cherkessia Republic). Sustainable Development of Mountain Territories, 2014, No4, pp. 75–79.

Article received 07.06.2018.
РАЗРАБОТКА АВТОМАТИЗИРОВАННЫХ СИСТЕМ УПРАВЛЕНИЯ ДЛЯ ГОРНОДОБЫВАЮЩИХ ПРЕДПРИЯТИЙ

Введение

Известна высокая значимость предприятий горнодобывающей промышленности как для экономики республик Северного Кавказа и всей страны, так и для устойчивого развития горных территорий. В то же время указанные предприятия, располагающиеся на горных территориях, могут представлять опасность своими выбросами в атмосферу вредных и опасных веществ, авариями и т.д. Поэтому исключение выбросов и предотвращение аварий и предаварийных ситуаций, ситуаций, связанных с рисками для производства, является актуальной проблемой. Решение этой проблемы, таким образом, имеет огромное значение как для сохранения естественной инфраструктуры горных регионов, так и для устойчивого развития этих регионов.

Анализ литературных источников показал, что длительное время как отечественные, так и зарубежные ученые посвящали свои работы решению обозначенной проблемы [1–17]. Однако на основе разработки общей теории построения АСУ для горнодобывающих предприятий [1–5], улучшения их технического оснащения [6; 14], внедрения в процессы управления производством математических моделей [7; 8] и программных продуктов [9; 10], развития методов управления горнодобывающими предприятиями [11–17] известные исследователи в своих работах решали отдельные задачи по повышению эффективности горнодобывающих предприятий и по устойчивому развитию горных территорий. Проведенный анализ также позволил сделать вывод, что перспективным путем решения обозначенной проблемы является путь, предусматривающий совершенствование современных производств, находящихся в инфраструктуре горных регионов, на основе применения высоко информационных, интеллектуальных автоматизированных систем управления всем предприятием (АСУП), значение которых, главным образом, определяется возможностями используемыми в АСУП автоматизированных систем управления технологическими процессами (АСУТП) производства. Эти системы обеспечивают, в первую очередь, снижение брака и повышение производительности труда, а значит, значительное повышение эффективности производства. Но известные АСУТП при этом не обеспечивают выявление и исключение рискованных для производства ситуаций, т.е. не обеспечивают исключение производственных рисков, включая аварийные ситуации, тем самым не обеспечивают сохранение экологического благосостояния горных территорий [1–17]. В связи с этим в работе ставится задача разработки АСУТП с возможностями выявления, предупреждения и предотвращения рискованных для производства ситуаций, а также обеспечения в целом устойчивого развития горных территорий. Разработка АСУТП с указанными возможностями является актуальной задачей, решение которой, по существу, предопределяет создание нового класса АСУТП [18–22], а значит нового класса АСУП.

Таким образом, предлагаемая работа является актуальной, так как посвящена решению проблемы, связанной с разработкой АСУТП с расширенными функциональными возможностями.

УДК 519.86 669

Рассматривается проблема отрицательного влияния горнодобывающих предприятий на устойчивое развитие горных территорий и предложена один из наиболее эффективных путей решения этой проблемы, предусматривающий разработку автоматизированных систем управления с новыми функциональными возможностями для горнодобывающих предприятий. Основное внимание в работе уделено разработке автоматизированных систем управления технологическими процессами (АСУ ТП), используемых на горнодобывающих предприятиях. Основное внимание в работе уделено разработке автоматизированных систем управления технологическими процессами (АСУ ТП), используемых на горнодобывающих предприятиях. Важнейшее свойство этих систем определяется возможностью обеспечения предотвращения вредных и опасных выбросов в атмосферу, исключения загрязнения близлежащих к предприятию территорий, исключения аварийных ситуаций. Внедрение разработанной АСУ ТП будет предопределять устойчивое развитие горных территорий за счет повышения экономических показателей горнодобывающих предприятий и обеспечения экологического благосостояния этих территорий.

КЛЮЧЕВЫЕ СЛОВА: устойчивое развитие, горнодобывающие предприятия, горные территории, технологический процесс, производственные риски, предупреждение аварий, автоматизированная система управления, подсистема исключения производственных аварий

Стастья поступила в редакцию 04.05.2018.
Постановка задачи по разработке АСУТП

Задача разработки АСУТП рассматривается в работе для случая автоматизации технологического процесса, связанной с выщелачиванием цинка. Следует отметить, что в производстве по выщелачиванию цинка возникают по ряду причин неблагоприятные ситуации (рисковые ситуации или риски), которые должны обнаруживаться на ранней стадии и исключаться до свершения аварии. Для реализации этих функций и разрабатывается АСУ ТП с подсистемой исключения производственных рисков, включая риски, приводящие к аварийным ситуациям.

Известно, что функционирование АСУТП в настоящее время основано на безупречных информационных технологиях (ИТ), основной задачей которых в производстве по выщелачиванию цинка является информирование службы главного инженера (СТИ), принимающей решение, о текущем состоянии подконтрольного ему производства, в том числе информацию о протекании этапов технологического процесса, соответствии их параметров нормативным показателям, о параметрах работающего в цеху оборудования и т.д. Вполне понятно, что основой ИТ является интеллектуальная система сбора данных (ИССД), одной из подзадач которой является сбор информации в цифровой форме с контрольно-измерительных приборов (КИП), выполняющих функции измерения параметров технологического процесса на всех его стадиях.

Однако ввиду наличия большого количества оборудования, непрерывности технологического процесса, нестабильности технологических параметров и зачастую низкого качества сырья, подготовка и принятие оперативного управляющего воздействия на объектах контроля и управления могут быть серьезно затруднены. Стоит отметить, что при поступлении большого объема информации у СТИ уменьшается эффективность принимаемых решений, поэтому передаваемая на СТИ информация по объёму должна соответствовать нормативному показателю.

Здесь целесообразно отметить, что с проблемой устранения аварий и предаварийных ситуаций тесно связаны задачи обеспечения контроля, безопасности окружающей среды в соответствии с Федеральными Законами, в которых содержатся требования, определяющие необходимость наличия на металлургических предприятиях подсистем, позволяющих: повысить экономическую и экологическую оценку деятельности предприятия; снизить затраты, связанные с природоохранный деятельностью; поддерживать стабильную работу агрегатов и химического состава сырья в пределах нормативов; обеспечить рост рейтинга предприятия на российском и международном рынках.

Анализ возможных путей создания АСУТП позволил выявить, что один из перспективных вариантов решения вышеперечисленных задач основывается на включении в состав АСУТП подсистемы исключения производственных рисков (ПИПР), позволяющей оценивать сложившуюся производственную ситуацию на участках цеха выщелачивания цинка и определять наиболее эффективные решения по управлению технологическим процессом. При этом основная задача ПИПР – это не допускать отклонений технологических параметров за допустимые нормы (в противном случае: выявлять причины отклонений и места их возникновения, определять степень возможных последствий от отклонений, оперативно подготавливать решения по ликвидации сложившихся производственных рисков, включая аварийные ситуации и пр.).

Разработка блок-схемы АСУТП, имеющей в своем составе ПИПР

Для разработки наиболее оптимальной структуры АСУТП по выщелачиванию цинка были изучены управляющие и информационные сигналы в действующем производстве ОАО «Электроцинк».
г. Владикавказ), была проведена их классификация, были определены их особенности и взаимосвязь. Там же были исследованы структурные составляющие производства цинка, были учтены возможные схемы их взаимодействия, исследованы разные варианты совместной работы таких блоков АСУТП, как СГИ, ИССД, ПИПР. На основании этих исследований и была разработана блок-схема АСУТП, приведенная на рис. 1.

В блок-схеме АСУТП показаны возможные управляющие и информационные сигналы, используемые для обеспечения высоких эффективных показателей функционирования предприятия. Эти сигналы условно разделяются на следующие виды:
- **сигналы управления 1-го уровня** $U_k(t) (k = 1, \ldots, K)$ – необходимые для модернизации производственно-технологической деятельности цеха и внедрения рекомендаций по предотвращению нарушений в ходе технологического процесса выщелачивания цинка;
- **сигналы воздействия 1-го уровня** $M_j(t) (j = 1, \ldots, J)$ – обеспечивающие систему управления априорной информацией о: производственном плане, заявленных мощностях оборудования, подаваемом количестве и качестве сырья, плановом изменении структуры управления, сбоях агрегатов цеха, отклонениях в работе самой АСУТП, нарушениях состава растворов;
- **сигналы управления 2-го уровня** $D_j(t) (j = 1, \ldots, J)$ – необходимые для обеспечения информацией о выработке решений по воздействию на сложившуюся ситуацию в выщелачивательном цехе;
- сигналы соответствующие входным контролируемым параметрам $V(i) (i = 1, \ldots, I)$ – предоставляющие данные о показателях качества подаваемого электролита, огарка; информацию о техническом состоянии агрегатов цеха, растворов; информацию о структурных характеристиках оборудования и т.д.;
- сигналы соответствующие выходным параметрам 1-го уровня $X_m(t) (m = 1, \ldots, M)$ – предоставляющие данные об объемах производства, количестве извлеченного цинка в раствор, информацию о текущем состоянии оборудования, информацию для надзорных органов власти;
- сигналы управления 2-го уровня $D(t) (j = 1, \ldots, J)$ – необходимые для обеспечения информацией о выработке решений по воздействию на сложившуюся ситуацию в выщелачивательном цехе;

Рис. 2. Структурная схема АСУ ТП производства по выщелачиванию цинка

Fig. 2. Structure scheme of the ACS TP production on zinc leaching (the scheme notation: CEO – the chief engineer’s office, IDCS – the intelligent data acquisition system, SEIR – the subsystem exception of industrial risks, CMI-the control and measuring instruments, AM – the actuator mechanism, TO – technological object)
SUSTAINABLE DEVELOPMENT OF MOUNTAIN TERRITORIES

Т.10. №4(38), 2018 г.

- сигналы о технологических параметрах $S_p(t)$, $Z_p(t)$ ($p = 1, \ldots, P$) – представляющие информацию от КИП, передающиеся в ИССД, которые после обработки должны передаваться в СГИ в определенном виде;
- сигналы дополнительного характера $W_p^r(t)$ ($p = 1, \ldots, P, r = 1, \ldots, R$) – важные для обеспечения информацией, необходимой ПИПР для выработки решения по сложившейся негативной ситуации;
- сигналы о выходных параметрах 2-го уровня $Y_m(t)$ ($m = 1, \ldots, M$) – соответствующие обработанным данным, показывающим СГИ возможность разрешения сложившейся ситуации в цехе;
- сигналы воздействия 2-го уровня $O_j(t)$ ($j = 1, \ldots, J$) – обеспечивающие информацией о возможности настройки, обучения ППАС на основе возможных сценариев развития ситуаций и причин нарушения технологического режима;
- сигналы воздействия 3-го уровня $R_n(t)$ ($n = 1, \ldots, N$) – используемые для обеспечения информации о качестве подаваемого в цех сырья, включая электричество, природный газ, электролит и т.д., о спросе на рынке цветных металлов, о климатических условиях и др.

С учетом проанализированных информационных сигналов выщелачивательного цеха можно заключить, что ПИПР должна непрерывно реагировать на сигналы управления, воздействия и на сигналы, соответствующие технологическим параметрам. В этом случае можно ожидать полное исключение неблагоприятных производственных ситуаций [18–20].

Разработка структурной схемы АСУ ТП с ПИПР

На основании разработанной блок-схемы АСУ ТП и анализа ее информационных и управляющих сигналов была разработана структурная схема АСУ ТП, эффективность функционирования которой, как понятно, во многом определяется тем, насколько активно ПИПР в составе АСУ будет в состоянии поддерживать работу СГИ в принятии управленческого решения по исключению производственных рисков и неблагоприятных ситуаций.

Главными функциями АСУ ТП с ПИПР являются следующие:
- определение вероятных причин, вызывающих производственные риски в технологическом процессе выщелачивания цинка;
- выбор наилучшего решения по ликвидации сложившейся негативной ситуации;
- самообучение, которое предопределяет развитие интеллектуальных возможностей, что возможно на основе применения нейронных сетей или нечеткой логики (понятно, что применение элементов искусственного интеллекта в ПИПР существенно улучшает решение вопросов исключения производственных рисков и неблагоприятных ситуаций на предприятии)

Разработанная структурная схема АСУ ТП производства по выщелачиванию цинка приведена на рис. 2, из которого видно, что вся структура производства разделена условно на 3 уровня: администрация, АСУ, выщелачивательного цеха. Рассмотрение взаимодействия этих уровней между собой и работы подсистем уровней не представляется возможным в настоящей работе, поэтому отметим только основные задачи, решаемые системой в автоматизированном режиме:
- пополнение новой информацией о состоянии технологического оборудования (от ТО1 до ТОn), о возможных ситуациях выщелачивательного цеха и о способах воздействия на них;
- поиск и выбор решений в случаях предсказанных

Рис. 3. Функциональная схема подсистемы исключения производственных рисков (ПИПР), входящая в состав АСУ ТП
Fig. 3. Functional scheme of the industrial risks (SEIR) exception subsystem, a member of the ACS TP (the scheme notation: CEO – the chief engineer's office, IDCS – the intelligent data acquisition system, LZ – the leaching of zinc)
и рискованных ситуациях, случающихся ранее, в том числе ситуаций предварительного и аварийного характера;
- формирование ответов на запросы, поступающие от СТИ.
Так как выщелачивательный цех предприятия представлен большим количеством технологического оборудования с различными технологическими параметрами, исполнительными механизмами (ИМ), контролильно-измерительными приборами (КИП), в большом объеме, то система управления характеризуется высокой сложностью.

Разработка функциональной схемы ПИПР

Предлагаемая ППАС в системе управления должна обладать возможностью корректировки имеющихся в ней данных на этапе обучения и настройки, а СТИ должен обеспеччивать возможность корректировки способов воздействия на сложившуюся рискованную ситуацию на всех участках производства [21; 22]. С учетом этих требований была разработана функциональная схема ППАС, приведенная на рис. 3. Надо отметить, для улучшения функциональных возможностей ПИПР в ней достаточно использование элементов нечеткой логики [21].

В структуре ПИПР выделены 5 основных блоков и соответствующие им связи \(L_1, L_2, \ldots, L_{10} \) по передаче информации следующего назначения:

- \(L_1 \) – информация о текущей ситуации, имеющей место в выщелачивательном цехе, и используемой для оценки необходимости вмешательства в процесс выщелачивания цинка;
- \(L_2 \) – информация для СТИ о ненадобности вмешательства в процесс выщелачивания цинка, что возможно при регламентированном ходе выщелачивания цинка;
- \(L_3 \) – информация о сложившейся негативной ситуации, при которой необходимо определить тип текущей ситуации;
- \(L_4 \) – информация о классифицированной ситуации, при которой в блок выбора решения (БВР) передается информация;
- \(L_5 \) – информация о «найденном» решении по сложившейся ситуации, преобразуемая в вид, понятный СТИ;
- \(L_6 \) – информация для ИССД о выбранном решении по сложившейся предварительной ситуации (используется только в случае отсутствия действий со стороны СТИ);
- \(L_7 \) – информация по данной связи передается только в случае отсутствия одного решения сложившейся предписанной ситуации, при которой прибегают к помощи блока обработки предварительных решений (БОПР) для выбора наилучшего альтернативного решения, передаваемого впоследствии в БВР;
- \(L_8 \) – информация для СТИ о решении по выходу из сложившейся ситуации или об отсутствии такового;
- \(L_9 \) – информация для ввода запроса СТИ о возможных ситуациях или ввод собственных решений по возможным ситуациям;
- \(L_{10} \) – информация о необходимости обучения БВР.

После описания связей, используемых в ПИПР, важно рассмотреть основные функции этих блоков, тем более, что работа ПИПР находится в прямой зависимости от выполняемых блоками ПИПР функций.

Блок оценки ситуации (БОС) предназначен для оценки и определения необходимости вмешательства СТИ в сложившуюся ситуацию производственного процесса. Если текущая ситуация не требует вмешательства, то БОС не передает информацию на дальнейшую обработку в ПИПР. Одновременно БОС информирует СТИ через блок визуализации (БВ) об отсутствии необходимости воздействия на объект с параметрами, вызывающими риски. Если БОС определил ситуацию как инцидент, риск или предаварийная ситуация, аварийная ситуация или авария, то для сложившейся ситуации \(S_0 \) необходима выработка управляющего воздействия в ПИПР.

