Skip to main content
Log in

Validation of in situ Measurements of Atmospheric Nitrous Acid Using Incoherent Broadband Cavity-enhanced Absorption Spectroscopy

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Incoherent broadband cavity-enhanced absorption spectroscopy (IBBCEAS) is a useful technique for measuring trace gaseous species in the atmosphere. Recently, IBBCEAS was used to measure concentrations of nitrous acid (HONO) in the troposphere to resolve controversies related to its formation and loss. Here, measurements of HONO and a mixture of HONO and NO2 using IBBCEAS were validated by comparing them with those obtained with a NOx analyzer. Good agreement was found between these methods, given their respective experimental uncertainties. The detection limit of our IBBCEAS instrument was 0.2 ppbv, with a signal-to-noise ratio of 1, and a 5-min integration time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Alicke, U. Platt, and J. Stutz, J. Geophys. Res., 2002, 107, 8196.

    Article  Google Scholar 

  2. B. Vogel, H. Vogel, J. Kleffmann, and R. Kurtenbach, Atmos. Environ., 2003, 37, 2957.

    Article  CAS  Google Scholar 

  3. J. G. Calvert, G. Yarwood, and A. M. Dunker, Res. Chem. Intermedia!, 1994, 20, 463.

    Article  CAS  Google Scholar 

  4. H. Su, Y. Cheng, R. Oswald, T. Behrendt, I. Trebs, F. X. Meixner, M. O. Andreae, P. Cheng, Y. Zhang, and U. Pöschl, Science, 2011, 333, 1616.

    Article  CAS  PubMed  Google Scholar 

  5. H. Beine, A. J. Colussi1, A. Amoroso, G. Esposito, M. Montagnoli, and M. R. Hoffmann, Environ. Res. Lett., 2008, 3, 0450.

    Article  Google Scholar 

  6. R. Kurtenbach, K. H. Becker, J. A. G. Gomes, J. Kleffmann, J. C. Lörzer, M. Spittler, P. Wiesen, R. Ackermann, A. Geyer, and U. Platt, Atmos. Environ., 2001, 35, 3385.

    Article  CAS  Google Scholar 

  7. D. Amedro, A. E. Parker, C. Schoemaecker, and C. Fittschen, Chem. Phys. Lett., 2011, 513, 12.

    Article  CAS  Google Scholar 

  8. X. L. Zhou, H. L. Gao, Y. He, G. Huang, S. B. Bertman, K. Civerolo, and J. Schwab, Geophys. Res. Lett., 2003, 30, 2217.

    Google Scholar 

  9. F. Rohrer, B. Bohn, T. Brauers, D. Brüning, F. J. Johnen, A. Wahner, and J. Kleffmann, Atmos. Chem. Phys., 2005, 5, 2189.

    Article  CAS  Google Scholar 

  10. C. George, R. S. Sterkowski, J. Kleffmann, K. Stemmler, and M. Ammann, Faraday Discuss., 2005, 130, 195.

    Article  CAS  PubMed  Google Scholar 

  11. B. H. Czader, B. Rappenglück, P. Percell, D. W. Byun, F. Ngan, and S. Kim, Atmos. Chem. Phys., 2012, 12, 6939.

    Article  CAS  Google Scholar 

  12. J. Heland, J. Kleffmann, R. Kurtenbach, and P. Wiesen, Environ. Sci. Technol., 2001, 35, 3207.

    Article  CAS  PubMed  Google Scholar 

  13. J. Kleffmann, Chem. Phys. Chem., 2007, 8, 1137.

    Article  CAS  PubMed  Google Scholar 

  14. N. Takenaka, H. Terada, Y. Oro, M. Hiroi, H. Yoshikawa, K. Okitsu, and H. Bandow, Analyst, 2004, 129, 1130.

    Article  CAS  PubMed  Google Scholar 

  15. D. Perner and U. Platt, Geophys. Res. Lett., 1979, 6, 917.

    Article  CAS  Google Scholar 

  16. B. Alicke, A. Geyer, A. Hofzumahaus, F. Holland, S. Konrad, H. W. Patz, J. Schafer, J. Stutz, A. V. Thomas, and U. Platt, J. Geophys. Res., 2003, 108, 8247.

