Skip to main content
Log in

Optical Characterization of the Antigen-Antibody Thin Layer Using the Whispering Gallery Mode

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We immobilized an antibody (anti-β-Galactosidase) on a polystyrene microsphere by using a covalent bond, and observed the resonance peaks in the scattered light intensity spectra related to the whispering gallery mode (WGM) excitation of the microsphere. The amount and the optical parameters, i.e., thickness and refractive index, of anti-β-Galactosidase on the sphere surface were evaluated based on an absorbance measurement and a resonance peak shift measurement, respectively. Moreover, we measured the variation of the WGM spectra depending on the concentration of the enzyme solution (β-Galactosidase), which allowed us to optically evaluate the thickness and the refractive index of the antigen-antibody layer from the shift of the WGM spectra peak.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. C. Ren, F. Vollmer, S. Arnold, and A. Libchaber, Opt. Express, 2007, 15, 17410.

    Article  PubMed  Google Scholar 

  2. N. M. Hanumegowda, I. M. White, H. Oveys, and X. Fan, Sens. Lett., 2005, 3, 1.

    Article  Google Scholar 

  3. M. A. Cooper, Anal. Bioanal. Chem., 2003, 377, 834.

    Article  CAS  PubMed  Google Scholar 

  4. A. M. Armani, R. P. Kulkarni, S. E. Fraser, R. C. Flagan, and K. J. Vahala, Science, 2007, 317, 783.

    Article  CAS  PubMed  Google Scholar 

  5. X. Fan, I. M. White, S. I. Shopova, H. Zhu, J. D. Suter, and Y. Sun, Anal. Chim. Acta, 2008, 620, 8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. F. Vollmer and S. Arnold, Nat. Methods, 2008, 5, 591.

    Article  CAS  PubMed  Google Scholar 

  7. S. Arnold, S. I. Shopova, and S. Holler, Opt. Express, 2010, 18, 281.

    Article  CAS  PubMed  Google Scholar 

  8. H. Zhu, I. M. White, J. D. Suter, P. Dale, and X. Fan, Opt. Express, 2007, 15, 9139.

    Article  CAS  PubMed  Google Scholar 

  9. A. Francois and M. Himmelhaus, Sensors, 2009, 9, 6836.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. I. Teraoka, S. Arnold, and F. Vollmer, J. Opt. Soc. Am. B, 2003, 20, 1937.

    Article  CAS  Google Scholar 

  11. K. R. Hiremath and V. N. Astratov, Opt. Express, 2008, 16, 5421.

    Article  PubMed  Google Scholar 

  12. M. L. Gorodetsky and V. S. Ilchenko, Opt. Commun., 1994, 113, 133.

    Article  CAS  Google Scholar 

  13. A. Serpenguzel, S. Arnold, and G. Griffel, Opt. Lett., 1995, 20, 654.

    Article  CAS  PubMed  Google Scholar 

  14. N. Debreuil, J. C. Knight, D. Leventhal, V. Sandoghdar, J. Hare, and V. Lefevere-Seguin, Opt. Lett., 1995, 20, 813.

    Article  Google Scholar 

  15. J. C. Knight, G. Cheung, F. Jacques, and T. A. Birks, Opt. Lett., 1997, 22, 1129.

    Article  CAS  PubMed  Google Scholar 

  16. V. S. Ilchenko, X. S. Yao, and L. Maleki, Opt. Lett., 1999, 24, 723.

    Article  CAS  PubMed  Google Scholar 

  17. M. Noto, D. Keng, I. Teraoka, and S. Arnold, Biophys. J., 2007, 92, 4466.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. F. Vollmer, S. Arnold, D. Braun, I. Teraoka, and A. Libchaber, Biophys. J., 2003, 85, 1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. M. A. S. Cordoba, S. V. Boriskina, F. Vollmer, and M. C. Demirel, Appl. Phys. Lett., 2011, 99, 073701.