Постуцирующая информация в БОС может быть нескольких типов: четкая, нечеткая, нечетко множественная. Это накладывает особенности на алгоритм действия, который включает следующие шаги.

Если в БОС поступают только хорошо определенные (относительно порога равенства) ситуации \(S_0 \), то отношение нечеткого равенства на множестве \(S = S_S \cup S_0 \) (где \(S_0 \) – множество входных ситуаций) и является отношением нечеткой эквивалентности.

Ситуации, входящие в набор \(S_S \), называем "эталонными" (выявленными экспертами) для анализируемого процесса. Набор \(S' = \{s_1, s_2, \ldots, s_n\} \) эталонных ситуаций не содержит нечетко равных при заданном пороге равенства ситуаций. Это способствует уменьшению размерности входящей анализируемой информации процесса выщелачивания и не снижает эффективности модели управления в пределах достоверности, ограничиваемых порогом равенства.

Так как множество \(S_S \) нечетко равно множеству ситуаций, то число классов эквивалентности нечеткого разбиения множества \(S \) совпадает с числом эталонных ситуаций \(S_S \). Каждая ситуация \(s \in S_S \) и является представителем класса эквивалентности \(A_l \) соответствующей этой ситуации. Классу \(A_l \) помимо \(s \) принадлежат все нечетко равные \(s \) входные ситуации из множества возможных \(S_0 \).

Следовательно, любая входная ситуация \(S_0 \) нечетко равна только одной эталонной ситуации \(s_i \in S_S \), которая определяется последовательным сравнением \(S_0 \) с каждой ситуацией \(s_i \in S_S \) (\(I = \{1, 2, \ldots, n\} \)).

Если в БОС поступает плохо определенная ситуация \(S_0 \), то в этом случае отношение нечеткого равенства на множестве \(S_1 \) является отношением нечеткой толерантности. Число классов соприкосновенного с ним не-
четкого покрытия равно \(n \), каждая ситуация \(s \in S_s \) соответственно классу \(A_l \) покрытия множества \(S_l \).

Однако классы покрытий могут иметь нечетко пустые пересечения, которые состоят из плохо определенных входных ситуаций \(S_0 \). Следовательно, плохо определенная входная ситуация \(S_0 \) может быть четко равна эталонным ситуациям [20].

В случае оценки типа ситуации как "опасной", информация передается в блок классификации ситуации (БКС). В нем происходит разделение ситуаций на классы, каждый из которых однозначно или с определенными приоритетами соответствует тем или иным возможным решениям по воздействию на участки выщелачивателя. Разработанный блок обладает такими возможностями, как поиск прагматических признаков, обеспечивающих нахождение обобщенных описаний ситуаций, позволяющих, в свою очередь, решать задачи поиска решений для эффективного воздействия на объект; обеспечение работы с именами, которые присваиваются отдельным понятиям и ситуациям; обобщение процедур, основанных на структуре отношений, присутствующих в описании ситуаций.

Алгоритм работы БКС

Его можно представить следующим образом. На множестве различных ситуаций \(\{S_i\} \) производится их разбиение на классы, при котором каждый класс \(S_i \) имеет в пределах данной модели управления некоторую адекватную интерпретацию процесса управления ситуацией. На множестве полных ситуаций \(\{S_i\} \) выделяется такое множество классов \(S_i \), при котором каждый из них допускал бы адекватную интерпретацию для процедуры поиска решения по воздействию на объект. В частности, классификация \(S_i \) по некоторому основанию должна быть согласована с классификацией на множестве управляющих воздействий \(\{F_k\} \).

БВР определяет эталонную ситуацию \(s_i \in S_s \) (где \(S_s \) — множество эталонных ситуаций) для наиболее близкой входной ситуации \(S_0 \) и выдает СГИ управляющее решение \(F_k \), соответствующее ситуации \(s_i \). Управляющее решение выражается четко, то есть имеет форму, предпочтительную для СГИ. Для случаев отсутствия единственного решения по управлению в ПИПР предусмотрена процедура обращения к БОПР, которая обеспечивает поиск из множества альтернативных решений наилучшего решения. На основании мнения экспертов каждому управляющему решению присваивается вес \(W \in [0; 1] \), и решение с наибольшим весом выдается СГИ.

Таким образом, БВР, БКС и БОПР совместно формируют решения, необходимые для предотвращения производственных рисков.

Заключение

В работе решена актуальная проблема, определяемая как значимостью сохранения естественного со-
Литература:

18. Хасцаев Б. Д., Хасцаев М. Б., Антипова К. В. Разработка интеллектуального устройства для автоматизированной системы управления металлургическим предприятием // 6-я Международная научная конференция "Прикладные науки и технологии в США и Европе: общие проблемы и научные открытия". Нью-Йорк, 2014. C. 134–137.

Сведения об авторах / Information about authors:

ХАСЦАЕВ Борис Дмитриевич – доктор технических наук, профессор, кафедра « Промышленная электроника» (государственный технологический университет), 362021, г. Владикавказ, Россия.

тел.: 8(928)982-78-28
e-mail: bordsamhas@rambler.ru

Борис Дзамболатович – Dr. Tech. Sc., Professor, Department "Industrial electronics", North-Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia

e-mail: bordsamhas@rambler.ru

МАСЛАКОВ Максим Петрович – кандидат технических наук, заведующий кафедрой "Промышленная электроника", Северо-Кавказский горно-металлургический институт (государственный технологический университет), 362021, г. Владикавказ, Россия.

Maxim P. MASLAKOV – Candidate of Technical Sciences, head of the Department "Industrial electronics", North-Caucasian Institute of Mining and Metallurgy (State Technological University), 362021, Vladikavkaz, Russia
DEVELOPMENT OF AUTOMATED CONTROL SYSTEMS FOR MINING ENTERPRISE

B. Dz. Khastsaev*
M. P. Maslakov
V. V. Karlov
O.V. Olisaeva

North-Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russia,
e-mail: bordsamhas@rambler.ru

The aim of the work is to solve one of the important problems of sustainable development of mountain areas, providing for the development of mining enterprises of high-performance, intelligent automated production management systems (ACSs).

The methods used in the work: the method of system analysis, methods of control theory technical objects, methods of mathematical modeling event situations, the method of the theory of fuzzy sets, etc.

The results of the work. Based on the analysis of the literary sources chosen way forward for sustainable development of mountainous areas, providing for the introduction of mining enterprises with the purpose of meaningful ACS improve both efficiency of production of these enterprises, and improve the environmental well-being of the territories adjacent to the enterprises.

A flowchart of ACSs, as well as structural diagram and operation algorithm of ACS TP with improved functionality were developed. These ACSs correspond to many conditions and design of ACSs for scientific research. The intelligent subsystem elimination of production risks (SEPR), defining emergency situations. The algorithm of action and the functional scheme of this SEPR are offered.

The work is also developed for the information support of ACS TP intelligent data collection system, one of the subtasks of which is the collection of information in digital form from control and measuring devices that perform the function of measuring the parameters of the process at all its stages. The main functions of the developed process control system are defined: identification of the probabilistic reasons causing production risks in technological processes; selection of the best solution to eliminate the current negative situation; self-learning, which predetermines the development of intellectual capabilities of the process control system, which is performed on the basis of fuzzy logic.

An important part of the work is the development of blocks that are part of the SEPR, the development of the structure of their interaction and algorithms for their operation. The names of the blocks: a visualization block, the block decision, the processing unit prior decision, the evaluation unit situation unit classification of the situation, "say" about the importance and complexity of the tasks specified in the performance of the work.

Conclusions. The main conclusion of this work is the high desirability of introducing developed APCSs in mining enterprises to successfully meet the challenges of sustainable development of mountainous areas and infrastructure conservation in mountain regions. Other findings of the work are: the proposed work approaches to ensure the well-being of mountain territories and increased mining operations, including enhancing the safety of workers, apply for enterprises available in general areas; the design principles of ACS TP, including those involving enhancement of intellectual ability (capacity) of the individual blocks of ACS TP, apply when designing ACS for many industries, with design of ACS for scientific research.

Keywords: mountain territories, sustainable development, mining enterprises, technological process, production risks, accident prevention, automated control system, subsystem of elimination of industrial accidents.

References

Article received 04.05.2018.
APPLICATION OF KNOTHE-BUDRYK THEORY AND RIGID BODY CONDITION FOR ASSESSMENT OF SUBSIDENCE

1. Introduction

Mining influences on the surface depend on many factors, like depth and thickness of seams, types of bedrocks and soil, excavation method and soil, the load of constructions [1]. In open pit mines the damages are clearly visible – the soil is removed from the wide areas, the landscape is changed by tonnes of exploitation wastes, the ground water level is lowered, the ground vibrations appear and the pollution of water, ground, and air (dust, noise) around the excavation area [2–5]. In underground mining where some of these problems do not occur, mining dust can be filtered out from the air, the noise level is lower due to the depth, and the damages on the surface are smaller. On the other hand, the area influenced by subsidence is larger due to the depth of excavation, the underground water may be polluted and its level lowered. Also, there appear different types of deformations [1; 6–8].

Proper assessment of mining influences and monitoring surface’s subsidence is mine surveyors’ task. The main goal is to prevent damaging buildings and constructions on the surface, measuring of and restraint upon the inevitable influences of exploitation [9; 10] and eliminating existing damages. For many years, scientists have been trying to describe deformation processes with mathematical and empirical models [11–14].

In the beginning, the data was received from classic survey techniques like leveling. Nowadays, more common become the use of state-of-the-art tools like GIS [15], GNSS [16; 17], satellite interferometry [18–20], prediction by artificial neural networks [21] and many others.

The Knothe-Budryk model [11; 12; 22], with further developments, is one of the most important prediction models in polish mine industry. It describes horizontal and vertical displacements, inclinations and deformations. The Knothe’s generalized differential equation for description of subsidence of a point over time was compared with two-parameter Sroka-Schober's model [23] leading to the conclusion that both models have some imperfections. Knothe’s model is easier to applied, while the Sroka-Schober’s model is better for a description of deformations for pillar-chamber extraction.

The Knothe-Budryk model was applied in numerous case studies. The theory was successfully applied to assess the deformation of the urban area of Bytom city in Poland [24] and horizontal displacements of coal mine BW Prosper Haniel in Germany [25]. Niedojadło, Jura [26] applied the model with fixed parameters for pillar-chamber extraction in LGOM area (Poland). Authors proved the need of changing theory’s parameters describing rock mass for a wider observation area.

The constructions, or their isolated parts, are considered as a rigid body after the end of a construction process. However, due to different factors, they may be cracked or bent, and may not be longer considered as a rigid body [27]. Mattern, Blankenhorn [28] have presented the results and the comparisons of building collapse simulation from finite element and rigid body models. Kuras [29] used rigid...
body method to evaluate deformations of retaining walls due to the weather conditions and the natural use of the object. The rotation of the rigid body is one of the parameters used in the evaluation of damages and the danger to the constructions placed on the mining influence areas [30; 31].

The paper’s authors present assessment of mining influences on the water reservoirs supplying water to the cities of Upper Silesian Coal Basin (Poland). In this area, the underground coal mining has a long history. For a few centuries, the area of around 5000 km² has been used to develop coal and metal industry. The industry growth was accompanied by the growth of population and urbanization of those lands [32]. Due to the essential role in the water supply system, the installation cannot be turned off during the excavation process underneath. Despite the mining activity, the reservoirs were still in use during the excavation and subsidence process. Each one of them was emptied and filled up with water few times. In order to assess the mining influence and evaluate the risk the structural health monitoring network was established.

The main objective of this study is to assess the influence of exploitation on the water tanks and evaluate the health of the reservoirs. The computation of rigid body condition was used to determine the stability of concrete monolith construction and to make a conclusion about its further working. In contrast to the aforementioned literature, in this study, the results of rigid body method are used for the verification of the predicted values from Knothe-Budryk theory. The authors point no-mining factors, not included in the models, which could negatively be influenced on the object during the deformation process.

2. Methodology

Knothe-Budryk theory

Land subsidence is a vertical movement (downward) relatively to a datum. In mining areas, it is usually caused by post-extraction voids and abandoned workings. The changes of pressure equilibrium in the rock mass causing the collapse of rocks into the empty spaces. As the result, the deformations appear on the surface [33]. The surface damages caused by excavation of underground coal seams can be divided into the discontinuous and continuous deformations. The phenomena from the first group appear mostly randomly and they are difficult to predict. The phenomena from the second group are easier to predict due to their clear correlation with mining activity. Scientists have been researching the problem of mathematical description of continuous deformations.

In Upper Silesia Coal Basin, excavation was conducted with longwall mining system. The longwall is the working face advancing laterally towards the mine boundary. The excavation takes place in the narrow open strip (face working) between mined-out seam (goaf) and the coalface. Space is protected against roof falls by an array of vertical props capped with horizontal bars, or by composite supports having broader roof canopies [1].

Budryk and Knothe [22] created the subsidence theory, especially for the Upper Silesia region. In order to compute the maximal predicted subsidence W_{max}, one has to know the thickness of excavating seam g, and exploitation parameter a (values between 0 and 1).

$$W_{\text{max}} = a \cdot g.$$ \hspace{1cm} (1)

The maximal area of exploitation influences contains mining area and area in the influence range of exploitation r (Figure 1). To compute the range r (Eq. 2), one has to know the depth of seam h, and the rock mass parameter $\tan(\beta)$ (where β is the angle of main influences). With known values of maximal subsidence W_{max} and range r, one can compute the inclination T (Eq. 3) in the distance x from the edge of exploited seam.

$$r = \frac{h}{\tan(\beta)},$$ \hspace{1cm} (2)

$$T = \frac{W_{\text{max}}}{r} e^{-\frac{x^2}{r^2}}.$$ \hspace{1cm} (3)

For standard geological conditions of Upper Silesia Coal Basin, the assumption of $\tan(\beta) = 2$ is usually made. With known parameters of exploitation and empirical values of subsidence, one can determine, if exploitation is the only cause of displacements. If the real values of subsidence are bigger than theoretical ones, then one can assume there is more than one cause of deformations. This theory assumes that above the sidewall of longwalls, subsidence...
occurs only the half of maximal predicted descending. In addition, in this area, maximal inclination appears. In the neighborhood, maximal tensions also occur (extending and compressing forces). Thus, to protect the constructions on the surface in the proper way, they should be located outside the area of the range of exploitation. Buildings inside the range of exploitation area are endangered by tensions and uneven subsidence causes inclination.

Rigid body condition method

Buildings in the mining areas are endangered with damages caused by uneven subsidence of ground under them. Despite vertical movements, there are also horizontal movements causing tensions in the ground (extension and compression). As the result, the construction can change its shape. To prevent from cracking, different building techniques are applied, like expansion joints and separated foundations. The goal is to raise construction from smaller objects considered as rigid bodies. The rigid body’s shape remains unchanged in time, and its elements cannot move against each other.

External tensions can violate the stability of the rigid body. In order to check the rigid body condition, surveyors conduct different kinds of measurements. As the result, the geometrical features of the measured object are established. With a few series of observations, one can compute the changes in shape with time. If the changes are smaller than boundary value (tolerance), then the rigid body condition is met. Otherwise, the object cannot be considered as a rigid body.

