Skip to main content
Log in

Simultaneous Determination of Trace Polycyclic and Nitro Musks in Water Samples Using Optimized Solid-Phase Extraction by Gas Chromatography and Mass Spectrometry

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This study intended to develop a robust and sensitive method for simultaneous determination of polycyclic musks (HHCB and AHTN) and nitro musks (musk xylene (MX) and musk ketone (MK)) in water samples using optimized solid-phase extraction (SPE) by gas chromatography and mass spectrometry (GC-MS). The SPE procedure was optimized in terms of selections of SPE cartridge, sample pH, elution process, etc. The method detection limits (MDLs) were from 0.09 to 0.18 ng L–1 for the analytes. The recoveries ranged from 88.3 to 104.1% in spiked deionized water and from 86.4 to 106.8% in groundwater samples, respectively. The proposed approach was also validated by detecting real samples. The results revealed that HHCB and AHTN were ubiquitous in the local aquatic matrices. Furthermore, nitro musks were found in some aquatic matrices, which is consistent with the fact that nitro musks are still being produced and applied in China.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Daughton and T. A. Ternes, Environ. Health Perspect., 1999, 107, 907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. A. M. Peck, Anal. Bioanal. Chem., 2006, 386, 907.

    Article  CAS  PubMed  Google Scholar 

  3. F. Balk and R. A. Ford, Toxicol. Lett., 1999, 111, 57.

    Article  CAS  PubMed  Google Scholar 

  4. A. M. Peck and K. C. Hornbuckle, Environ. Sci. Technol., 2004, 38, 367.

    Article  CAS  PubMed  Google Scholar 

  5. R. Kanda, P. Griffin, H. A. James, and J. Fothergill, J. Environ. Monit., 2003, 5, 823.

    Article  CAS  PubMed  Google Scholar 

  6. G. G. Rimkus and M. Wolf, Chemosphere, 1995, 30, 641.

    Article  CAS  Google Scholar 

  7. L. Wollenberger, M. Breitholtz, K. O. Kusk, and B. E. Bengtsson, Sci. Total Environ., 2003, 305, 53.

    Article  CAS  PubMed  Google Scholar 

  8. H. Fromme, T. Otto, and K. Pilz, Water Res., 2001, 35, 121.

    Article  CAS  PubMed  Google Scholar 

  9. K. Hájková, J. Pulkrabová, J. Hajsľová, T. Randák, and V. Zlábek, Arch. Environ. Contam. Toxicol., 2007, 53, 390.

    Article  PubMed  Google Scholar 

  10. Y. Wan, Q. Wei, J. Hu, X. Jin, Z. Zhang, H. Zhen, and J. Liu, Environ. Sci. Technol., 2007, 41, 424.

    Article  CAS  PubMed  Google Scholar 

  11. H. Nakata, Environ. Sci. Technol., 2005, 39, 3430.

    Article  CAS  PubMed  Google Scholar 

  12. H. Nakata, H. Sasaki, A. Takemura, M. Yoshioka, S. Tanabe, and K. Kannan, Environ. Sci. Technol., 2007, 41, 2216.

    Article  CAS  PubMed  Google Scholar 

  13. M. Breitholtz, L. Wollenberger, and L. Dinan, Aquat. Toxicol., 2003, 63, 103.

    Article  CAS  PubMed  Google Scholar 

  14. K. O. Kusk and L. Wollenberger, Ecotoxicology, 2007, 16, 183.

    Article  CAS  PubMed  Google Scholar 

  15. B. Liebl, R. Mayer, S. Ommer, C. Sönnichsen, and B. Koletzko, Adv. Exp. Med. Biol., 2000, 478, 289.

    Article  CAS  PubMed  Google Scholar 

  16. J. L. Reiner, C. M. Wong, K. F. Arcaro, and K. Kannan, Environ. Sci. Technol., 2007, 41, 3815.

    Article  CAS  PubMed  Google Scholar 

  17. B. van der Burg, R. Schreurs, S. van der Linden, W. Seinen, A. Brouwer, and E. Sonneveld, Int. J. Androl., 2008, 31, 188.