    Article  Google Scholar 

  20. F. Vollmer, D. Braun, A. Libchaber, M. Khoshsima, I. Teraoka, and S. Arnold, Appl. Phys. Lett., 2002, 80, 4057.

    Article  CAS  Google Scholar 

  21. D. Keng, S. R. McAnanama, I. Teraoka, and S. Arnold, Appl. Phys. Lett., 2007, 91, 103902.

    Article  Google Scholar 

  22. I. M. White, N. M. Hanumegowda, and X. Fan, Opt. Lett., 2005, 30, 3189.

    Article  CAS  PubMed  Google Scholar 

  23. S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer, Opt. Lett., 2003, 28, 272.

    Article  CAS  PubMed  Google Scholar 

  24. S. Arnold, D. Keng, S. I. Shopova, S. Holler, W. Zurawsky, and F. Vollmer, Opt. Express, 2009, 17, 6230.

    Article  CAS  PubMed  Google Scholar 

  25. T. Ioppolo, N. Das, and M. V. Otugen, J. Appl. Phys., 2010, 107, 103105.

    Article  Google Scholar 

  26. A. T. Rosenberger, Opt. Express, 2007, 15, 12959.

    Article  CAS  PubMed  Google Scholar 

  27. M. Haraguchi, F. Komatsu, K. Tajiri, T. Okamoto, M. Fukui, and S. Kato, Surf. Sci., 2004, 548, 59.

    Article  CAS  Google Scholar 

  28. N. Soh, M. Tanaka, K. Hirakawa, R. Zhang, H. Nakajima, K. Nakano, and T. Imato, Anal. Sci., 2011, 27, 1069.

    Article  CAS  PubMed  Google Scholar 

  29. H. Kuramitz, Y. Mawatari, M. Ikeuchi, O. Kutomi, N. Hata, S. Taguchi, and K. Sugawara, Anal. Sci., 2012, 28, 77.

    Article  CAS  PubMed  Google Scholar 

  30. Y. Tsuboi, R. Shimizu, T. Shoji, and N. Kitamura, Anal. Sci., 2010, 26, 1241.

    Article  CAS  PubMed  Google Scholar 

  31. H. Ishikawa, H. Tamaru, and K. Miyano, Opt. Lett., 1999, 24, 643.

    Article  CAS  PubMed  Google Scholar 

  32. J. A. Stratton, “Electromagnetic Theory”, 1941, McGraw-Hill, New York.

    Google Scholar 

  33. P. W. Barber, and S. C. Hill, “Light scattering by particles: computational methods”, 1990, World Scientific, Singapore.

    Book  Google Scholar 

  34. M. Fukui and M. Ohtsu, “Hikari Nanotechnology no Kiso (Fundamentals of optical nanotechnology, in Japanese)”, 2003, Ohmsha, Ltd., Tokyo.

    Google Scholar 

  35. A. Shinya and M. Fukui, Opt. Rev., 1999, 6, 215.

    Article  Google Scholar 

  36. M. Haraguchi, T. Nakai, A. Shinya, T. Okamoto, M. Fukui, T. Koda, R. Shimada, and K. Takeda, Opt. Rev., 1999, 6, 261.

    Article  CAS  Google Scholar 

  37. M. Himmelhaus, S. Krishnamoorthy, and A. Francois, Sensors, 2010, 10, 6257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Y. Sun and X. Fan, Anal. Bioanal. Chem., 2011, 399, 205.

    Article  CAS  PubMed  Google Scholar 

  39. J. Voros, Biophys. J., 2004, 87, 553.

    Article  PubMed  PubMed Central  Google Scholar 

  40. L. F. Pease III, J. T. Elliott, D.Tsai, M. R. Zachariah, and M. J. Tarlov, Biotechnol. Bioeng., 2008, 101, 1214.

    Article  CAS  PubMed  Google Scholar 

  41. Y. H. Tan, M. Liu, B. Nolting, J. G. Go, J. G. Hague, and G. Y. Liu, ACS Nano, 2008, 2, 2374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Y. Katakura, “Baiopurocesu sisutemu (Bioprocess System, in Japanese)”, ed. H. Shimizu, 2009, CMC Publishing Co., Ltd., Tokyo, 79.

  43. T. Skalova, J. Dohnalek, V. Spiwok, P. Lipovova, E. Vondrackova, H. Petrokova, J. Duskova, H. Strnad, B. Kralova, and J. Hasek, J. Mol. Biol., 2005, 353, 282.

    Article  CAS  PubMed  Google Scholar 

  44. J. S. Maier, S. A. Walker, S. Fantini, M. A. Franceschini, and E. Gratton, Opt. Lett., 1994, 19, 2062.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takeshi Tajiri.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tajiri, T., Matsumoto, S., Imato, T. et al. Optical Characterization of the Antigen-Antibody Thin Layer Using the Whispering Gallery Mode. ANAL. SCI. 30, 799–804 (2014). https://doi.org/10.2116/analsci.30.799

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.30.799

Keywords

Navigation