Before deformation process, the building can be considered as the rigid body. If the surface is lowering uniformly, all points of the object are lowering in the same way and one is able to calculate the mathematical plane for them. It can be described using the least square method. In the matrix A, each row contains control point’s X and Y coordinates. The matrix L contains deformation values for each control point correspondingly to matrix A [27].

$$
\begin{align*}
A & = \begin{bmatrix}
X_1 & Y_1 & 1 & \Delta L_1 & E_X & E_Y
\end{bmatrix}^T \\
X_2 & Y_2 & 1 & \Delta L_2 & E_X & E_Y \\
X_3 & Y_3 & 1 & \Delta L_3 & E_X & E_Y \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\
X_n & Y_n & 1 & \Delta L_n & E_X & E_Y
\end{align*}
$$

$$
X = (A^T A)^{-1} * A^T L
$$

The least mean square method (Eq. 4) is used to compute the result matrix X. The matrix X contains values of plane inclination in directions $X (E_X)$ and $Y (E_Y)$, and the coordinates system origin point’s subsidence (W_C). Therefore, all computations should be conducted in the local coordinate system. The computed values are relative to the beginning plane before the deformation process. The first two values can also be assumed as the rotation R around axes X and Y (Eq. 5). Using those two values one can calculate maximal inclination E_{max} (Eq. 6) and its azimuth $A_{E_{max}}$ (Eq. 7).

$$
\begin{align*}
R_x &= -E_X \\
R_y &= -E_Y \\
E_{max} &= \sqrt{E_X^2 + E_Y^2}. \\
A_{E_{max}} &= \tan^{-1}\left(\frac{E_Y}{E_X}\right)
\end{align*}
$$

Statistical measure

Using equation 8 the differences between real values of displacement and theoretical ones are computed. The accuracy of the models is measured using the standard deviation (Eq. 9) of the least square method and the variance-covariance matrix (Eq. 10), where n is the number of observations and u is the number of the computed parameters. The variances of the observations are along the covariance matrix diagonal.

$$
V = AX - L
$$

$$
m_o = \frac{\sum Y^2}{n - u}.
$$

$$
\text{Cov}(X) = m_o \cdot (A^T A)^{-1}.
$$

The value m_o is compared with the boundary value multiplied by the statistical significance value k ($k = 2$ for $P=95.5\%$, $k = 3$ for $P=99.7\%$). If the value m_o is bigger, the object cannot be considered as a rigid body anymore. The different points of object do not behave in a linear way and move against each other.

3. Description of the study site and the data used

The coal exploitation before reservoirs’ construction

Coal seams under reservoirs were excavated several times during the years. From the middle of XIX century shallow seams were exploited (depths around 60m). Some years before constructing works, there were also excavated seams on depth around 90m, 150m, and 370m in the longwall system. Before putting reservoirs into operation, the deformation process has already ended. Thus, one can assume that the construction was not influenced by the previous mining activities. For the next decades, water tanks had not been monitored due to the lack of mining works underneath.

The coal exploitation after reservoirs’ construction

After the year 2000, a new exploitation in the longwall system (lwa) was designed on the depth up to 400m. The distance to the reservoirs from the closest point was not smaller than 200m. Thus, the object was placed on the borderline of excavation’s mining influences area and the influences are negligible.

The exploitation of the two next seams was planned as follows: the sidewall of the next longwall (lwb) was planned to run under the whole object. As the result, the influence on the object was unambiguous and inevitable.
Object and the health monitoring network
Each of six reservoirs is based on the concrete monolithic foundation. The constructions’ walls are made out of a reinforced concrete and according to the project could be considered as a monolith.

In order to assess the water tanks’ stability, a monitoring network was established. It contained control network points, ground benchmarks, benchmarks on the buildings, inclinometers and control points on the pillars of buildings. Measurements were conducted with 1mm accuracy. The measurements were taken every two weeks, and during the period of biggest deformations, even more often. 24 benchmarks were used to monitor water tanks (four on each of buildings).

4. Results

Mining influence assessment using the Knothe-Budryk Theory

The excavation parameters used in Knothe-Budryk theory were presented in Table 1 (with rock mass parameter \(\tan(\beta) = 2 \)). The distances to the furthest water tank were almost 200m. According to the predictions of Knothe-Budryk theory (Table 1), all water tanks were in the influence range of exploitation lwB. The exploitation of lwB was conducted around 300th day after the beginning of survey observations.

The longwall lwC was designed under reservoirs and parallel to the lwB. During the mining works on lwC, the influences of lwB had appeared on the surface and damaged unequally the construction. The damages and further danger to the water tanks resulted in a decision to stop exploitation lwC around 1100 day of observations. Its parameters in the moment of abandon are presented in table 1.

The described object was in the influence area of two longwalls (lwB and lwC). Figure 2 depicts localization of object and exploitation fields. For both excavations, the water tanks were placed in the incline and tensions occurring area.

The displacements and tensions were revealed on all elements of the structural health monitoring network. Figure 3 depicts subsidence of benchmark on the wall of one of the reservoirs. Dotted line presents the moment of exploitation lwB under the water tanks, and dashed line denotes the moment of stopping lwC. The displacements of the benchmark are distributed randomly before mining works. After mining excavation, the points lowered up to around 0.5m. In the end, the distribution once again is random. The first subsidence caused damages on the construction. Due to these damages, the decision to stop lwC was made to prevent from escalating the danger. Thus, the influence of lwC have not revealed on all the control points of the monitoring network.

For each water tank, the maximal subsidence \(W_{\text{max}} \) and distance to excavated seam \(x \) were found and used to compute the inclination \(T \) (Eq. 3). The results are presented in Table 2. The maximal theoretical inclination \(T_{\text{max}} \) was computed to compare with the results of rigid body method. All computations were conducted in local coordinate space, separate for each water tank. The center point (0,0,0) was placed in the middle point of the construction (Fig. 2 – black dots), and axes were directed to benchmarks n-2 (north) and n-3 (east), where n is the number of a water tank.

Result of Health of buildings evaluation using the rigid body condition method

The rigid body condition was calculated in the local coordinate system with the beginning at the center of each water tank. The boundary error \(m_\mu \) was assumed as the mean error of accuracy of measurements. The parameters of space orientation (rotation, inclination, inclination’s azimuth) were computed for each water tank in succeed-
Fig. 3. Subsidence of benchmark 1-1 / Рис. 3. Оседание уровня 1-1

Table 2 / Таблица 2

Maximal inclinations of each water tank for lwB and lwC
Максимальные наклоны каждого резервуара для воды для lwB и lwC

<table>
<thead>
<tr>
<th>Tank num. № резервуара</th>
<th>W_max [m]</th>
<th>T_max [mm/m]</th>
<th>lwB</th>
<th>lwC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>x [m]</td>
<td>T_x [mm/m]</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>-0.41</td>
<td>-1.45</td>
<td>46.3</td>
<td>-1.33</td>
</tr>
<tr>
<td>2</td>
<td>-0.37</td>
<td>-1.30</td>
<td>65.0</td>
<td>-1.10</td>
</tr>
<tr>
<td>3</td>
<td>-0.57</td>
<td>-2.00</td>
<td>26.6</td>
<td>-1.94</td>
</tr>
<tr>
<td>4</td>
<td>-0.52</td>
<td>-1.83</td>
<td>45.4</td>
<td>-1.69</td>
</tr>
<tr>
<td>5</td>
<td>-0.73</td>
<td>-2.57</td>
<td>7.0</td>
<td>-2.56</td>
</tr>
<tr>
<td>6</td>
<td>-0.67</td>
<td>-2.35</td>
<td>25.7</td>
<td>-2.29</td>
</tr>
</tbody>
</table>

Table 3 / Таблица 3

Parameters of space orientation for reservoirs (series 77)
Параметры пространственной ориентации водохранилищ (серия 77)

<table>
<thead>
<tr>
<th>Series 77 / Серия 77</th>
<th>Tank 1 Резервуар 1</th>
<th>Tank 2 Резервуар 2</th>
<th>Tank 3 Резервуар 3</th>
<th>Tank 4 Резервуар 4</th>
<th>Tank 5 Резервуар 5</th>
<th>Tank 6 Резервуар 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center point subsidence, mm / Понижение центральной точки, мм</td>
<td>-403.7 0.7</td>
<td>-333.3 13.3</td>
<td>-539.3 3.7</td>
<td>-489.0 5.0</td>
<td>-690.5 12.5</td>
<td>-639.5 0.5</td>
</tr>
<tr>
<td>Rotation around axis X, mm/m / Вращение вокруг оси X, мм/м</td>
<td>2.54 0.06</td>
<td>2.02 1.09</td>
<td>2.310 0.31</td>
<td>3.45 0.41</td>
<td>5.146 1.034</td>
<td>1.696 0.04</td>
</tr>
<tr>
<td>Rotation around axis Y, mm/m / Вращение вокруг оси Y, мм/м</td>
<td>-4.44 0.06</td>
<td>-4.33 1.09</td>
<td>2 0.31</td>
<td>-4.91 0.41</td>
<td>-4.56 1.03</td>
<td>-4.56 0.44</td>
</tr>
<tr>
<td>Inclination in axis X, mm/m / Склонность в оси X, мм/м</td>
<td>-2.54 0.06</td>
<td>-2.02 1.09</td>
<td>-2.31 0.31</td>
<td>-3.45 0.41</td>
<td>-5.15 1.03</td>
<td>-1.69 0.04</td>
</tr>
<tr>
<td>Inclination in axis Y, mm/m / Склонность в оси Y, мм/м</td>
<td>4.44 0.06</td>
<td>4.33 1.09</td>
<td>3.22 0.31</td>
<td>4.91 0.41</td>
<td>4.56 1.03</td>
<td>4.56 0.44</td>
</tr>
<tr>
<td>Overall inclination, mm/m / Полная склонность, мм/м</td>
<td>5.12 0.01</td>
<td>4.78 0.23</td>
<td>3.96 0.08</td>
<td>6.40 0.07</td>
<td>6.88 0.15</td>
<td>4.87 0.01</td>
</tr>
<tr>
<td>Inclination azimuth, grads / Азимут склонности, градиент</td>
<td>366.90 0.74</td>
<td>372.23 14.61</td>
<td>360.35 4.99</td>
<td>361.02 4.39</td>
<td>346.17 9.57</td>
<td>377.34 0.54</td>
</tr>
</tbody>
</table>
ing series. The example for the series 77 is presented in Table 3.

For comparison, three measurement series were picked up. The series 7 was made on 179 days after the beginning of observation, but still before the start of exploitation lwB. Series 42 was made on 613 days, during the period of the fastest subsidence, and series 77 on 1085 day, when the process of lowering was almost over.

The parameters of planes for each water tank were used in the computation of the differences between theoretical and real values of vertical displacements, and the mean errors m_0. The results for the series 7, 42 and 77 are presented in Table 4. The fulfilled rigid body conditions are marked in gray.

5. Discussions

The trend for all benchmarks is the same – pairs of point 1-2 and 3-4 are lowering with different speed, but with similar to each other. In the other words – points 1 and 2 are lowering faster than 3 and 4. Figure 4 presents these phenomena. As a result, all constructions inclined in direction of line 4-1 (north-east), the 1st water tank in about 0° 21.3’. Figure 5 presents localization of benchmarks on the reservoirs, the final subsidence of them presented with Kriging interpolation.

The direction of contour lines is approximately parallel to the sidewalls of longwalls lwB and lwC. The computed parameters of mathematical planes for each reservoir confirm these observations. Table 2 presents the maximal values of inclination of objects computed using the Knothe-Budryk theory.

This inclination and subsidence are clearly caused by exploitation of lwB. The influences of lwC could elimi-
Table 4 / Таблица 4
The rigid body condition (parameter $k=2$ and $k=3$) with m_0 error for series 7, 42 and 77
Состояние твердого тела (параметр $k=2$ и $k=3$) с ошибкой m_0 для рядов 7, 42 и 77.

<table>
<thead>
<tr>
<th>Series 7</th>
<th>Tank 1</th>
<th>Tank 2</th>
<th>Tank 3</th>
<th>Tank 4</th>
<th>Tank 5</th>
<th>Tank 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Серия 7</td>
<td>Резервуар 1</td>
<td>Резервуар 2</td>
<td>Резервуар 3</td>
<td>Резервуар 4</td>
<td>Резервуар 5</td>
<td>Резервуар 6</td>
</tr>
<tr>
<td>m_0</td>
<td>2.31</td>
<td>1.00</td>
<td>9.00</td>
<td>2.00</td>
<td>0.50</td>
<td>2.50</td>
</tr>
<tr>
<td>$2m_u$</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series 42</th>
<th>Tank 1</th>
<th>Tank 2</th>
<th>Tank 3</th>
<th>Tank 4</th>
<th>Tank 5</th>
<th>Tank 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Серия 42</td>
<td>Резервуар 1</td>
<td>Резервуар 2</td>
<td>Резервуар 3</td>
<td>Резервуар 4</td>
<td>Резервуар 5</td>
<td>Резервуар 6</td>
</tr>
<tr>
<td>m_0</td>
<td>12.12</td>
<td>2.00</td>
<td>2.50</td>
<td>17.50</td>
<td>2.50</td>
<td>2.00</td>
</tr>
<tr>
<td>$2m_u$</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Series 77</th>
<th>Tank 1</th>
<th>Tank 2</th>
<th>Tank 3</th>
<th>Tank 4</th>
<th>Tank 5</th>
<th>Tank 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Серия 77</td>
<td>Резервуар 1</td>
<td>Резервуар 2</td>
<td>Резервуар 3</td>
<td>Резервуар 4</td>
<td>Резервуар 5</td>
<td>Резервуар 6</td>
</tr>
<tr>
<td>m_0</td>
<td>1.44</td>
<td>26.50</td>
<td>7.50</td>
<td>10.00</td>
<td>25.00</td>
<td>1.00</td>
</tr>
<tr>
<td>$2m_u$</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
<td>2.83</td>
</tr>
</tbody>
</table>

Fig. 6. Periods of filling up (blue line) water tanks with subsidence of benchmarks on each reservoir
Рис. 6. Периоды заполнения (голубая линия) резервуаров для воды с просадкой уровней на каждом резервуаре
nate them if the works did not stop before going under the buildings. However, due to the abandoning of lwC, constructions remained inclined. In addition, some of the lwC’s influences occurred on the water tanks, are closest to the lwC. The 6th water tank started to incline in direction of line 3-4 (south-west).

The theoretical inclination values from the Knothe-Budryk theory are a few times smaller than the overall inclination values computed from the rigid body method (e.g. for the series 77 in Table 3). Even the maximal theoretical values still do not present the observed scale of the phenomena. Thus, this theory cannot be applied to all objects and conditions to predict inclinations. This can be also a clue, that the mining factor is not the only one influencing the object, and the observations of subsidence are not enough.

The results between the series may differ due to the different speed of lowering as well as the errors made during the measurements. Thus, to establish the rigid body condition, the computations were conducted for the different series. The final values for three example series, 7, 42 and 77, are presented in Table 4.

The series 7 was conducted before the excavation under the reservoirs. Almost all results are positive, only the results for the 3rd water tank are negative. However, other measurement series from that period give positive values for that building as well. One can assume that all objects can be considered as the rigid bodies.

The series 42 was conducted during the period of the fastest displacements. The condition of the rigid body is fulfilled only by some objects. Depending on the series from that period of time, the objects sometimes meet the condition, and sometimes not. Despite the measurements errors, it can mean that buildings are no longer the rigid bodies.

The series 77, in the end of the subsidence process, reveals that almost all constructions were damaged and cannot be longer considered as rigid bodies, most of the results are negative. This can be considered as an assumption for further investigation of construction. For series 77 only 5th reservoir fulfills the rigid body condition and 6th fulfills for k=3, and almost for k=2. But with other series from that period, one cannot confirm the buildings are still rigid bodies.

During the exploitation and subsidence process, the reservoirs were fully operational. In different times, they were filled up with water and emptied. Figure 6 presents periods of filling up water tanks. One can notice, that short after water release the subsidence doesn’t occur or slower down (around days 350, 700 and 800). Around day 400, the first vertical movements are revealed. Highly recommended, and inevitable was to refill the tanks during the period of lowering movements. The influence of installation working (mass changes, the pressure of water on the reservoirs’ walls) wasn’t considered during the planning of exploitation, and in the displacement’s measurements. The lack of data and scientific knowledge makes it impossible to establish only the influence of mining activity on reservoirs in case of occurrence of filled up/emptied factors.

The differences in the rigid body parameters between series can be caused by uneven vertical movements caused by stopping lwC, the work of reservoirs (filling up and emptying) during the process of deformation, damaging the control points and measurements errors and mistakes.

6. Concluding remarks

checking the condition of a rigid body on the object can bring information about the influence of underground exploitation on the buildings and installations on the surface. Due to the tensions constructions, may not remain rigid bodies. For the presented constructions results suggest, that all buildings were damaged. They will demand further inspection and repairs if they remain in working. The reservoirs were lowering uneven due to the mistakes in the process of excavation. If lwC wasn’t stopped in front of the object, the surface subsidence would be made even again. In another way, the constructions remained inclined in the direction north-west (to the lwB) and slightly to the south-west (lwC). Inclination can have further negative results due to future work of object e.g. damage caused by bigger water pressure only on the part of walls.