    Article  CAS  PubMed  Google Scholar 

  18. N. Bitsch, C. Dudas, W. Körner, K. Failing, S. Biselli, G. Rimkus, and H. Brunn, Contam. Toxicol., 2002, 43, 257.

    Article  CAS  Google Scholar 

  19. T. Yamagishi, T. Miyazaki, S. Horii, and S. Kaneko, Bull. Environ. Contam. Toxicol., 1981, 26, 656.

    Article  CAS  PubMed  Google Scholar 

  20. D. Salvito, T. Luckenbach, and D. Epel, Environ. Health Perspect., 2005, 113, A802.

    Article  PubMed  PubMed Central  Google Scholar 

  21. H. H. Schmeiser, R. Gminski, and V. Mersch-Sundermann, Int. J. Hyg. Environ. Health., 2001, 203, 293.

    Article  CAS  PubMed  Google Scholar 

  22. C. Sommer, “Synthetic Musk Fragrances in the Environment”, ed. G. G. Rimkus, 2004, Vol. 3, Springer, Berlin, 5.

  23. H. B. Lee, T. E. Peart, and K. Sarafin, Water Qual. Res. J. Can., 2003, 38, 683.

    Article  CAS  Google Scholar 

  24. J. J. Yang and C. D. Metcalfe, Sci. Total Environ., 2006, 363, 149.

    Article  CAS  PubMed  Google Scholar 

  25. A. M. Peck, J. R. Kucklick, and M. M. Schantz, Anal. Bioanal. Chem., 2007, 387, 2381.

    Article  CAS  PubMed  Google Scholar 

  26. X. Zeng, G. Sheng, H. Gui, D. Chen, W. Shao, and J. Fu, Chemosphere, 2007, 69, 1305.

    Article  CAS  PubMed  Google Scholar 

  27. S. L. Simonich, W. M. Begley, G. Debaere, and W. S. Eckhoff, Environ. Sci. Technol., 2000, 34, 959.

    Article  CAS  Google Scholar 

  28. M. Pole, C. Garcia-Jares, M. Llompart, and R. Cela, Anal. Bioanal. Chem., 2007, 388, 1789.

    Article  Google Scholar 

  29. L. I. Osemwengie and S. Steinberg, J. Chromatogr., A, 2001, 932, 107.

    Article  CAS  Google Scholar 

  30. X. Zhang, Y. Yao, X. Zeng, G. Qian, Y. Guo, M. Wu, G. Sheng, and J. Fu, Chemosphere, 2008, 72, 1553.

    Article  CAS  PubMed  Google Scholar 

  31. J. Ellis, M. Shah, K. M. Kubachka, and J. A. Caruso, J. Environ. Monit., 2007, 9, 1329.

    Article  CAS  PubMed  Google Scholar 

  32. D. A. Armbruster, M. D. Tillman, and L. M. Hubbs, Clin. Chem., 1994, 40, 1233.

    Article  CAS  PubMed  Google Scholar 

  33. T. Kupper, C. Plagellat, R. C. Brändli, L. F. de Alencastro, D. Grandjean, and J. Tarradellas, Water Res., 2006, 40, 2603.

    Article  CAS  PubMed  Google Scholar 

  34. I. J. Buerge, H. R. Buser, M. D. Müller, and T. Polger, Environ. Sci. Technol., 2003, 37, 5636.

    Article  CAS  PubMed  Google Scholar 

  35. USACE, “Environmental Quality: Guidance for Evaluating Performance-based Chemical Data”, 2005, DC 20314-1000, Washington.

  36. G. G. Rimkus, Toxicol. Lett., 1999, 111, 37.

    Article  CAS  PubMed  Google Scholar 

  37. T. A. Ternes, M. Bonerz, N. Herrmann, B. Teiser, and H. R. Andersen, Chemosphere, 2007, 66, 894.

    Article  CAS  PubMed  Google Scholar 

  38. E. Artola-Garicano, I. Borkent, J. L. M. Hermens, and W. H. J. Vaes, Environ. Sci. Technol., 2003, 37, 3111.

    Article  CAS  PubMed  Google Scholar 

  39. M. Carballa, F. Omil, and J. M. Lema, Environ. Sci. Technol., 2007, 41, 884.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Yuan.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lv, Y., Yuan, T., Hu, J. et al. Simultaneous Determination of Trace Polycyclic and Nitro Musks in Water Samples Using Optimized Solid-Phase Extraction by Gas Chromatography and Mass Spectrometry. ANAL. SCI. 25, 1125–1130 (2009). https://doi.org/10.2116/analsci.25.1125

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.25.1125

Navigation