Skip to main content
Log in

Simple, Colorimetric Detection of MicroRNA Based on Target Amplification and DNAzyme

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Considering the crucial role played by microRNAs (miRNAs) in biological processes, we developed a novel strategy for simple and colorimetric detection of miRNA by combining target amplification with DNAzyme. Throughout the work, a 22-nt oligonucleotide sequence was used as a model analyte. A label-free hairpin probe (HP) was used as a simple platform for sensing the target. In the presence of the target, the HP was opened, and then the isothermal circular strand-displacement process occurred with the help of a primer, deoxynucleotide solution mixture (dNTPs), Klenow fragment exo polymerase, and Nb.BbvCI nicking enzyme. As a result, the target was recycled and multicopies of target analogues were generated that function in the same manner as the target, accompanied by the accumulation of signal elements. In this work, as low as 0.5 fM nucleic acid target was detected by horseradish peroxidase-mimicking DNAzyme catalyzing the oxidation of ABTS2− to colored ABTS•−.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. X. Wang, X. Y. Yi, H. L. Tang, H. X. Han, M. H. Wu, and F. M. Zhou, Anal. Chem., 2012, 84, 6400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Y. Lee, C. Ahn, J. Han, H. Choi, J. Kim, J. Yim, J. Lee, P. Provost, O. Radmark, S. Kim, and V. N. Kim, Nature, 2003, 425, 415.

    Article  CAS  PubMed  Google Scholar 

  3. J. R. Buchan and R. Parker, Science, 2007, 318, 1877.

    Article  CAS  PubMed  Google Scholar 

  4. L. He and G. J. Hannon, Nat. Rev. Genet., 2004, 5, 522.

    Article  CAS  PubMed  Google Scholar 

  5. C. Camarillo, M. Swerdel, and R. P. Hart, Methods Mol. Biol., 2011, 698, 419.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. B. Boyerinas, S. M. Park, A. Hau, A. E. Murmann, and M. E. Peter, Endocr. Relat. Cancer, 2010, 17, F19.

    Article  CAS  PubMed  Google Scholar 

  7. T. S. Wong, O. Y. Man, C. M. Tsang, S. W. Tsao, R. K. Y. Tsang, J. Y. W. Chan, W. K. Ho, W. I. Wei, and V. S. H. To, J. Cancer Res. Clin. Oncol., 2011, 137, 415.

    Article  CAS  PubMed  Google Scholar 

  8. Y. A. Lussier, N. N. Khodarev, K. Regan, K. Corbin, H. Q. Li, S. Ganai, S. A. Khan, J. Gnerlich, T. E. Darga, H. L. Fan, O. Karpenko, P. B. Paty, M. C. Posner, S. J. Chmura, S. Hellman, M. K. Ferguson, and R. R. Weichselbaum, PLoS One, 2012, 7, e50141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. R. Chen, A. B. Alvero, D. A. Silasi, M. G. Kelly, S. Fest, I. Visintin, A. Leiser, P. E. Schwartz, T. Rutherford, and G. Mor, Oncogene, 2008, 27, 4712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Y. Sun, M. J. Wang, G. G. Lin, S. P. Sun, X. X. Li, J. Qi, and J. M. Li, PLoS One, 2012, 7, e47003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. G. C. Leonardi, S. Candido, M. Carbone, V. Colaianni, S. F. Garozzo, D. Cina, and M. Libra, Int. J. Mol. Med., 2012, 30, 991.