In the excavation with longwall system under the building important is to consequently remove a similar thickness of seams. In another way, it causes horizontal movements and tensions, causing bigger damages of the structures on the surface. The presented object was in the zone of extending movements. If the longwall C was finished, according to the plan, the whole object would be in the area free of tensions, with surface lowering equally.

The discrepancy of theoretical and practical values of inclination suggest investigating other factors during the subsidence process. One of them could be the changing mass of construction during the subsidence process due to filling/emptying with water. Stopping the use of reservoirs for the period of mining works and deformation process could help in preventing the occurrence of damages. Unfortunately, there are no plans for next excavations in this area due to the existing damages.
REFERENCES:

Целью данного исследования является оценка поверхностного оседания в результате горнодобывающей деятельности на исследуемом участке в Верхней Силезии (Польша). Для этого использовались данные геодезического мониторинга временных рядов за трехлетний период (2009–2012 гг.). Теория Кноте-Будрика была принята для оценки влияния подземных горных работ на просадочность и наклон, в то время как для оценки устойчивости зданий использовался метод твердого тела. Конечные значения наклона, вычисленные по методу твердого тела, в несколько раз больше, чем прогнозы теории Кноте-Будрика. Следовательно, вычисление состояния твердого тела было бы правильным инструментом для проверки предсказанных наклонов из деформационных моделей, таких как теория Кноте-Будрика.

Ключевые слова: теория Кноте–Будрика, твердое тело, просадка, напряжение, резервуары, Польша.

Литература:
4. Golik, V.I., Y.I. Razorenov, and K.G. Karginov. The basis of sustainable development of North Ossetia-Alania is...

29. Kuras, O.M. Contactless methods to measure displacements and deformations of retaining walls. 2015.

Article received 14.08.2018.
ОЦЕНКА ЭФФЕКТИВНОСТИ ПРИМЕНЕНИЯ ТЕХНОЛОГИЧЕСКИХ СХЕМ ПРОВЕДЕНИЯ ВЫРАБОТОК ДЛЯ ПОВЫШЕНИЯ УСТОЙЧИВОСТИ ИХ КОНТУРОВ

Введение

Кровля пластов в проводимых горных выработках Карагандинского угольного бассейна имеет невысокую устойчивость и при обнажении более одного метра, обрушается, а также склонны к размоканию и пучению. В тектоническом отношении разрабатываемые угольные пласты относятся к сложным. Широкое внедрение технологических схем бесцеликовой выемки пластов обусловило высокие затраты на поддержание кровли, необходимость проведения горных выработок в присечку к выработанному пространству. Поведение горной кровли угольных пластов Карагандинского бассейна определяется их составом, физико-химическими свойствами, расслоением и трещиноватостью. Непосредственная кровля угольных пластов чаще всего представлена аргиллитами, реже алевролитами и, в единичных случаях, песчаниками, основная кровля обычно сложена песчаниками. В почве угольных пластов также преобладают аргиллиты [1-4].

Целью настоящего исследования является научное обоснование технологии управления устойчивостью контуров горных выработок с учетом проявлений горного давления в породном массиве при изменении его геомеханического состояния.

Методика исследований

Поставленная цель достигается решением ряда задач на основе анализа научного и практического опыта, систематизации и критического обобщения аналогов с моделированием новаций в местных условиях и прогнозирование перспектив реализации нетрадиционных решений по упрочнению массива при техногенном вмешательстве.

Результаты исследований

В работе приведен краткий анализ исследований отечественной и зарубежной практики применяемых схем подготовки и отработки выемочных поясов, оказывающих влияние на создание зон повышенного и опорного горного давления, интенсивных деформаций кровли, бортов и почвы горной выработки, находящихся в пределах областей их воздействия.

В угольных шахтах Западной Европы при увеличении глубины разработки проводятся выработки большого сечения, которые осуществляют их крепление с использованием комплекса комбинации набрызг-бетонной, анкерной системы и металло-рамной крепи с расположением выемочных выработок параллельно направлению главных горизонтальных напряжений [5 – 9].

Английская высокопрочная анкерная система с установкой анкеров предназначена для обеспечения повышенной прочности сцепления и высокого сопротивления сдвищения горных пород.

Традиционный производственный опыт Западной Европы предусматривает расположение лав рядом друг с другом для повторного использования горной выработки предыдущей лавы или проходкой дополнительной – обычно на расстоянии от 0 до 5,0 м от него. Данная технологическая схема подготовки не способствует высокопроизводительной лавной въемке обратным ходом.

В Великобритании разработана технология угледобычи, которая с увели-
чинением глубины разработки угольных пластов с подготовкой одноустьевых штреков с целиком (столбом угля) значительных размеров между лавами позволяет осуществить скоростную проходку с применением анкерного крепления, независимо от смежного забоя.

В отличие от добычи угля в странах Западной Европы, в Соединенных Штатах Америки и в Австралии практически с такими же горно-геологическими условиями достигаются положительные результаты при использовании многоштрековых технологических схем ведения угледобычи с проведением выемочных штреков прямоугольного сечения и крепления их анкерами. В США и Австралии многоштрековые технологические схемы используются главным образом при столбовой разработке при длине лавы от 200,0 до 250,0 м. Выемочные штреки прямоугольного сечения проводятся группами из двух и четырех параллельных вентиляционных и конвейерных выработок (шириной от 5,0 до 6,0 м). Штреки, непосредственно примыкающие к лаве, погашаются вслед за ее проходом, остальные в большинстве случаев, используют повторно.

На угольных шахтах в Соединенных Штатах Америки наибольшее применение имеют трехштрековая подготовка (52%), затем четырехштрековая (46%) и незначительно двухштрековая (2%).

В угледобывающих странах СНГ преимущественно применяются бесцеликовые системы разработки [10–14].

На сегодняшний период преобладающая доля угледобывающих шахт проводится с применением анкерной системы. При этом происходит расширение технологических возможностей подземной угледобычи.

В Карагандинском бассейне применяются технологические схемы разработки выемочных целиков по простиранию и по падению угольного пласта.

Модификации схем разработки вместе с горно-технологическими факторами оказывают существенное влияние на способы и средства крепления горных выработок.

В табл. 1 приведены факторы, обусловленные горно-геологическим особенностями разработки в странах с развитой угольной промышленностью.

Горные выработки Карагандинского бассейна имеют как арочное, так и прямоугольное сечение. Оценка технологических факторов эксплуатации систем анкерного крепления показывает, что эффективное и надежное крепление подготовительных выработок в условиях залегания в кровле слабых трещиноватых пород с увеличением глубины разработки и в различных зонах влияния очистных работ может быть обеспечено при применении сталеполимерных анкеров, закрепляемых по всей длине шпура стротвердеющими смолями с несущей способностью 250,0–300,0 кН и длиной от 2,0 до 3,0 м; для использования в сложных горно-геологических условиях предусмотрено их усиление специальными (канатными) анкерами длиной до 95,0 (6,0–7,0) м.

Основной задачей анкерной системы крепления является мобилизация и сохранение свойственной данному массиву прочности с тем, чтобы он становился самоподдерживающим. Анкерная система крепит горную породу, сохраняя ограничение движения кровли.

Рис. 1. Методический подход к выбору эффективных способов и средств крепления горных выработок

Fig. 1. Methodical approach to the choice of effective ways and means for fixing mine workings.
Факторы, обусловленные горно-геологическим особенностями разработки

Factors due to mining and geological features of development

<table>
<thead>
<tr>
<th>Параметры / Options</th>
<th>Германия / Germany</th>
<th>Великобритания / Great Britain</th>
<th>Австралия / Australia</th>
<th>США / USA</th>
<th>Карагандинский бассейн / The Karaganda Basin</th>
</tr>
</thead>
<tbody>
<tr>
<td>Глубина разработки, м / Depth of development, m</td>
<td>1000–1200</td>
<td>600–800</td>
<td>200–260</td>
<td>200–360</td>
<td>550–820</td>
</tr>
<tr>
<td>Вертикальное горное давление, МПа / Vertical component of rock pressure, MPa</td>
<td>20–23</td>
<td>10–13</td>
<td>5,5–6,0</td>
<td>7–9</td>
<td>10–15</td>
</tr>
<tr>
<td>Горизонтальное горное давление, МПа / Horizontal component of rock pressure, MPa</td>
<td>0–23</td>
<td>20,0–21,5</td>
<td>10–13</td>
<td>13–17</td>
<td>10–14</td>
</tr>
<tr>
<td>Средняя добываемая мощность угольных пластов, м / Average recoverable thickness of coal seams, m</td>
<td>1,12</td>
<td>2,5</td>
<td>3,1</td>
<td>1,5</td>
<td>1,0–8,5 средняя mean 2,28</td>
</tr>
<tr>
<td>Средний угол падения разрабатываемых угольных пластов, град / The average angle of occurrence of the layers under development, deg</td>
<td>5–10</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>7–20</td>
</tr>
</tbody>
</table>

Свойства горных пород кровли пластов

Properties of the rock layers of the seams

<table>
<thead>
<tr>
<th></th>
<th>аргиллиты, алевролиты, песчаники с прочностью на сжатие 40–80 МПа</th>
<th>аргиллиты, алевролиты, песчаники с прочностью на сжатие 25–65 МПа</th>
<th>аргиллиты, алевролиты, песчаники с прочностью на сжатие 5-80 МПа</th>
<th>аргиллиты, алевролиты, песчаники, известники с прочностью на сжатие 10–80 МПа</th>
</tr>
</thead>
<tbody>
<tr>
<td>Германия / Germany</td>
<td>аргиллиты, сiltstones you, sand stones with durability compression ratio of 40 to 80 MPa</td>
<td>argillites, siltstones you, sand stones with durability compression ratio of 25–65 MPa</td>
<td>argillites, silt stones you, sand stones with durability compression for 5–80 MPa</td>
<td>аргиллиты, siltstones you, limestone sandstones with durability compression of 10–80 MPa</td>
</tr>
<tr>
<td>Великобритания / Great Britain</td>
<td>аргиллиты, 45 argillites, 45</td>
<td>аргиллиты, 45 argillites, 45</td>
<td>аргиллиты, 40 argillites, 40</td>
<td>аргиллиты, partie sandstones, 40</td>
</tr>
<tr>
<td>Австралия / Australia</td>
<td>аргиллиты, 45 argillites, 45</td>
<td>аргиллиты, 45 argillites, 45</td>
<td>аргиллиты, 40 argillites, 40</td>
<td>аргиллиты, 20 argillites, 20</td>
</tr>
</tbody>
</table>

и позволяя горизонтальному напряжению удерживать кровлю на месте, не давая ей выпадать. Для поддержания горной кровли в подготовительной выработке требуется достаточное горизонтальное напряжение для ограничения движения кровли и ее эффективной фиксации. Горная кровля склонна к обрушению, отслаиваясь по напластованию. Взрывные работы способствуют выпадению ослабленных пластовых горных пород, что создает небезопасные условия труда. Чтобы под такой горной кровлей безопасно работать, необходимо создать анкерованием несущую балку в кровле. Первостепенной задачей анкерной крепи при образовании балки является противостояние сдвижению слоев горной породы по горизонтальным напластованиям.

Воздействие анкерных крепей больше всего проявляется там, где возникают высокие напряжения сдвига в изогнутой балке, то есть на концах балки.

Установка анкерной крепи вблизи горных выработок обеспечивает относительную незначительность сдвижения горных пород и максимальное сцепление между отдельными частями. Сохранение такого сцепления является непременным условием самоподдержания горного массива, и любая потеря сцепления ведет к значительной потере прочности.
Таблица 2 / Table 2

| Факторы, связанные с технологическими схемами проведения горных выработок и ведения очистных работ
Factors associated with mine workings and cleanup operations
Технологические параметры
Technological parameters
Схема подготовки выемочных забоев
Scheme of preparation of excavation sites
Оставление целиков
Leaving the lobs
Форма сечения горных выработок
Cross-sectional form of capital, auxiliary, and excavation workings
Размеры горной выработки, м
Working dimensions, m:
Параметры
Options
Горно-технологические параметры применения анкерной крепи
Mining and technological parameters of anchor support use |

| | Германия
Germany | Великобритания
Great Britain | Австралия
Australia | США
USA | Карагандинский бассейн
The Karaganda Basin |
|---|---|---|---|---|---|
| **Прямоточная, возвратно-точная**
cross-flow, recurrent | **Прямоточная, возвратно-точная**
cross-flow, recurrent | **Податливые, 10–20 м compliant, 10–20 м**
rigid, 80–120 м | **Податливые, 10–30 м compliant, 10–30 м**
rigid, 80–120 m | **Податливые, 10–20 м compliant, 10–20 м**
rigid, 80–120 m | **(по специаль-ному проекту)**
according to special project |
| **Арочное, прямоугольное**
arched, rectangular | **Арочное, прямоугольное**
arched, rectangular | **Прямоугольное**
rectangular | **Прямоугольное**
rectangular | **Прямоугольное**
rectangular
арочная, прямоугольная
arched, rectangular |
| **Оставление целиков**
Leaving the lobs |
| **Форма сечения горных выработок**
Cross-sectional form of capital, auxiliary, and excavation workings | **Форма сечения горных выработок**
Cross-sectional form of capital, auxiliary, and excavation workings | **Форма сечения горных выработок**
Cross-sectional form of capital, auxiliary, and excavation workings | **Форма сечения горных выработок**
Cross-sectional form of capital, auxiliary, and excavation workings | **Форма сечения горных выработок**
Cross-sectional form of capital, auxiliary, and excavation workings |
| **Размеры горной выработки, м**
Working dimensions, m:
Высота / height:
4,1–4,8
6,1–7,5 | **Высота / height:**
2,5–4,1
5,1–5,8 | **Высота / height:**
2,5–5,1
4,5–6,1 | **Высота / height:**
2,1–4,2
5,1–6,2 | **Высота / height:**
2,1–3,5
4,7–6,1 | **Высота / height:**
3,5–3,7
5,5–6,5 |
| **Ширина / width:**
1,0–2,0
0,6–1,9 | **Ширина / width:**
1,4–2,2
0,5–1,2 | **Ширина / width:**
1,1–3,0
0,3–0,9 | **Ширина / width:**
0,5–0,7
0,11–0,23 | **Ширина / width:**
0,4–0,7
0,09–0,15 | **Ширина / width:**
1,0–1,5
0,6–0,7 |

Таблица 3 / Table 3

| Горно-технологические параметры применения анкерной крепи
Mining and technological parameters of anchor support use
Параметры
Options
Технологические факторы
Technological factors
Длина анкерной крепи, м
Length of anchor, m
Длина анкера крепи по горной породе, м
Anchor length by breed, m
Расчетная несущая способность, кН (в зависимости от материала)
Estimated load-carrying capacity, kN (depending on the material)
Плотность установки анкеров крепи, анкер/м²
Anchor installati on density, anchor / m²:
Кровля / roof
1,0–2,0
0,6–1,9
1,4–2,2
0,5–1,2
1,1–3,0
0,3–0,9
0,5–0,7
0,11–0,23
0,4–0,7
0,09–0,15
1,0–1,5
0,6–0,7
Борт / flanks:
1,0–2,0
0,6–1,9 | **Борт / flanks:**
1,4–2,2
0,5–1,2 | **Борт / flanks:**
1,1–3,0
0,3–0,9 | **Борт / flanks:**
0,5–0,7
0,11–0,23 | **Борт / flanks:**
0,4–0,7
0,09–0,15 | **Борт / flanks:**
1,0–1,5
0,6–0,7 |
Рис. 2. Комплекс факторов, влияющих на эффективность и устойчивость горных выработок, закрепленных анкерной крепью / Fig. 2. A complex of the factors influencing effectiveness and stability of the developments fixed by anchor timbering

Рис. 3. Вентиляционный штрек 42К12-з шахты имени Кузембаева с канатными анкерами и усиление крепления со- прижения лавы 45К1-з с помощью канатных анкеров: а – поперечный разрез схемы анкерного крепления; б – схема канатного анкера; в – усиление канатными горными анкерами / Fig. 3. The ventilating drift 42K12-z mines of Kuzembayev with rope anchors and strengthening of fastening of interface of a lava 45K1-z by means of rope anchors: a – cross – section of the anchors scheme of fastening; b – the scheme of rope anchor; c – strengthening by rope anchors.
Рис. 4. Вентиляционный штрек 42\textsubscript{K12}\textsubscript{z} шахты имени Кузембаева (b) со сталеполимерными анкерами вне зоны влияния добычных работ: a – сечение в проходке; b – сечение при эксплуатации выработки

Fig. 4. The ventilating drift 42\textsubscript{K12}\textsubscript{z} mines of Kuzembayev (b) with steel polymer anchors out of a zone of influence of clearing works: a – the section in the penetration; b – cross section during operation of the mine

Рис. 5. Сопряжение лавы с вентиляционным штреком 23к\textsubscript{7}\textsubscript{z} шахты имени Кузембаева

Fig. 5. Interface of a lava to a ventilating drift 23k\textsubscript{7}\textsubscript{z} mines of a name of Kuzembayeva

Рис. 6. Технология крепления сопряжения лавы с конвейерным штреком 23к\textsubscript{7}\textsubscript{z} шахты имени Кузембаева

Fig. 6. Technology of fastening interface of a lava to a conveyor drift 23k7\textsubscript{z} mines of a name of Kuzembayeva
Анкерная система крепления, состоящая из анкеров, устанавливаемых и закрепляемых в пробуренных в кровлю и бока выработок скважинах, опорных элементов для анкеров и межанкерной затяжки пород на контуре, в отличие от металлических рамных и других поддерживающих крепей, сразу же после установки осуществляет связывание и упрочнение массива в кровле и бортах выработки и активно противодействует развитию смещений и разрушения горных пород. Это преимущество позволяет при наименьшем расходе металла обеспечить повышение устойчивости и надежности поддержания выработок. Другим преимуществом анкерной системы является возможность полной механизации крепления, в результате чего значительно снижается трудоемкость проходческих горных работ и возрастает проведение горных выработок.