    Article  Google Scholar 

  17. H. D. Osthoff, S. S. Brown, B. R. Thomas, T. J. Fortin, B. M. Lerner, E. J. Williams, A. Pettersson, T. Baynard, W. P. Dube, S. J. Ciciora, and A. R. Ravishankara, J. Geophys. Res., 2006, 111, D12305.

    Article  Google Scholar 

  18. S. S. Brown, W. P. Dube, H. D. Osthoff, D. E. Wolfe, W. M. Angevine, and A. R. Ravishankara, Atmos. Chem. Phys., 2007, 7, 139.

    Article  CAS  Google Scholar 

  19. T. Wu, W. Zhao, W. Chen, W. Zhang, and X. Gao, Appl. Phys. B, 2009, 94, 85.

    Article  CAS  Google Scholar 

  20. J. M. Langridge, S. M. Ball, and R. L. Jones, Analyst, 2006, 131, 916.

    Article  CAS  PubMed  Google Scholar 

  21. J. M. Langridge, S. M. Ball, A. J. L. Shillings, and R. L. Jones, Rev. Sci. Instrum., 2008, 79, 123110.

    Article  PubMed  Google Scholar 

  22. T. Wu, Q. Zha, W. Chen, Z. Xu, T. Wang, and X. He, Atmos. Environ., 2014, 95, 544.

    Article  CAS  Google Scholar 

  23. H. Fuchs, S. M. Ball, B. Bohn, T. Brauers, R. C. Cohen, H. P. Dorn, W. P. Dube, J. L. Fry, R. Haseler, U. Heitmann, R. L. Jones, J. Kleffmann, T. F. Mentel, P. Müsgen, F. Rohrer, A. W. Rollins, A. A. Ruth, A. Kinedler-Scharr, E. Schlosser, A. J. L. Shillings, R. Tillmann, R. M. Varma, D. S. Venables, G. V. Tapia, A. Wahner, R. Wegener, P. J. Wooldridge, and S. S. Brown, Atmos. Meas. Tech., 2010, 3, 21.

    Article  CAS  Google Scholar 

  24. A. Febo, C. Perrino, M. Gherardi, and R. Sparapani, Environ. Sci. Technol., 1995, 29, 2390.

    Article  CAS  PubMed  Google Scholar 

  25. P. L. Kebabian, E. C. Wood, S. C. Herndon, and A. Freedman, Environ. Sci. Technol., 2008, 42, 6040.

    Article  CAS  PubMed  Google Scholar 

  26. C. Afif, C. Jambert, V. Michoud, A. Colomb, G. Eyglunent, A. Borbon, V. Daële, J. Doussin, and P. Perros, J. Environ. Sci., 2016, 40, 105.

    Article  CAS  Google Scholar 

  27. Y. Sadanaga, K. Suzuki, T. Yoshimoto, and H. Bandow, Rev. Sci. Instrum., 2014, 85, 064101.

    Article  PubMed  Google Scholar 

  28. R. M. Varma, D. S. Venables, A. A. Ruth, U. Heitmann, E. Schlosser, and S. Dixneuf, Appl. Opt., 2009, 48, B159.

    Article  CAS  PubMed  Google Scholar 

  29. J. P. Burrows, A. Dehn, B. Deters, S. Himmelmann, A. Richter, S. Voigt, and J. Orphal, J. Quant. Spectrosc. Radiat. Transf., 1998, 60, 1025.

    Article  CAS  Google Scholar 

  30. J. Stutz, E. S. Kim, U. Platt, P. Bruno, C. Perrino, and A. Febo, J. Geophys. Res., 2000, 105, 14585.

    Article  CAS  Google Scholar 

  31. https://doasis.iup.uni-heidelberg.de/bugtracker/projects/doasis/index.php/.

  32. G. D. Greenblatt, J. J. Orlando, J. B. Burkholder, and A. R. Ravishankara, J. Geophys. Res., 1990, 95, 18577.

    Article  CAS  Google Scholar 

  33. Y. Nakashima and Y. Kajii, Sci. Tot. Environ., 2017, 575, 287.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshihiro Nakashima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakashima, Y., Sadanaga, Y. Validation of in situ Measurements of Atmospheric Nitrous Acid Using Incoherent Broadband Cavity-enhanced Absorption Spectroscopy. ANAL. SCI. 33, 519–523 (2017). https://doi.org/10.2116/analsci.33.519

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.33.519

Keywords

Navigation