    Article  CAS  PubMed  Google Scholar 

  12. M. P. Billings, N. Ferrari, and R. Seguin, Curr. Opin. Investig. Drugs, 2010, 11, 1276.

    Google Scholar 

  13. J. A. Leal, A. Feliciano, and M. E. Lleonart, Med. Res. Rev., 2013, 33, 112.

    Article  CAS  PubMed  Google Scholar 

  14. G. A. Calin and C. M. Croce, Nat. Rev. Cancer, 2006, 6, 857.

    Article  CAS  PubMed  Google Scholar 

  15. M. S. Kumar, J. Lu, K. L. Mercer, T. R. Golub, and T. Jacks, Nat. Genet., 2007, 39, 673.

    Article  CAS  PubMed  Google Scholar 

  16. H. Geekiyanage, G. A. Jicha, P. T. Nelson, and C. Chan, Exp. Neurol., 2012, 235, 491.

    Article  CAS  PubMed  Google Scholar 

  17. K. A. Cissell and S. K. Deo, Anal. Bioanal. Chem., 2009, 394, 1109.

    Article  CAS  PubMed  Google Scholar 

  18. W. Li and K. C. Ruan, Anal. Bioanal. Chem., 2009, 394, 1117.

    Article  CAS  PubMed  Google Scholar 

  19. Y. F. Peng and Z. Q. Gao, Anal. Chem., 2011, 83, 820.

    Article  CAS  PubMed  Google Scholar 

  20. Y. Mashimo, M. Mie, S. Suzuki, and E. Kobatake, Anal. Bioanal. Chem., 2011, 401, 221.

    Article  CAS  PubMed  Google Scholar 

  21. S. P. Jonstrup, J. Koch, and J. Kjems, RNA, 2006, 12, 1747.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. T. Murakami, J. Sumaoka, and M. Komiyama, Nucleic Acids Res., 2009, 37, e19.

    Article  PubMed  Google Scholar 

  23. S. Neubacher and C. Arenz, ChemBioChem, 2009, 10, 1289.

    Article  CAS  PubMed  Google Scholar 

  24. X. P. Wang, B. C. Yin, P. Wang, and B. C. Ye, Biosens. Bioelectron., 2013, 42, 131.

    Article  PubMed  Google Scholar 

  25. G. L. Wang and C. Y. Zhang, Anal. Chem., 2012, 84, 7037.

    Article  CAS  PubMed  Google Scholar 

  26. S. Shimron, F. A. Wang, R. Orbach, and I. Willner, Anal. Chem., 2011, 84, 1042.

    Article  PubMed  Google Scholar 

  27. L. Yang, C. Liu, W. Ren, and Z. Li, ACS Appl. Mater. Interfaces, 2012, 4, 6450.

    Article  CAS  PubMed  Google Scholar 

  28. G. J. Zhang, J. H. Y. Chua, R. E. Chee, A. Agarwal, and S. M. Wong, Biosens. Bioelectron., 2009, 24, 2504.

    Article  CAS  PubMed  Google Scholar 

  29. Y. Q. Liu, M. Zhang, B. C. Yin, and B. C. Ye, Anal. Chem., 2012, 84, 5165.

    Article  CAS  PubMed  Google Scholar 

  30. Z. Q. Gao and Z. C. Yang, Anal. Chem., 2006, 78, 1470.

    Article  CAS  PubMed  Google Scholar 

  31. J. Kim and C. J. Easley, Bioanalysis, 2011, 3, 227.

    Article  CAS  PubMed  Google Scholar 

  32. H. X. Jia, Z. P. Li, C. H. Liu, and Y. Q. Cheng, Angew. Chem., Int. Ed., 2010, 49, 5498.

    Article  CAS  Google Scholar 

  33. C. Teller, S. Shimron, and I. Willner, Anal. Chem., 2009, 81, 9114.

    Article  CAS  PubMed  Google Scholar 

  34. Y. Xiao, V. Pavlov, T. Niazov, A. Dishon, M. Kotler, and I. Willner, J. Am. Chem. Soc., 2004, 126, 7430.

    Article  CAS  PubMed  Google Scholar 

  35. D. Li, B. Shlyahovsky, J. Elbaz, and I. Willner, J. Am. Chem. Soc., 2007, 129, 5804.

    Article  CAS  PubMed  Google Scholar 

  36. X. Su, H. F. Teh, X. H. Lieu, and Z. Q. Gao, Anal. Chem., 2007, 79, 7192.

    Article  CAS  PubMed  Google Scholar 

  37. Z. Q. Gao and Y. F. Peng, Biosens. Bioelectron., 2011, 26, 3768.

    Article  CAS  PubMed  Google Scholar 

  38. Z. Q. Gao and Y. H. Yu, Sens. Actuators, B, 2007, 121, 552.

    Article  CAS  Google Scholar 

  39. Y. L. Zhou, M. Wang, X. M. Meng, H. S. Yin, and S. Y. Ai, RSC Adv., 2012, 2, 7140.

    Article  CAS  Google Scholar 

  40. C. B. Ma, E. S. Yeung, S. D. Qi, and R. Han, Anal. Bioanal. Chem., 2012, 402, 2217.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jianhui Jiang or Ruqin Yu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yan, C., Jiang, C., Jiang, J. et al. Simple, Colorimetric Detection of MicroRNA Based on Target Amplification and DNAzyme. ANAL. SCI. 29, 605–610 (2013). https://doi.org/10.2116/analsci.29.605

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.29.605

Navigation