Анкерная крепь предназначена для использования в производстве работ по возведению анкерной системы на шахтах в течение всего срока службы выработок в различных горно-геологических и горнотехнических условиях, включая зоны интенсивного повышенного горного давления, в выработках, пройденных по угольному пласту, в слабых трещиноватых горных породах, на удароопасных и выбросоопасных угольных пластах, на подработанных и надработанных участках шахтных полей.

Выбор типа и параметров анкерной крепи зависит от множества факторов, к которым относятся: строение и физико-механические характеристики горных пород, степень нарушенности и водоносность месторождений, глубина разработки, расстояние между пластами, конфигурация, назначение и срок службы горной выработки, условия ее эксплуатации, расход, стоимость, дефицитность и прочностные свойства материалов анкерной крепи, технологичность изготовления и возведения анкерной системы.

В табл. 3 приведены горно-технологическими факторы, обусловленные горно-геологическими особенностями разработки, применением технологии анкерного крепления в подготовительных выработках, вертикальной и горизонтальной составляющих критерия нагрузженности массива горных пород, технологических условий применения анкерной крепи в странах с развитой угольной промышленностью.

В работе приведен (рис. 1) методический подход к выбору эффективных видов и средств анкерного крепления горных работ при проведении очистных выработок.

На выбор способов и средств горного анкерного крепления оказывают горно-геологические и горнотехнические условия угледобычи, осложняющие факторы ведения горных работ и вентиляции, их количественные параметры и соотношения добычных и подготовительных горных работ, фронтов подработки и надработки угольных пластов [16–20].

Технологические схемы бесцеликовой отработки угольных пластов при проведении выработок вприсечку к выработанному пространству обеспечивают необходимость гарантирования указанных выше разрывов во времени между обрушением пород и проведением присечных выработок. Но в то же время это создает на угледобывающих шахтах определенные трудности по подготовке и вводу в эксплуатацию нового фронта очистных работ. Проблемы по подготовке очистных работ можно будет решить путем реализации следующих задач: оставление временных целиков углей на всю длину или часть длины выемочного поля с последующим их погашением; групповой подготовкой слоев и проведением присечных...
выработок отдельными участками между промежуточными квершлагами (тезенками) вне зоны влияния горного давления очистного забоя; отработкой целиков в шахматном порядке; поочередной отработкой столбов в крыльях двусторонних выемочных полей, панелях; проведением присечной горной выработки вслед за лавой смежного столба со вспомогательной фланговой горной выработки, бремсберга [21–23].

При проведении горных выработок в Карагандинском угольном бассейне в зависимости от схем разви тия и эксплуатационного назначения горных выработок применяются следующие технологические схемы крепления приконтурных горных пород по контурам выработок (рис. 3–7).

На рис. 3 приведена технология схемы крепления по угольному пласту K12 вентилиационного штreta 42K12-з шахты имени Кузембаева по кровле и бокам (со стороны лавы – стеклопластиковые анкера) сталеполимерными и канатными горными анкерами (трехуровневая система крепления). Технологическая схема позволяет устойчиво поддерживать горную выработку в зоне влияния добывающих работ на участке перед фронтом подвигания лавы. Канатные анкеры устанавливаются впереди зоны опорного давления лавы на расстоянии от 100,0 до 120,0 m.

В вентилиционный штреk 42K12-з штаты имени Кузембаева сталеполимерные анкеры вне зоны влияния добываемых работ закреплены в одноуровневые и двухуровневые технологические схемы и в зоне влияния очистных работ (рис. 4, a, b).

На рис. 5 и 6 приведена технология анкерного крепления по угольному пласту K12 сечения добычного крепления (арочная крепь с анкерами) горных выработок по пласту к 10 с сечением в свету 11,9 м2 (рис. 7, a) и 14,5 м2 (рис. 7, b) и в проходке соответственно 14,0 м2 и 18,1 м2, в том числе по угольному пласту, составляет 13,0 м2 и 14,7 м2, а также 1,0 м2 и 3,4 м2 по горной породе. Использование анкеров крепления в бортах забоя в этой технологической схеме не предусмотрено.

Заключение

Приведена оценка горнотехнических условий применения технологических схем крепления выработок при подготовительных работах в угольных шахтах по угольным пластам для повышения устойчивости их контуров. Представленный методический подход позволяет произвести выбор эффективных способов и средств крепления горных выработок для угольных шахт, а обобщённые паспорта крепления выработок позволяют сформировать базу данных, которую можно рассматривать в качестве основы и предпосылки для создания прогрессивных типовых технологических схем проведения, поддержания выработок и обоснования параметров крепления.

Особенность представленной методики по технологии и средствам контурного анкерного крепления состоит в том, что повышается эффективность использования несущей способности вмещающих горных пород со снижением материоемкости, стоимости крепи и при повышении устойчивости контуров горных выработок.

ЛИТЕРАТУРА:

2. Лушников В. Н., Еременко В. А., Сэнди М. П., Бухер Р. Крепление горных выработок в условиях деформируемых и удороопасных массивов горных пород // Горный журнал. 2014. № 4. С. 37–43.
3. Пат. 2438018 РФ. Способ борьбы с пучением почвы // Горный журнал. 2014. № 2. С. 54–58.
7. Розенбаум М. А., Демехин Д. Н. Определение деформационных критериев устойчивости пород кровли и анкерной крепи // Физико-технические проблемы разработки полезных ископаемых. 2014. № 2. С. 82–86.

In carrying out this work, we used a set of methods of experimental and theoretical research and the following conclusions:

- the presented methodical approach will allow to make a choice of effective ways and means of fastening of mine workings for coal mines and generalized passports of fastening of workings-to form a database that can be considered as a basis and prerequisite for the creation of progressive standard technological schemes of workings and justification of the parameters of fastening and maintenance of workings;

- the peculiarity of the presented approach to technology, systems and means of contour fastening is that it allows the most effective use of the bearing capacity of the host rocks, which significantly reduces the material consumption and the cost of the support, increases the stability of the contours and reduces the defect of the cross sections of the supported workings.

Keywords: mining and geological conditions of development, influencing factors, technology, holding, fastening, methods and means of fastening, mining, coal mines.

References

against a puchenie of the soil of excavations / A.N. Osipov, A.V. Bulkin, L.M. Guselnikov, S.N. Kurka; report 06.08.2010; publ.27.12.2011, Bulletin No 36.

16. Tikhonov N. O., Ivanov A. N. Ore pretreatment re-engineering at operating processing plants using high pressure grinding rolls – A promising area of activity (in terms of Erdenet Mining Corporation). Eurasian Mining, 2015, no 1, pp. 9–12.

Article received 07.05.2018.
РАЗРАБОТКА МЕТОДОВ КОРРЕКТИРУЮЩИХ АЛГОРИТМОВ ДЛЯ ПОСТРОЕНИЯ ОПТИМАЛЬНОЙ СТРАТЕГИИ РАЗВИТИЯ ГОРНЫХ ТЕРРИТОРИЙ

Введение

Задачи развития горных территорий требуют особого подхода. Надо отметить, что отсутствие единой модели развития горных территорий приводит к разнообразию рекомендаций, которые не всегда могут оказаться согласованными. Для достижения устойчивого развития необходимо провести комплексную оценку природно-ресурсного потенциала и уровня экономического развития анализируемой территории; рассмотреть совокупность ранее разработанных моделей оценить преимущество и недостатки каждой из них.

В настоящей работе предлагается метод комплексной оценки множества моделей развития горных территорий для выявления наиболее оптимальной модели из предложенных или построения оптимальной в результате синтеза и коррекции уже существующих. Данный метод основан на лого-математическом аппарате, адаптированном для решения поставленной задачи. В рамках предлагаемого подхода каждая модель развития выступает в качестве алгоритма. Решение данной задачи состоит в построении такой оптимальной концепции развития заданных горных территорий, которая включает в себя преимущества исследуемых концепций и при этом лишена их недостатков. Построенная оптимальная концепция развития и будет выступать в качестве искомой модели оптимального развития.

Методы математической логики могут служить основой для синтеза устойчивых концепций развития целого ряда регионов на базе уже существующих. Это позволяет создавать новые методы автоматизированного построения концепции развития горных территорий, близкие по качеству к рассуждению эксперта [6].

Поскольку каждый рассматриваемый горный регион имеет определенный набор ресурсов, измеряемых своей шкалой развитости этого ресурса в данном регионе, то удобно кодировать каждый признак предикатами разной значимости, соответствующей шкале, используемой для рассматриваемого ресурса.

Постановка задачи

В качестве характеристик развития территории, как правило, выступают экономика, социальная сфера, ресурсный потенциал развития и т.д. Эти сферы развития в формальной постановке задачи будут именоваться свойствами или характеристиками объекта. Все объекты, регионы горных территорий обладают своими характерными признаками. Например, ресурсный потенциал любого региона определяется земельными, водными, биологическими, энергетическими, трудовыми и прочими. Поскольку признаки обладают разнообразием и различными шкалами измерения, представляется удобным кодировать их переменно-значными предикатами. В рамках предлагаемого подхода задачу поиска оптимальной стратегии развития горных территорий можно сформулировать на языке математической логики.

Описание каждого региона будет представлено m-мерным вектором \(X = \{x_1, x_2, ..., x_m\} \), где \(m \) – число используемых в данном регионе ресурсов для построения концепции развития региона, \(j \)-я координата этого вектора.

Лютикова Л.А., Махошева С.А.,* Шматова Е.В., Кандрокова М.М.

УДК: 519.7

Предлагается метод интеллектуального анализа концепций развития горных территорий с целью выработки оптимальной устойчивой путем логической коррекции всех существующих. В предлагаемой модели каждая территориальная область описывается множеством ресурсов и коммуникаций, интерпретируется как некий математический объект (регион), обладающий своими признаками (ресурсами) в предикатах переменно-значной логики. Сопоставление регионов и соответствующих им ресурсов образуют предметную область, для которой уже существуют концепции развития. В ходе исследования предложен логический метод анализа существующих концепций, заключающийся в построении функции классификатора рассматриваемых регионов, что позволяет сформировать базу знаний для заданных регионов, выделяющих уникальное множество ресурсов, необходимое для развития региона или группы регионов, а также в случае необходимости провести коррекцию существующих концепций с целью выработки оптимальной.

КЛЮЧЕВЫЕ СЛОВА: концепция развития, регион, данные, база знаний, предметная область, переменно-значная логика, устойчивое развитие, классификатор концепций

1 Институт прикладной математики и автоматизации КБНЦ РАН, Нальчик, Россия.
2 Институт информатики и проблем регионального управления КБНЦ РАН, Нальчик, Россия.
ра — закодированное значение, отражающее состояние ресурса под j-м номером в соответствии со шкалой измерения состояния данного ресурса, j = 1, ..., m. В описании региона возможно отсутствие значения о состоянии того или иного ресурса. Множество заданных регионов и ресурсов, рассматриваемых для построения концепции устойчивого развития, представляют собой предметную область, на которой было рассмотрено n концепций (предлагаемых моделей развития). Для всех существующих концепций имеется экспертная оценка, которую можно представить булевой функцией, принимающей значение: или плохо, или хорошо. Можно предположить, что ни одна из рассматриваемых концепций не является идеальной. Поэтому предлагается применить методы логической коррекции существующих концепций для построения наиболее успешной по отношению к исследуемым регионам.

Математическая постановка задачи

Будем рассматривать предметную область, состоящую из множества регионов и их ресурсов, а также ряд концепций развития \(A_1, A_2, ..., A_n \).

Будем считать \(X = \{x_1, x_2, ..., x_m\}, x_i \in \{0, 1, 2, ..., k-1\} \), где \(k \in [2, ..., N] \), \(N \in Z \) — множество ресурсов заданного региона, представленных предикатами, значность которых соответствует шкале для оценки данного ресурса; \(X = \{x_1(y_1), x_2(y_2), ..., x_m(y_m)\}, i = 1, ..., l \) — вектор признаков региона \(y \in Y \), \(Y = \{y_1, y_2, ..., y_l\} \) — множество регионов; \(A = \{A_1, A_2, ..., A_n\} \) — множество концепций развития, \(a_j (X, y) \in \{0, 1\}; i = 1, 2, ..., l; j = 1, 2, ..., n \) — качество данной концепции на заданном наборе ресурсов \(X = \{x_1(y), x_2(y), ..., x_n(y)\} \), \(i = 1, 2, ..., l \) — определяемое формулой

\[
a_j (y) = \begin{cases} 1, & A_j (X) = y_j, \quad i = 1, 2, ..., l, \quad j = 1, 2, ..., n, \\ 0, & A_j (X) \neq y_j, \end{cases}
\]

t.e. 1 — концепция развития \(A_j \) хороша для региона \(y_j \) по заданным ресурсам \(x_i \), 0 — концепция развития \(A_j \) не хороша для региона \(y_j \) по заданным ресурсам \(x_i \).

Все ранее описанное может быть представлено в виде таблицы (табл. 1).

Входные данные и оценки концепций развития / Input and assessment of development concepts

<table>
<thead>
<tr>
<th>(x_1)</th>
<th>(x_2)</th>
<th>...</th>
<th>(x_m)</th>
<th>(Y)</th>
<th>(A_1)</th>
<th>(A_2)</th>
<th>...</th>
<th>(A_n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(x_1(y_1))</td>
<td>(x_2(y_1))</td>
<td>...</td>
<td>(x_m(y_1))</td>
<td>(y_1)</td>
<td>(a_1(y_1))</td>
<td>(a_2(y_1))</td>
<td>...</td>
<td>(a_n(y_1))</td>
</tr>
<tr>
<td>(x_1(y_2))</td>
<td>(x_2(y_2))</td>
<td>...</td>
<td>(x_m(y_2))</td>
<td>(y_2)</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
</tr>
<tr>
<td>(x_1(y_r))</td>
<td>(x_2(y_r))</td>
<td>...</td>
<td>(x_m(y_r))</td>
<td>(y_r)</td>
<td>(a_1(y_r))</td>
<td>(a_2(y_r))</td>
<td>...</td>
<td>(a_n(y_r))</td>
</tr>
</tbody>
</table>

Таблица 1 / Table 1

С целью проведения анализа рассмотренной выше предметной области, применим алгебру переменно-значной логики [3; 4]. Это позволяет осуществить формализованное описание разнообразных параметров. Представляя для каждого из них удобную шкалу оценивания, Таким образом, каждый отдельный ресурс представим в виде:

\[
x_i \in \{0, 1, ..., k - 1\}
\]

Операции переменно-значной логики

Определение. Высказывания переменно-значной логики являются высказываниями, истинность которых определяется следующими значениями \(\{0, 1, 2, ..., k - 1\} \), \(k, \epsilon \in [2, ..., N] \), \(NeZ \), \(B \) — формула высказывания, определяемая тремя операциями:

- отрицание или обобщенная инверсия (унарная операция),
- & конъюнкция (бинарная),
- дизъюнкция (бинарная).

