Skip to main content
Log in

Mechanistic Study on the Electrochemical Reduction of 9,10-Anthraquinone in the Presence of Hydrogen-bond and Proton Donating Additives

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The electrochemical reduction of 9,10-anthraquinone (AQ) was investigated in CH3CN in both the absence and presence of the hydrogen-bond and proton donating additives, CH3OH, CH(CF3)2OH, phenol, 4-methoxyphenol, 4-cyanophenol, 2,4,6-trichlorophenol, and benzoic acid (BA). Three clearly different types of electrochemical behavior were observed with increasing concentrations of the additives, and were simulated to analyze the reaction mechanisms. Type I was observed for weakly interacting additives, such as CH3OH, characterized by positive shifts of the two well-separated reduction waves, corresponding to the formation of AQ•− and AQ2−, with no loss of reversibility. The second wave shifted more strongly, and finally merged with the first. These behaviors are explained by the association of AQ2− with the additives via strong hydrogen-bonding. Type II is attributed to a reduction mechanism involving quantitative formation of strong hydrogen-bonded complexes of AQ2− with additives, such as CH(CF3)2OH, phenol and 4-methoxyphenol, showing a reversible or quasireversible two-electron reduction wave with increasing concentrations of the additives. The behavior of Type III, observed in the presence of strongly interacting additives, such as 2,4,6-trichlorophenol and BA, is characterized by a voltammogram composed of the 2-electorn cathodic and the broad anodic waves without keeping reversibility, facilitated by proton transfer in the hydrogen-bonded complexes, AQ•−-BA and AQ2−-BA. The effects of hydrogen-bonding and protonation on the electrochemistry of AQ have been systematically demonstrated in terms of the potentials and reaction pathways of the various species, which appear in quinone-hydroquinone systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Q. Chambers, “The Chemistry of the Quinoid Compounds,” ed. S. Patai and Z. Rappoport, 1988, Vol. II, Chap. 12, Wiley, New York, 719 – 757; 1974, Vol. I, Chap. 14, Wiley, New York, 737 – 791.

  2. M. E. Peover, “Electroanalytical Chemistry”, ed. A. J. Bard, 1967, Dekker, New York, 1 – 51.

    Google Scholar 

  3. A. J. Swallow, “Function of Quinones in Energy Conserving Systems,” ed. B. L. Trumpower, 1982, Chap. 3, Academic Press, New York.

    Google Scholar 

  4. M. Y. Okamura and G. Feher, Annu. Rev. Biochem., 1992, 61, 861.

    Article  CAS  PubMed  Google Scholar 

  5. A. Niemz and V. M. Rotello, Acc. Chem. Res., 1999, 32, 44.

    Article  CAS  Google Scholar 

  6. B. Uno, A. Kawabata, and K. Kano, Chem. Lett., 1992, 1017.

  7. B. Uno, N. Okumura, M. Goto, and K. Kano, J. Org. Chem., 2000, 65, 1448.

    Article  CAS  PubMed  Google Scholar 

  8. N. Gupta and H. Linschitz, J. Am. Chem. Soc., 1997, 119, 6384.

    Article  CAS  Google Scholar 

  9. N. Okumura and B. Uno, Bull. Chem. Soc. Jpn., 1999, 72, 1213.

    Article  CAS  Google Scholar 

  10. Y. Ge. L. Miller, T. Ouimet, and D. K. Smith, J. Org. Chem., 2000, 65, 8831.

    Article  PubMed  Google Scholar 

  11. M. Gómez, F. J. Conzález, and I. González, Electroanalysis, 2003, 15, 635.

    Article  Google Scholar 

  12. J. Garza, R. Vargas, M. Gómez, I. González, and F. J. Conzález, J. Phys. Chem. A, 2003, 107, 11161.

    Article  CAS  Google Scholar 

  13. M. Gómez, F. J. Conzález, and I. González, J. Electrochem. Soc., 2003, 150, E527.

    Article  Google Scholar 

  14. N. A. Macías-Ruvalcaba, I. González, and M. Aguilar-Martínez, J. Electrochem. Soc., 2004, 151, E110.

    Article  Google Scholar 

  15. M. Gómez, F. J. Conzález, and I. González, J. Electroanal. Chem., 2005, 578, 193.

    Article  Google Scholar 

  16. I. M. Kolthoff and J. J. Lingane, “Polarograhpy,” 2nd ed., 1952, Vol. 1, Chaps. 14 and 15, Interscience, New York.

    Google Scholar 

  17. N. A. Macías-Ruvalcaba, N. Okumura, and D. H. Evans, J. Phys. Chem. B, 2006, 110, 22043.

    Article  PubMed  Google Scholar 

  18. P. H. Give and M. E. Peover, J. Chem. Soc., 1960, 358.

  19. I. M. Kolthoff and T. B. Reddy, J. Electrochem. Soc., 1961, 108, 980.

    Article  CAS  Google Scholar 

  20. M. Huynh and T. Meyer, Chem. Rev., 2007, 5004.

  21. J. W. Lown, Chem. Soc. Rev., 1993, 165.

  22. J. W. Lown, “Anthracycline and Anthracenedione-based Anticancer Drugs,” 1988, Elsevier, Amsterdam.

    Google Scholar 

  23. T. Kubota, K. Kano, B. Uno, and T. Konse, Bull. Chem. Soc. Jpn., 1987, 60, 3865.

    Article  CAS  Google Scholar 

  24. B. Uno, K. Kano, T. Konse, T. Kubota, S. Matsuzaki, and A. Kuboyama, Chem. Pharm. Bull., 1985, 33, 5155.

    Article  CAS  Google Scholar 

  25. M. D. Liptak, K. C. Gross, P. G. Seybold, S. Feldgus, and G. C. Shieds, J. Am. Chem. Soc., 2002, 124, 6421.

    Article  CAS  PubMed  Google Scholar 

  26. E. P. Serjeant and B. Dempsey, “IUPAC Chem Data Ser. No. 23. NY,” 1979, Pergamon, NY, 989.

    Google Scholar 

  27. M. H. Abraham, P. P. Duce, D. G. Barratt, J. J. Morris, and P. Taylor, J. Chem. Soc., Perkin Trans. 2, 1989, 1355.

  28. P. J. O’Malley, J. Phys. Chem. A, 1997, 101, 6334.

    Article  Google Scholar 

  29. K. Takamura and Y. Hayakawa, Anal. Chim. Acta, 1968, 43, 273.

    Article  CAS  Google Scholar 

  30. K. Takamura and Y. Hayakawa, J. Electroanal. Chem., 1971, 31, 225.

    Article  CAS  Google Scholar 

  31. T. Fuse, F. Kusu, and K. Takamura, J. Chromatogr., A, 1997, 764, 177.

    Article  CAS  Google Scholar 

  32. K. B. Pate and R. L. Willson, J. Chem. Soc., Faraday Trans. 1, 1973, 69, 814.

    Article  Google Scholar 

  33. S. I. Bailey and I. M. Ritchie, Electrochim. Acta, 1985, 30, 3.

    Article  CAS  Google Scholar 

  34. S. I. Bailey and I. M. Ritchie, J. Chem Soc., Faraday Trans. 2, 1983, 645.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bunji Uno.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Katsumi, J., Nakayama, T., Esaka, Y. et al. Mechanistic Study on the Electrochemical Reduction of 9,10-Anthraquinone in the Presence of Hydrogen-bond and Proton Donating Additives. ANAL. SCI. 28, 257–265 (2012). https://doi.org/10.2116/analsci.28.257

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.28.257

Navigation