Skip to main content
Log in

Phenylboronic Acid-based 19F MRI Probe for the Detection and Imaging of Hydrogen Peroxide Utilizing Its Large Chemical-Shift Change

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Herein, we report on a new 19F MRI probe for the detection and imaging of H2O2. Our designed 2-fluorophenylboronic acid-based 19F probe promptly reacted with H2O2 to produce 2-fluorophenol via boronic acid oxidation. The accompanying 19F chemical-shift change reached 31 ppm under our experimental conditions. Such a large chemical-shift change allowed for the imaging of H2O2 by 19F chemical-shift-selective MRI.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. D’Autréaux and M. B. Toledano, Nat. Rev. Mol. Cell Biol., 2007, 8, 813.

    Article  PubMed  Google Scholar 

  2. M. P. Murphy, A. Holmgren, N.-G. Larsson, B. Halliwell, C. J. Chang, B. Kalyanaraman, S. G. Rhee, P. J. Thornalley, D. Gems, T. Nyström, V. Belousov, P. T. Schumacker, and C. C. Winterbourn, Cell Metab., 2011, 13, 361.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. J. Weiss, J. Young, A. F. LoBuglio, and A. Slivka, J. Clin. Invest., 1981, 68, 714.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. S. G. Rhee, Science, 2006, 312, 1882.

    Article  PubMed  Google Scholar 

  5. M. Giorgio, M. Trinei, E. Migliaccio, and P. G. Pelicci, Nat. Rev. Mol. Cell Biol., 2007, 8, 722.

    Article  CAS  PubMed  Google Scholar 

  6. A. R. Lippert, G. C. Van de Bittner, and C. J. Chang, Acc. Chem. Res., 2011, 44, 793.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. D. Lee, S. Khaja, J. C. Velasquez-Castano, M. Dasari, C. Sun, J. Petros, W. R. Taylor, and N. Murthy, Nat. Mater., 2007, 6, 765.

    Article  CAS  PubMed  Google Scholar 

  8. G. C. Van de Bittner, E. A. Dubikovskaya, C. R. Bertozzi, and C. J. Chang, Proc. Natl. Acad. Sci. U. S. A., 2010, 707, 21316.

    Article  Google Scholar 

  9. M. L. James and S. S. Gambhir, Physiol. Rev., 2012, 92, 897.

    Article  CAS  PubMed  Google Scholar 

  10. C. Tu, E. A. Osborne, and A. Y. Louie, Annu. Biomed. Eng., 2011, 39, 1335.

    Article  Google Scholar 

  11. J. Yu, R. R. Hallac, S. Chiguru, R. P. Mason, Prog. Nucl. Magn. Reson. Spectrosc., 2013, 70, 25.

    Article  CAS  PubMed  Google Scholar 

  12. I. Tirotta, V. Dichiarante, C. Pigliacelli, G. Cavallo, G. Terraneo, F. B. Bombelli, P. Metrangolo, and G. Resnati, Chem. Rev., 2015, 775, 1106.

    Article  Google Scholar 

  13. A. A. Bobko, S. V. Sergeeva, E. G. Bagryanskaya, A. L. Markel, V. V. Khramtsov, V. A. Reznikov, and N. G. Kolosova, Biochem. Biophys. Res. Commun., 2005, 330, 367.

    Article  CAS  PubMed  Google Scholar 

  14. T. Doura, Q. An, F. Sugihara, T. Matsuda, and S. Sando, Chem. Lett., 2011, 40, 1357.

    Article  CAS  Google Scholar 

  15. K. J. Bruemmer, S. Merrikhihaghi, C. T. Lollar, S. N. S. Morris, J. H. Bauer, and A. R. Lippert, Chem. Commun., 2014, 50, 12311.

    Article  CAS  Google Scholar 

  16. A. Habibi-Yangjeh, M. Danandeh-Jenagharad, and M. Nooshyar, J. Mol. Model., 2006, 72, 338.

    Article  Google Scholar 

  17. J. M. Silla, R. A. Cormanich, R. Rittner, and M. P. Freitas, Beilstein J. Org. Chem., 2013, 9, 1127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. E. W. Miller, A. E. Albers, A. Pralle, E. Y. Isacoff, C. J. Chang, J. Am. Chem. Soc., 2005, 727, 16652.

    Article  Google Scholar 

  19. T. Peng, N. Wong, X. Chen, Y. Chan, D. H. Ho, Z. Sun, J. J. Hu, J. Shen, H. El-Nezami, and D. Yang, J. Am. Chem. Soc., 2014, 736, 11728.

    Article  Google Scholar 

  20. R. Hernanz, M. J. Alonso, H. Zibrandtsen, Y. Alvarez, M. Salaices, and U. Simonsen, Cardiovasc. Res., 2004, 62, 202.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. T. Ishimoto of Kyushu University for discussions and Prof. T. Matsuda (Kyoto University) for their help in the 19F MRI experiments. This work was supported by the Funding Program for Next Generation World-Leading Researchers (NEXT), partly by Grants-in-Aid No. 25620135 (H. N.) from JSPS, and partly by CREST, Japan Science and Technology Agency (JST). T. A. thanks JSPS for a fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shinsuke Sando.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nonaka, H., An, Q., Sugihara, F. et al. Phenylboronic Acid-based 19F MRI Probe for the Detection and Imaging of Hydrogen Peroxide Utilizing Its Large Chemical-Shift Change. ANAL. SCI. 31, 331–335 (2015). https://doi.org/10.2116/analsci.31.331

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.331

Keyword

Navigation