Используются также константы:

\[
0, 1, 2, ..., k - 1, k, \epsilon \in [2, ..., N], NeZ.
\]

Пусть \(X = \) независимая многозначная переменная величина, \(x_i \in [0, 1, 2, ..., k - 1] \), являющаяся одной из характеристик региона. Введем еще несколько функций и свойств переменно-значной логики.

Перечислим функции переменно-значной логики, которые называются элементарными.

1. Значение переменной:

\[
x' = \begin{cases} j, & x_i = j, \\ 0, & x_i \neq j. \end{cases}
\]

2. Инверсия, которую будем называть обобщенной:

\[
\overline{x} = x^0 \lor x^1 \lor \ldots \lor x^l \lor \overline{x} \lor \overline{x} \lor \ldots \lor \overline{x}.
\]
Данное представление дает возможность учесть любые интерпретации отрицания в различных многоязычных логических системах.

3. Пусть переменные $X \in \{0, \ldots, k_1-1\}, Y \in \{0, \ldots, k_2-1\}$ имеют разную значимость, тогда обобщенная дизъюнкция:

$$X \lor Y = \max \left[\frac{X \cdot k_1 - Y}{k_1 - 1}, \right] * l_1,$$

где $l_1 = \begin{cases} k_1 - 1 \text{ при } \frac{X}{k_1 - 1} > \frac{Y}{k_1 - 1}, \medskip \quad \text{иначе} \end{cases}$

4. Обобщенная конъюнкция:

$$X \land Y = \min \left[\frac{X \cdot k_1 - Y}{k_1 - 1}, \right] * l_1,$$

где $l_1 = \begin{cases} k_1 - 1 \text{ при } \frac{X}{k_1 - 1} < \frac{Y}{k_1 - 1}, \medskip \quad \text{иначе} \end{cases}$

5. Импликацию для переменно-значной логики зададим следующим выражением: $X \rightarrow Y = \bar{X} \lor Y$.

Элементарные функции переменно-значной логики обладают следующими свойствами [4]:

$$0 \land X = 0, \quad 1 \land X = X,$$

$$(k-1)X = (k-1), \quad 0 \lor X = X,$$

$$x^j \land x^k = \begin{cases} x^j, & j = k, \\ 0, & j \neq k. \end{cases}$$

Функция оценки концепции устойчивого развития горных территорий

Определение: Решающим правилом назовем:

$$&_{x^i \rightarrow y_j}^m (y_j) \rightarrow y_i,$$

$i = 1, \ldots, l, \quad x_i (y_j) \in \{0,1, \ldots, k_i-1\}, k_i \in [2,\ldots,N], NeZ.$

В нашем случае правило утверждает, что каждый регион характеризуется совокупностью своих ресурсов [5].

Пусть имеется n концепций развития горных территорий $\{A_1, A_2, \ldots, A_n\}$, частично устойчивых на заданном множестве регионов. Для каждого заданного множества ресурсов X_j строим оценку устойчивости концепции развития и получаем набор векторов

$$A'_j = \{a_j(y_1), a_j(y_2), \ldots, a_j(y_l)\}, \quad j = 1,2,\ldots,n$$

в виде столбца A'_j. Получаем результат оценки концепции на каждой заданной строке, соответствующей региону y_j, которому соответствует продукционное правило:

$$&_{x^i \rightarrow y_j}^m (y_j) \rightarrow y_i,$$

$$x_i (y_j) \in \{0,1, \ldots, k_i-1\}, i = 1, \ldots, l, \quad s = 1,\ldots,m.$$
Входные данные и оценочная функция корректирующей концепции

\[
\begin{array}{|c|c|c|c|c|c|c|}
\hline
x_i & x_j & \cdots & x_m & Y & A_1 & A_2 & \cdots & A_n & A_{n+1} \\
\hline
x_1(y_1) & x_2(y_2) & \cdots & x_m(y_m) & y_1 & a_1(y_1) & a_2(y_2) & \cdots & a_n(y_n) & 1 \\
\hline
x_1(y_2) & x_2(y_2) & \cdots & x_m(y_m) & y_2 & a_1(y_2) & a_2(y_2) & \cdots & a_n(y_n) & 1 \\
\hline
\cdots & \cdots \\
\hline
x_1(y_1) & x_2(y_1) & \cdots & x_m(y_m) & y_1 & a_1(y_1) & a_2(y_1) & \cdots & a_n(y_1) & 1 \\
\hline
\end{array}
\]

Таблица 2 / Table 2

Зависимости между ресурсами в указанных регионах, степень устойчивости развития предлагаемых концепций

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|}
\hline
x_i & x_j & x_k & Y & A_1 & A_2 & A_3 & A_4 \\
\hline
0 & 0 & 1 & a & 0 & 1 & 1 & 1 \\
\hline
0 & 2 & 1 & b & 0 & 0 & 1 & 1 \\
\hline
2 & 1 & 2 & c & 0 & 1 & 0 & 0 \\
\hline
1 & 2 & 0 & d & 0 & 0 & 0 & 0 \\
\hline
\end{array}
\]

Таблица 3 / Table 3

\[
A'_j = \left\{\bigwedge_{i=1}^{n-1} x_i(y_i) \rightarrow y_j\right\} \text{ когда } a_j(y_j) = 1,
\]
\[
\overline{A'}_j = \left\{\bigwedge_{i=1}^{n-1} \neg x_i(y_i) \rightarrow y_j\right\} \text{ когда } a_j(y_j) = 0,
\]

Можно записать в следующем виде:

\[
A'_j = \left\{\bigvee_{i=1}^{n-1} x_i(y_i) \land y_j\right\} \text{ когда } a_j(y_j) = 1,
\]
\[
\overline{A'}_j = \left\{\bigvee_{i=1}^{n-1} \neg x_i(y_i) \land \neg y_j\right\} \text{ когда } a_j(y_j) = 0.
\]

Пример.

Пусть заданы следующие условия: \(X = \{x_1, x_2, x_3\}\), \(x_i \in \{0, 1, 2\}\), где \(X\) — это набор ресурсов, например, минеральные ресурсы и разработка месторождений полезных ископаемых в горных условиях, водные ресурсы гор, земельные ресурсы горных территорий и все они оцениваются трехбалльной шкалой. \(0\) — ресурс отсутствует, \(1\) — ресурс мало, \(2\) — ресурс достаточно. Рассматриваются четыре региона \(\{a, b, c, d\}\), для развития которых предложены соответствующие концепции \(A_1, A_2, A_3, A_4\).

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 18-010-00943

Литература:

3. Тимофеев А.В., Любикова Л.А. Развитие и применение многоизменных логик и сетей потоков в интеллектуальных системах // Труды СПИИР АН. 2005. Вып. 2. С. 114–126.
4. Любикова Л.А. Моделирование и минимизация баз
Сведения об авторах / Information about authors:

ЛЮТИКОВА Лариса Адольфовна — кандидат физико-математических наук, заведующий отделом нейронинформатики машинного обучения; Институт прикладной математики и информатики знаний и опережающего регионального развития; Федеральный научный центр “Кабардино-Балкарский научный центр Российской академии наук”, 360000, г. Нальчик, Кабардино-Балкарская Республика, Россия

Тел.: +7(963)1664014
E-mail: lylarisa@yandex.ru

ЛЮТИКОВА Лариса Адольфовна — Candidate of Physico-Mathematical Sciences, head of the Department of Machine Learning Neuroinformatics, Institute of applied mathematics and automation-branch of the Federal state budgetary scientific institution “the Federal scientific center“ Kabardino-Balkar scientific center of the Russian Academy of Sciences”, 360000, Nalchik, Kabardino-Balkar Republic, Russia
Ph.: +7(963)1664014
e-mail: lylarisa@yandex.ru

МАХОСЬЕВА Салима Александровна — доктор экономических наук, заведующая отделом "Экономика знаний и опережающего региональное развитие"; Институт информатики и проблем регионального управления — филиал Федеральное государственное бюджетное научное учреждение "Федеральный научный центр "Кабардино-Балкарский научный центр Российской академии наук", 360000, г. Нальчик, Кабардино-Балкарская Республика, Россия

Тел.: +7(928)7210204
E-mail: salima@list.ru

Салима A. MAKHOSHEVA – Doctor of Economic Sciences, head of the Department "Economics of knowledge and advanced regional development", Institute of Informatics and problems of regional management-branch of the Federal state budgetary scientific institution " Federal scientific center "Kabardino-Balkar scientific center of the Russian Academy of Sciences", 360000, Nalchik, Kabardino-Balkar Republic, Russia
Ph.: +7 (928)7210204
E-mail: salima@list.ru
The study of mountain areas has always been given great attention by science. However, the lack of a single model for the development of mountain areas leads to a variety of recommendations that may not always be consistent. To achieve sustainable development, it is necessary to conduct a comprehensive assessment of the natural resource potential and the level of economic development of the analyzed territory. To consider previously developed models of development and assess the possibility of their implementation and orientation.

The purpose of this work is to build an optimal strategy for the development of mountain areas on the basis of previously known models by extracting the most optimal solutions from them.

As a working method, a logical analysis of a given subject area is proposed, in which the objects are different spheres that determine the level of development of mountain areas, and the signs are their characteristics presented in terms of the variable-valued logic of predicates. As the characteristics of the development of the territory can be the economy, social sphere, resource potential of development, etc., these areas of development in the formal formulation of the problem will be called objects.

Description of the object (characteristics) is represented by a set of features that can accurately diagnose the desired object. The set of a number of objects and their features is a sample, which worked a certain number of algorithms (proposed models of development). The quality of each algorithm of the model is estimated by the Boolean function. None of the considered algorithms performed perfectly on the whole set of given objects. We propose a logical method for constructing a new algorithm (correction model), which is optimal for the entire set of recognized objects. The method is based on the construction of a new logical function of the classifier.

The result of the study is an optimal model that includes the positive properties of the previously considered models and at the same time corrects their shortcomings.

The proposed approach can be the basis for obtaining expert assessments and recommendations in order to build an optimal strategy for the development of mountain areas.

Keywords: concept of development, region, data, knowledge base, subject area, variable-valued logic, sustainable development, classifier of concepts.

References

Нормы проектирования дорог в горных условиях с учетом обеспечения безопасности движения

Введение

Как известно, горные территории при освоении и в своем развитии в определенной степени отстают от равнинных. По сути, любое начинание в горной местности экономического, социального и другого характера начинается с решения транспортной проблемы. В настоящее время к транспортным проектам предъявляются особые требования в части высокой интеллектуальности с применением инновационных разработок, безопасности, информированности о дорожной обстановке, комфортности, экологичности и бесшумности.

Если на равнинах при выборе направлений дорог нет практически ограничений, то в горных условиях прокладывание дорог становится с множеством проблем, связанных с расчлененным рельефом, требующих применения более обоснованных максимальных уклонов и малых радиусов кривых, а также с определенными географическими особенностями ущелия, которые иной раз меняют направление дороги на фронтальное от необходимого. На склонах этих ущелий развиты экзогенные процессы в виде оползней, обвалов, осипей, селей, лавино-ледниковых образований и наледей, динамика которых сложна и требует проектирования, строительства и эксплуатации транспортных артерий. Создание проекта транспортных коммуникаций в горных условиях крайне сложный процесс.

Проблемы проектирования горных дорог в последнее время усложняются еще и в связи необходимостью внедрения интеллектуальных транспортных систем. Такие системы для дорог в условиях горы пока находятся в стадии формирования. Например, проблеме уменьшения уровня шума в рамках интеллектуальной транспортной системы в горных условиях не уделяется внимания, несмотря на ее достаточно хорошую разработанность для автомобильных дорог в равнинных условиях [1].

Целью работы является мониторинг аварийности при эксплуатации горных дорог на примере Транскавказской автомагистрали (Транскам) и применение действующих норм и правил при изыскании и проектировании дорог.

Методы исследований. Исследования велись методом анализа существующих проектных разработок, мониторинга эксплуатации горных дорог и аварийности.

Результаты исследований. Стесненные условия изысканий и проектирования дорог в горных условиях вынуждают исполнителей проекта из-за сложных условий применять максимальные и предельно допустимые продольные уклоны, малые радиусы кривых, что, соответственно, в период эксплуатации создает опасные условия дорожного движения и приводит к увеличению частоты чрезвычайных происшествий (ЧП) в дорожно-транспортных происшествиях (ДТП) [2].

Расчетные параметры движения автотранспортных средств на горных дорогах берутся в два раза меньше, чем для равнинной местности. К примеру, для III категории дорог расчетная скорость принимается 50 км/ч, которая для нормальных равнинных условий составляет 100 км/ч. Указанная расчетная скорость принимается при эксплуатации дорог в нормальных погодных условиях и сцеплении шин автомобилей с поверхностью асфальто-бетонного
покрытия. Максимальные продольные уклоны для той же III-й категории дороги допускается принять 80 ‰, а минимальные радиусы кривых – 100 м. При таких конструкционных параметрах эксплуатация дороги крайне осложняется.

Продольный профиль Транскам показан на рис. 1 и представляет собой схему преодоления горного перевала. Продольные уклоны до 40–50 ‰ на первых 22 километрах Южного участка и на 37–54 километрах Северного участка говорят о наличии здесь слабой опасности с точки зрения аварийности.

Что же касается последних 10 километров Южного участка и 8 километра участка Северного подхода, то здесь заложены 70–80 ‰-ные уклоны. С такими уклонами эксплуатация дороги в зимнее время представляет собой большие сложности, в результате чего количество ДТП многократно возрастает.

Аварийность на горных дорогах усугубляется и из-за климатических условий. Движение больших грузовых транспортных средств с низкой скоростью на подъемах дороги создает для легковых автомобилей аварийную обстановку, так как снижается возможность обгона из-за встречного транспорта, слабой видимости и др. В зимний период, когда из-за атмосферно-климатических условий проезжая часть покрывается гололедом и коэффициент сцепления шин транспортного средства с поверхностью проезжей части достигает нулевого значения, аварийность увеличивается в несколько раз.

По результатам мониторинга за эксплуатационными условиями Транскам, Военно-Грузинской дороги

Аварийность в зависимости от продольного уклона для дороги III-й технической категории в горных условиях

<table>
<thead>
<tr>
<th>Средний уклон, ‰</th>
<th>Средний рост количества ДТП, в % на 1 км дороги</th>
<th>% от общего количества</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average slope, %</td>
<td>Average increase in the number of road accidents, % per 1 km of road</td>
<td>% of the total</td>
</tr>
<tr>
<td>10</td>
<td>0,33</td>
<td>0,7</td>
</tr>
<tr>
<td>20</td>
<td>0,56</td>
<td>1,2</td>
</tr>
<tr>
<td>30</td>
<td>0,8</td>
<td>1,7</td>
</tr>
<tr>
<td>40</td>
<td>1,7</td>
<td>3,6</td>
</tr>
<tr>
<td>50</td>
<td>3,25</td>
<td>6,95</td>
</tr>
<tr>
<td>60</td>
<td>7,1</td>
<td>15,7</td>
</tr>
<tr>
<td>70</td>
<td>12,5</td>
<td>26,7</td>
</tr>
<tr>
<td>80</td>
<td>20,6</td>
<td>44,8</td>
</tr>
</tbody>
</table>
и других горных дорог, анализ ДТП из статистических данных ГИБДД РСО-Алания и Южной Осетии и их сравнения с такими же показателями аналогичных участков других горных дорог, составлена таблица аварийности в зависимости от продольных уклонов для III-й технической категории дорог (таблица). При этом проведенные сравнения показывают высокую степень их сходства [5; 6].

Таблица и рис. 2 показывают, что степень риска аварий резко повышается с увеличением продольных уклонов горной дороги. На рис. 2б приведен график зависимости роста ДТП при определенной интенсивности движения и одновременном наличии на дороге продольных уклонов и радиусов кривых. Пересечение диаграмм при различных факторах риска (уклонов и кривых) показывает, что оптимальным для дороги III-й технической категории является 40%-ный уклон и радиус кривой не менее 200 м.

Изучив результаты аварийности (таблица, рис.2), следует сделать вывод, что к применению норм максимальных уклонов при проектировании горных дорог следует относиться осторожно.

Исследуя отрицательное влияние повышенных норм при проектировании, следует отметить:

• при проектировании дороги III-й технической категории следует применять допустимые уклоны в 60% вместо 80%;
• экспертиза норм проектирования должна проводиться для каждого конкретного объекта с особым подходом и учетом военно-стратегического значения горной дороги, не ограничиваясь только фактором интенсивности транспортных средств;
• процесс проектирования объектов транспортных артерий должен в обязательном порядке обеспечиваться научно-техническим сопровождением по вопросам дорожно-транспортной безопасности.

Схематическое решение одного из опасных участков Транскам, с учетом применения изложенных в данном исследовании допустимых и безопасных норм проектирования, показано на рис. 3.

Следует отметить, что в источнике [5] приведен не лучший вариант реконструкции дороги, поскольку перенос трассы на противоположный склон заметно увеличивает стоимостные показатели за счет следующих причин:

- необходимо строительство двух переходных мостов через реку Рукдон;
- возведение принципиально нового участка дороги;
- увеличение элементов опасностей и рисков схода лавин.

РИС. 2. Графики роста ДТП: а) на одном километре дороги в зависимости от продольного уклона (на примере Южного участка Транскама); б) при интенсивности движения в зависимости от продольного уклона (1) и радиусов кривых (2)

ФИГ. 2. Графики роста ДТП: а) на одном километре дороги в зависимости от продольного уклона (на примере Южного участка Транскама); б) при интенсивности движения в зависимости от продольного уклона (1) и радиусов кривых (2)
В предлагаемом авторами настоящего исследования варианте (рис. 3) эти минусы исключены. На основании изложенного следует сделать вывод, что при увеличении длины опасных участков дороги в целях снижения норм проектирования, и соответственно количества ДТП, следует применять в нормах проектирования значение максимального продольного уклона не более 60 %. С указанным уклоном участки дороги в достаточной мере апробированы на Транскам с точки зрения безопасности, что показано в таблице и на рис. 2 [5; 7].

При рассмотрении вопроса влияния норм продольных уклонов на интенсивность ДТП, нельзя не затронуть эксплуатационные условия лавинозащитных сооружений, таких как галереи. На рассматриваемом участке Транскам (рис. 3) было возведено лавинозащитное сооружение прямоугольной формы из сборных железобетонных конструкций с уклоном оси сооружения 70 %, соответствующим уклону самой дороги на этом отрезке дороги. В результате неудовлетворительной эксплуатации сооружения, запаздывание внутренней стены галереи за ползлось водой, образовалась жижеобразная масса, которая давила на внутреннюю стену галереи, в результате чего лавинозащитное сооружение рухнуло [8]. Вместо разрушенной части защитного сооружения была построена железобетонная подпорная стена без надлежащего технического обоснования, которая заметно снизила условия безопасности дорожного движения. Подобные варианты "реконструкции" в зарубежной практике не возможны [9].

В настоящее время эволюционное развитие практики строительства лавинозащитных сооружений достоин на Транскам таких размеров, что один гонный метр сооружения обходится государственной казне в 1,9 млн. руб. Это явная тенденция к удорожанию сооружения и в целом транспортного объекта, но как видно из приведенного примера, подобное развитие налогоплательщику страны обходится слишком дорог и поэтому следует использовать, изучать и применять в том числе и зарубежный опыт [10–12]. В этом же русле следует ориентироваться на создание интеллектуальных транспортных систем и развитие их элементов [13–15]. Внедрение зарубежного опыта в исследованиях, проектировании и строительстве [16–18] даёт свои положительные результаты.

В последние десять лет учеными СКГМИ (ГТУ) по примеру Скандинавских стран разработан ряд малозатратных и инновационных лавинозащитных сооружений, одобренных Роспатентом и обобщенных в научно-технической российской и зарубежной литературе [19], в том числе примененных при разработке проектных предложений Евроазиатской железной дороги [20].

Выводы

1. Анализ статистических данных аварийности и мониторинга сложных участков горных дорог дает основания для ограничения нормы продольного максимального уклона в 60%.

2. Ряд наблюдений за 40–50-летний период показывает, что подпорные стены со стороны внутреннего откоса не дают эффективной защиты горных дорог от оползней, обвалов, лавин и др., а зачастую ухудшают условия безопасности. Это значит, что их строительство должно быть достаточно серьезно обосновано и ограничено.

3. Строительство на горных дорогах защитных сооружений от склоновых явлений должно сопровождать экспериментально-техническим заключением, составленным специалистом, владеющим нор-

Рис. 3. Фрагмент предполагаемого развития опасного участка из-за продольного максимального уклона

Fig. 3. Fragment of the expected development of the dangerous area due to the longitudinal maximum slope
устойчивого развития горных территорий
мами проектирования, строительства и эксплуатации горных дорог.

4. Проблема проектирования горных дорог и развитие территорий должна стать общей проблемой для всех горных стран и усилия в этом направлении должны быть сконцентрированы во имя безопасности людей и защиты их жизни.

Литература:

1. Поспелов П. И. Борьба с шумом на автомобильных дорогах. М.: Транспорт, 1981. 88 с.
3. Долгов Д. В., Кортиев А. Л. Зимнее содержание горных дорог в условиях лавинной опасности // Международный научно-технический журнал МАДИ «Наука и техника в дорожной отрасли». Москва, 2015. №4. С. 14–16.
5. Кортиев Л. И. Нормы проектирования дорог в целях обеспечения их конструктивной и экологической безопасности (на примере Транскама) // Сборник докладов восьмой Международной конференции «Организация и безопасность дорожного движения в крупных городах». Санкт-Петербург, 18–19 сентября 2008. С. 183–186.
DESIGN STANDARDS FOR ROADS IN MOUNTAINOUS CONDITIONS WITH A VIEW TO ENSURING TRAFFIC SAFETY

1 P. I. Pospelov,
2 A. L. Kortiev *

1Moscow State Automobile and Road Technical University, Moscow, Russia
2 North-Caucasian Institute of Mining and Metallurgy (State Technological University), Vladikavkaz, Russia, kortiev73@mail.ru

Introduction. As you know, mountain areas in their development to some extent lag behind the plains. In fact, any undertaking in the highlands of an economic, social, agricultural or other nature aspects begins with the solution of the transport problem. At present, transport projects are subject to the requirements of high intelligence with innovative developments, safety, awareness of the road environment, comfort, environmental friendliness and quietness.

If on the plain when choosing the directions of the road there are practically no restrictions than in mountain conditions the laying of the road faces a lot of difficulties of relief character, requiring the use of maximum slopes and small radii on the curves, as well as a certain geographical location of the gorge, which sometimes is frontal from the required direction of the road. On the slopes of these gorges to some extent surface exogenous phenomena were developed in the form of landslides, mudslides, mudflows, avalanche-glacial and ice formations, the processes of collapse which complicate the design, construction and operation of the transport artery. Creating a transport project in such difficult mountain conditions is extremely difficult, but important. The urgency of this problem increases the need to present to the prom-ising transport communications intelligence that is not yet sufficiently formed for mountain roads.

The purpose of the work is to monitor the operation of mountain roads by accident on the example of the Transcaucasian highway (Transcam) and the application of existing rules and regulations in the search and design.

Method of research. The research was conducted by the method of analysis of existing design developments, monitoring of mountain roads operation and accident rate.

Research result. Complicated conditions of the survey and design of roads in mountainous conditions forced project implementers because of relief conditions to apply the maximum and the maximum allowable longitudinal slope, small radius curves, respectively, that during operation creates a hazardous traffic condition and leads to road accidents.

Keywords: mountain road, elements of the road plan, safety, slopes, radii of curves, road traffic accidents, slopes, landslides, avalanches

References
7. Miscreants A. S., Kortiev A. L., Chochiev R. S., Tedyev V. B. Monitoring of exogenous Processes (erosion) events on the road to mining companies Ossetia for sustainable conserva-

Article received 15.01.2018.
Информация для авторов

Глубокоуважаемые коллеги!

В соответствии с Заключением Президиума ВАК Минобрнауки РФ от 19.12.2014 г. №47/307 с 2015 года статьи для публикации в журнале «Устойчивое развитие горных территорий» принимаются по следующим отраслям и группам наук:

25.00.00 Науки о Земле (вся отрасль наук о Земле);
05.00.00 Технические науки (три группы из отрасли):
05.05.00 Транспортное, горное и строительное машиностроение,
05.13.00 Информатика, вычислительная техника и управление,
05.14.00 Энергетика;
08.00.00 Экономические науки (вся отрасль экономических наук).

В соответствии с градацией наук, принятой в международных системах цитирования Scopus и Web of Science, статьи для публикации в журнале «Устойчивое развитие горных территорий» принимаются по следующим отраслям и группам наук:

1. Engineering (технические науки);
2. Earth and Planetary Sciences (науки о Земле и планетарные науки);
3. Environmental Science (наука об окружающей среде).

В журнале «Устойчивое развитие горных территорий» печатаются:

- статьи с изложением новых научных результатов, объемом не более 10 машинописных страниц, включая иллюстрации и таблицы;
- краткие сообщения, содержащие информацию о важных результатах предварительных исследований, объемом 3–5 страниц (эти материалы впоследствии могут использоваться в тексте полной статьи);
- обзоры печатных работ по актуальным проблемам устойчивого развития горных территорий, объемом 20–25 страниц по заказу редакции.

К опубликованию также принимаются платные рекламные сообщения о новых материалах, технологиях, приборах и аппаратуру, соответствующие тематике журнала. Все работы должны соответствовать тематике журнала. Предоставленные рукописи проходят этапы предварительного и итогового рецензирования, и в случае необходимости, направляются авторам на исправление и доработку. Рукописи в журнале публикуются на русском либо английском языках, аннотации на русском и английском языках.

Журнал публикует исключительно оригинальные статьи. Автор несет полную ответственность за соблюдение этого требования. Рукописи, не принятые к опубликованию, авторам не возвращаются. Редакция также не возвращает присылаемые материалы.

Редакция оставляет за собой право производить сокращение и редакторскую правку текста статьи. Исправления и иллюстрации авторы могут вносить только на стадии подготовки статьи к набору. Корректура авторам для просмотра не высылается.

Несоблюдение правил оформления рукописей приводит к отклонению статьи.
Публикация бесплатна для авторов статей, написанных по заказу редакции, и для аспирантов.

За сведения в рекламных материалах редакция ответственности не несет.
Перепечатка допускается только с разрешения редакции и с обязательной ссылкой на журнал «Устойчивое развитие горных территорий».

Инструкция для авторов

В редакцию необходимо предоставить следующие материалы:
- статья (структуру и правила оформления смотрите ниже);
- на отдельном листе: сведения об авторах, содержащие фамилию, имя, отчество, ученую степень, звание, название организации, служебный и домашний адрес и телефоны, e-mail (если есть) и указание, с кем из авторов лучше вести переписку;
- направление от организации, если предоставляемые материалы являются результатом работы, выполненной в этой организации; в направлении следует указать название рубрики журнала;
- экспертное заключение или другой документ, разрешающий опубликование в открытой печати, утвержденные руководителем организации и заверенные гербовой печатью (представляют только авторы из России);
- компакт-диск, содержащий обязательный пакет электронных файлов (подробные инструкции приведены ниже);
- рекомендации для переводчика, включающие научные термины, ключевые слова, сокращения, фамилии и т. п. (если предполагается издание переводного варианта за рубежом).

Правила оформления статьи

На первой странице должны быть указаны: УДК; название статьи на русском языке (прописными буквами, без кавычек, переносы не допускаются, точка в конце не ставится, подчеркивание не используется), кегль 14 полужирный, выравнивание по центру; инициалы и фамилии авторов (кегль
12 полужирный курсив, выравнивание по правому краю, название учреждения, город, страна представляющих рукопись для опубликования.

Текст статьи набирается шрифтом Times New Roman размером 14 пт через одиничный интервал, выравнивание по формату. Подзаголовок – шрифт курсивный, выравнивание по левому краю. При написании статьи используются общепринятые термины, единицы измерения и условные обозначения, единообразные по всей статье. Расшифровка всех используемых авторами обозначений дается при первом употреблении в тексте. Буквы латинского алфавита набираются курсивом, буквы греческого алфавита – прямым шрифтом. Математические символы lim, ln, const, sin, cos, min, max и т.п. набираются прямым шрифтом. Символ не должен сливаться с надсимвольным элементом в химических элементах (H$_2$O) и единицах измерений (MBt/m2) – прямым (обычным) шрифтом. Не следует смешивать одинаковые по написанию буквы латинского, греческого и русского алфавитов, использовать собственные макросы. Буквы I и J, v и u, e и i, h и n, a и g, V и U, O (бука) и 0 (нуль) должны различаться по начертанию.

Между цифровым значением величины и ее размерностью следует ставить знак неразрывного пробела. Переносы в словах либо не употреблять, либо пользоваться командой «расстановка переносов». Не использовать в тексте для форматирования знаки пробела. Различать дефис (—), знак минус (—) и тире (–).

Формулы создаются с помощью встроенного редактора формул Microsoft Equation с нумерацией в круглых скобках (2), выравнивается по правому краю, расшифровка всех обозначений (бука) в формулам дается в порядке упоминания в формуле. Формулы должны быть аккуратно набраны на компьютере. Во избежание недоразумений и ошибок редакция рекомендует авторам использовать в формулам буквы латинского, греческого и других (не русских) алфавитов; при наборе формул необходимо соблюдать размеры по умолчанию. Следует учитывать, что при верстке некоторые формулы должны помещаться на половине страницы (8 см).

Большие формул необходимо будет разбивать на отдельные фрагменты. Фрагменты формул по возможности должны быть независимы (при использовании формульного редактора каждая строка – отдельный объект). Нумерацию и по возможности знаки препинания следует ставить отдельно от формул обычным текстом. Нумеровать следует только те формулы, на которые есть ссылки в тексте.

Таблицы, рисунки, фотографии размещаются внутри текста и имеют сквозную нумерацию по статье (не по разделам!) и собственные заголовки. Названия всех рисунков, фотографий и таблиц приводятся на русском языке 11 кеглем, курсивом. Нумерация обозначений на рисунках дается по порядку номеров по часовой стрелке или сверху вниз. Рисунки необходимо выполнять в компьютерном виде, желательно в программе Word 97, Corel Draw (до 13 версии) по следующим правилам: ширина рисунка не более 8 см; толщина линий: основных – 1 пт, вспомогательных – 0,5 пт; для обозначений в поле рисунка использовать шрифт Times New Roman размером – 9 пт. Рисунки с большим количеством деталей (сложные схемы, графики) размещаются на всю ширину страницы (16,5 см). Векторные рисунки записываются в отдельные файлы документов. Фотоснимки должны быть контрастными и выполненными на матовой бумаге. Отсканированные фотографии записываются в файлы в формате TIFF, JPEG. Сканирование изображение следует с разрешением 300 dpi для контрастных черно-белых рисунков и 600 dpi для полутоновых. Цветные иллюстрации допускаются по согласованию с редакцией.

Обозначения, термины, иллюстративный материал, список литературы должны соответствовать действующему ГОСТ.

Библиографические ссылки в списке литературы нумеруются в той последовательности, в которой упоминаются в тексте. Описание литературных источников по ГОСТ 7.0.5-2008.

Приложения к статье
1. Аннотация (на отдельной странице – не более 100 слов). В ней не рекомендуется использовать формулы и ссылки на литературу. Если рукопись подается на русском языке, то аннотация должна быть продублирована на английском языке с указанием названия статьи, фамилий и инициалов авторов на этих языках. Если рукопись подается на английском языке, необходимо привести также аннотацию на русском. Аннотация печатается шрифтом Times New Roman (12 кегель) в одном файле в следующем порядке: название статьи, авторы, наименование организации, текст аннотации на русском языке; далее, через 2 строки, в той же последовательности – на английском языке. Аннотация также публикуется на сайте журнала www.naukagor.ru (на русском и английском языках).
2. Сведения об авторах на русском и английском языках печатается шрифтом Times New Roman (10 кегель) и должно содержать следующую информацию: должность, научное звание, учёная степень, награды и научные премии, круг научных интересов, количество публикаций, место работы, e-mail, номер телефона.
3. Фотографии авторов для резюме в формате TIFF или JPEG (300 dpi).
4. Реферат статьи (от 300 слов). Параметры страницы: формат A4 (210x297 мм); межстрочный интервал полуторный; шрифт Times New Roman (12 кегель) в одном файле в следующем порядке: наименование статьи, авторы, наименование организации, реферат на русском языке; далее, через 2 строки, в той же последовательности – на английском языке.
5. Электронная версия статьи представляется в редакции на CD-R-диске или по электронной почте. Запись файлов выполняется в текстовом редакторе Microsoft Word (расширения .doc или .rtf), для набора формул применяют редактор Equation 3.0.

Должны присутствовать следующие файлы:
- основной, содержащий текст статьи, включая формулы, таблицы, рисунки, подрисуночные подписи, список литературы, аннотация и ключевые слова на русском и английском языках;
- содержащий только иллюстрации, которые должны быть именованы таким образом, чтобы было понятно, к какой статье они принадлежат и каким по номеру рисунок они являются. Каждый файл должен содержать один рисунок.

Электронная и бумажная версии статьи должны быть абсолютно идентичны.

Если авторы не могут полностью или частично удовлетворить требования по оформлению рукописи на диске, им необходимо проконсультироваться в редакции.
DEAR COLLEAGUES!

In accordance with the Conclusion of the Presidium of the Higher Attestation Commission of the Ministry of Education and Science of the Russian Federation from 12.19.2014 №47/307 from 2015 articles for publication in the journal “Sustainable Development of Mountain Territories” are accepted for the following Industries and groups of Sciences:

25.00.00 Earth Sciences (all branches of the Earth Sciences);
05.00.00 Engineering Sciences (three groups of industries):
 05.05.00 Transport, Mountain and Building Mechanical Engineering,
 05.13.00 Computer Sciences, Computer facilities and Management,
 05.14.00 Energetics;
08.00.00 Economic sciences (all branches of Economic Sciences).

According to the gradation of Sciences accepted in international citation systems Scopus and Web of Science articles for publication in the journal "Sustainable development of mountain territories" are accepted by the following branches and groups of Sciences:

1. Engineering;
2. Earth and Planetary Sciences;

The journal «Sustainable Development of the Mountain Territories» publishes:

– articles interpreting the new scientific-research results of volume not more than 10 type written pages including illustrations and tables;
– brief messages containing information on the important results of the preliminary research of volume 3-5 pages (these materials can be used in the full article text);
– reviews of the typewritten articles on the actual problems of the sustainable development of the mountain territories, volume 20-25 pages by the editor’s order, also the paid advertisements concerning new materials, devices and equipment in terms of the journal theme are accepted to the publication.

All papers must correspond to the journal theme.
The presented manuscripts pass the preliminary and total reading stages and if necessary are sent back to the authors for the correction and finishing.

The manuscripts are published in Russian and in English, the abstracts in Russian and in English as well.
The journal publishes only the original articles. The author is fully responsible for the requirement.
The manuscripts are not returned to the authors in case of being rejected in publication. The editor has a right to make reductions and corrections of the article text. All corrections in the text and figures can be done by the authors only at the stage of the typesetting preparations. The correction isn’t sent to the authors for revision.
The infringement of the manuscript lay-out rules will lead to the publication delay or the article rejection.
The publication is free of charge for the authors, the fees aren’t paid.
The authors (or the author) of each article having been published in the regular number of the journal have the right to get the authors’ copies or their articles from the editorship.
The editorship isn’t responsible for the advertisement information.
Reprinting is allowed only with the editorship permission with the obligatory references to the journal «Sustainable Development of the Mountain Territories».

INSTRUCTIONS FOR THE AUTHORS

The following materials should be presented to the editorial office:

- an article, both in paper (2 copies) and in the electronic version. The second copy must be signed by the authors;
- a separate sheet with the information: about the authors (surname, name, patronymic name, scientific degree, rank, name of the organization, office and home address and telephone number, E-mail (if exists) and the reference to the author to contact with;
- a confirmation from the organization in case the presented materials are the result of the work carried out in that organization; the journal heading should be pointed out in the confirmation;
- an expert conclusion or any other document allowing the publication in the open press confirmed by the organization head and proved with the stamped seal; the expert conclusion is presented only by the authors from Russia;
- CD or a diskette with the files containing an obligatory set of the electronic files;
- recommendations for the translation including scientific terms, key words, cuttings, surnames, etc. (if the translated version is supposed to be published abroad).

THE ARTICLE LAY-OUT RULES

The following information should be pointed out on the first page: the article heading in Russian (in capital letters, without quotation marks, without division of a word, without a full stop at the end, underlining isn’t used), point 14 semi bold, centre
The article text is typed in Times New Roman (14 pt) through an ordinary interval aligning along the format. A subtitle is typed in italics, aligning along the left edge. The common terms, measurement units and conventional symbols similar for the whole article are used. The decoding of all symbols is given for the first text use. The Latin alphabet letters are typed in the italics while the Greek and Latin letters in the straight type. The mathematical symbols \lim, \lg, \ln, \arg, const, \sin, \cos, \min, \max, etc. are typed in the straight type. The symbol shouldn’t coincide with the over symbol element in the chemical elements (H$_2$O) and measurement units (MBt/cm2) and must be of the straight (ordinary) type. You shouldn’t mix similar written letters of the Latin, Greek and Russian alphabets and should use the proper macros. The letters L and J, e and I, h and n, q and g, V and U, O (letter and 0 (zero) must differ in inscribing.

There must be a sign of the continuous gap between a value figure meaning and its dimension. The hyphens are not used otherwise the command «hyphens arrangement», the gap signs also mustn’t be used in the text for the lay-out and a hyphen «-», a minus sign «» and a dash «—» should be differentiated.

The formulas are designed with the help of the built-in formulas processor (Microsoft Equation), the enumeration being done in the round brackets (2), aligned along the right edge; the decoding of all signs (letters) in the formulas is given in the order of the formula reference. The formulas should be typed on computer. To avoid the errors and misunderstandings, the editorial staff recommends the authors to use the Latin, Greek and other (not Russian) alphabet letters in the formulas and to keep to the omission sizes while the formulas printing. One should account that during the page-making the formulas must be placed on the half of the page (8 sm), the big formulas being split into the separate fragments. If possible, the fragments must be independent; each line is a separate object. The enumeration and stops should be put into an ordinary text separately from the formulas. Only the formulas having the text references should be numerated.

The tables, pictures and photos are placed inside the text and must have a through numeration along the text (not by the sections!) and their own headings. The titles of all tables, pictures and photos are presented in Russian (11 point, italics). The numeration of the picture symbols is given in clockwise order or from up to down. The pictures should be done in the computer form, preferably in Word 97 program using the following rules: a picture width – not more than 8 sm, a line thickness: the main – 1 pt, auxiliary – 0.5 pt; for the symbols in the picture area – «Times New Roman» type of 9 pt must be used.

The pictures with the great amount of details (complex schemes, graphs) are placed on the whole page width (16,5 sm). The vector pictures are written into the separate documentary files. The photo pictures must be contrast and performed on the mat paper. The scanned photos are written into the files of TIFF, JPEG format. To scan the image one should use the resolution of 300 dpi for the contrast black-white pictures and 600 dpi for semitone ones. The colour illustrations are admitted on the editorial is agreement.

All symbols, terms and illustrations should correspond to the operative standards.

The literature sources should be numerated in the order of the text reference (not in the alphabetic order). The literature sources list is given as a total list at the end of the article. The list is composed according to the references consequence in the text. References should be designed according to GOST 7. 1-84. All references to the literature sources are applied in the square brackets [3].

SUPPLEMENTS TO THE ARTICLE

1. Abstract (on a separate page – not more than 100 words), without formulas and literature references. In case a manuscript is presented in Russian, the abstract should be repeated in English with the article heading, surnames and names in this language. In case a manuscript is presented in English, the Russian variant must be supplied. The abstracts are typed in Times New Roman (12 point) in one file in the following order: the article heading, the authors, the name of the organization, the abstract text in Russian with the further information in 2 lines in the same sequence in English. The abstracts are also published in the journal site www.naukagor.ru (in Russian and in English).

2. Resume in Russian and English is typed in Times New Roman (10 point) and must contain the following information: a place of work, a post, a scientific rank, degree, awards and scientific grants, professional experience, the main sphere of the scientific interests, the number of the publications for each author.

3. The authors’ photographs for the resume should be done in TIFF or JPEG format.

4. The essay text (one page) for the publication in the essay journals. The page parameters: A4 (210x297 mm) format; interline interval – one and a half; Times New Roman (12 point) type in one file in the following order: the article heading, the authors, the organization name, an essay in Russian, then in 2 lines in English.

5. The electronic version of the article.

To reduce the material preparation time for the publication and to avoid errors during typing, the materials should be presented on the CD-R disks. The files are written in the word processor Microsoft Word (doc or rtf), the formulas being printed with Equation 3.0. The author’s name should be pointed out in the file title. Several file copies are preferable.

The following files are to be present on the diskette:
- the main file containing the article text, formulas, tables, pictures, under picture signatures, reference list, abstracts in Russian and English;
- the file containing only the illustrations for to the exact articles or pictures. Each file must have one picture.

The electronic and paper versions should be identical. In case the authors fail to meet the requirements on the manuscript design on the disk, they should consult the editorial.

The editorial office address: 44 Nikolaev Str., Vladikavkaz, North Ossetia-Alania, Russia, 362021, The North Caucasian Institute of Mining and Metallurgy (The State Technological University), the Editorials of the journal «Sustainable Development of Mountain Territories».

Phone: +7(8672) 40-73-60, +7(918)707-39-25 (mob.).
E-mail: editor@naukagor.ru.
ПОДПИСКА 2019 -
ПЕРВОЕ ПОЛУГОДИЕ

КАК ПОДПИСАТЬСЯ НА ЖУРНАЛ
«УСТОЙЧИВОЕ РАЗВИТИЕ
ГОРНЫХ ТЕРРИТОРИЙ»

На почте в любом отделении связи

КАТАЛОГ АГЕНТСТВА «РОСПЕЧАТЬ»
полугодовой подписной индекс - 58885
цена - 1400 р. за 6 мес.

По системе адресной подписки
(производится издательством)
цена - 1200 р. за 6 мес.

Адресная подписка - это:

Удобно! Бухгалтерия заполняет платежное поручение,
сдает его в банк - и все! (укажите свой адрес в платежном поручении)

Выгодно! Никаких почтовых надбавок, а значит - дешевле!

Быстро! Отправка журнала ценной бандеролью по адресу
подписчика сразу из типографии.

Надежно! Если вы не получили журнал, издательство
гарантированно досылает Вам пропавший номер.

Внимание!
В платежном поручении обязательно укажите «За подписку
на журнал «Устойчивое развитие горных
территорий»
В графе «Назначение платежа» необходимо
написать почтовый адрес (с индексом),
по которому мы должны отправить журнал.

Телефон для справок:
+7(918)707-39-25
10.00-17.00 (время Москвы)

Стоимость подписки зависит от региона РФ НДС не облагается
Стоимость доставки включена.

Оплату адресной подписки произвести по реквизитам:
362021, РСО-Алания, ул. Николаева, 44
ООО «СОКООБЩЕСТВО ГОРНО-МЕТаллический институт (ГМС)»
р/с 3010181000000032 06600003
БИК 049030001
КПП 151801001
пос. Невероятно подписаться на е-майл: edlror@tseidagor.ru
ДОРОГИЕ РЕКЛАМОДАТЕЛИ!

Редакция журнала приглашает вас разместить рекламу по тематике журнала на его страницах (предоставление услуг в сфере информационных технологий и программного обеспечения, купля-продажа природных материалов — камня, иного сырья, предложение о партнерстве в научно-практической деятельности, в области металлургического производства и обогащения руд, а также опубликованных монографий, иной печатной продукции и пр.).

Не принимаются для размещения рекламные материалы, содержащие или оформленные на них элементы морального и этическим нормам, противоречащие действующему законодательству РФ или может отрицательно сказаться на реализации журнала «Устойчивое развитие горных территорий».

Редакция журнала оставляет за собой право не принимать к размещению те или иные рекламные материалы.

Если рекламируемый товар или услуга подлежит обязательной сертификации или лицензированию, или если деятельность рекламодателя подлежит лицензированию, в рекламные материалы должен быть включен номер лицензии или сертификата на рекламируемый товар или услугу или номер лицензии на деятельность, осуществляемую рекламодателем. Редакция журнала «Устойчивое развитие горных территорий» вправе потребовать предъявления сертификата или лицензии.

Тираж 500 экз. Периодичность журнала 4 раза в год. Объем журнала 100-120 черно-белых полос, полноцветная обложка, цветные вклейки.
Территория распространения Россия, СНГ, страны Европы, Азии.

Расценки на размещение рекламы (в рублях, в т.ч. НДС 18%)

<table>
<thead>
<tr>
<th>Место размещения рекламы</th>
<th>Стоимость</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-я и 3-я стр. обложки (цветная)</td>
<td>15 000</td>
</tr>
<tr>
<td>4-я стр. обложки (цветная)</td>
<td>16 000</td>
</tr>
<tr>
<td>Страница в журнале (цветная) А4</td>
<td>6 000</td>
</tr>
<tr>
<td>Страница в журнале (цветно-бело) А4</td>
<td>5 000</td>
</tr>
<tr>
<td>1/2 A4 (цветно-бело)</td>
<td>2 000</td>
</tr>
<tr>
<td>1/4 A4 (цветно-бело)</td>
<td>1 000</td>
</tr>
</tbody>
</table>

Все рекламодатели получают бесплатные экземпляры журнала с их рекламой.
При размещении рекламы в трех и более номерах предоставляется скидка в размере 10% от стоимости рекламы.
По вопросам размещения рекламы на страницах журнала «Устойчивое развитие горных территорий» обращаться в редакцию журнала:
tел.: +7 (918) 707-39-25, e-mail: editor@naukafor.ru
Порядок оформления заказа на размещение рекламы в журнале:
1. Необходимо оформить договор согласно прилагаемой форме (все подробности на официальном сайте журнала «Устойчивое развитие горных территорий») и направить его в редакцию журнала.
2. В случае если заказываемая рекламная площадь может быть предоставлена, Вам будет выставлен счет, а площадь будет зарезервирована. Если счет не оплачен в течение 5 банковских дней, редакция вправе отменить резервирование заказанной рекламной площади.
3. Материалы предоставляются до 20 числа месяца, предшествующего месяцу выхода соответствующего номера журнала. (Материал передается в формате TIF, CMYK 300 pixels/inch или Grayscale) на CD-ROM. Передача макета по электронной почте оговаривается отдельно. По вопросам желание возможно макетирования блока дизайнерами журнала. Детали заказа оговариваются по телефону редакции или по электронной почте.
Сегодня Северо-Кавказский горно-металлургический институт (государственный технологический университет) – это динамично развивающееся высшее учебное заведение, готовящее специалистов для многих отраслей народного хозяйства, крупный научно-технический центр, ведущий активную и плодотворную научно-исследовательскую деятельность.

СКГМИ сегодня – это благоустроенный и ухоженный студенческий городок, 20 учебных и вспомогательных корпусов, просторное общежитие, новый главный бассейн, спортивный комплекс с футбольным полем и, конечно, студенты.

На данный момент факультеты университета в настоящее время обучаются более 6 000 студентов по 36 специальностям и направлениям. Это: горно-геологический, металлургический, электротехнический и архитектурно-строительный факультеты, факультеты электронной техники, информационных технологий, пищевых производств, экономический, юридический, а также факультеты заочного обучения, довузовской подготовки, повышения квалификации и переподготовки специалистов.

В аспирантуре университета под руководством наших именитых ученых продолжает обучение более 180 аспирантов.

При СКГМИ функционируют диссертационные советы, в которых ежегодно проходят более 50 защит докторских и кандидатских диссертаций.