Skip to main content
Log in

Homogeneous DNA-detection Based on the Non-enzymatic Reactions Promoted by Target DNA

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Much effort has focused on methods for detecting various genetic differences in individuals, including single nucleotide polymorphisms (SNPs). SNP can be characterized as a substitution, insertion, or deletion at a single base position on a DNA strand. There is expected to be on average one SNP for every 1000 bases of the human genome, and some variations located in genes are suspected to alter both the protein structure and the expression level. Therefore, highly sensitive techniques with a simple procedure would be desirable for a high-throughput screening of millions of SNPs widely dispersed throughout the human genome. In this short review, we consider recently reported unique techniques for genotyping in a homogeneous solution, and organize them in terms of the chemical and physical processes accelerated on DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

8 References

  1. L. E. Morrison, T. C. Halder, and L. M. Stols, Anal. Biochem., 1989, 183, 231.

    Article  CAS  PubMed  Google Scholar 

  2. J.-L. Mergny, A. S. Boutorine, T. Garestier, F. Belloc, M. Rougée, N. V. Bulychev, A. A. Koshkin, J. Bourson, A. L. Lebedev, B. Valeur, N. T. Thuong, and C. Hélène, Nucleic Acids Res., 1994, 22, 920.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. S. Tyagi and F. R. Kramer, Nat. Biotechnol., 1996, 14, 303.

    Article  CAS  PubMed  Google Scholar 

  4. H. C. Yeh, S. Y. Chao, Y. P. Ho, and T. H. Wang, Curr. Pharm. Biotechnol., 2005, 6, 453.

    Article  CAS  PubMed  Google Scholar 

  5. B. Dubertret, M. Calame, and A. J. Libchaber, Nature, 2001, 19, 365.

    CAS  Google Scholar 

  6. D. J. Maxwell, J. R. Taylor, and S. Nie, J. Am. Chem. Soc., 2002, 124, 9606.

    Article  CAS  PubMed  Google Scholar 

  7. P. J. Santangelo, B. Nix, A. Tsourkas, and G. Bao, Nucleic Acids Res., 2004, 32, e57.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. H. Kuhn, V. V. Demidov, J. M. Coull, M. J. Fiandaca, B. D. Gildea, and M. D. Frank-Kamenetskii, J. Am. Chem. Soc., 2002, 124, 1097.

    Article  CAS  PubMed  Google Scholar 

  9. A. Bourdoncle, A. E. Torres, C. Gosse, L. Lacroix, P. Vekhoff, T. Le Saux, L. Jullien, and J.-L. Mergny, J. Am. Chem. Soc., 2006, 128, 11094.

    Article  CAS  PubMed  Google Scholar 

  10. E. V. Bichenkova, X. Yu, P. Bhadra, H. Heissigerova, S. J. A. Pope, B. J. Coe, S. Faulkner, and K. T. Douglas, Inorg. Chem., 2005, 44, 4112.

    Article  CAS  PubMed  Google Scholar 

  11. L. Dyadyusha, H. Yin, S. Jaiswal, T. Brown, J. J. Baumberg, F. P. Booy, and T. Melvin, Chem. Commun., 2005, 3201.

    Google Scholar 

  12. R. Gill, I. Willner, I. Shweky, and U. Banin, J. Phys. Chem. B, 2005, 109, 23715.

    Article  CAS  PubMed  Google Scholar 

  13. H. Peng, L. Zhang, T. H. M. Kjällman, C. Soeller, and J. Travas-Sejdic, J. Am. Chem. Soc., 2007, 129, 3048.

    Article  CAS  PubMed  Google Scholar 

  14. H. A. Ho, K. Doré, M. Boissinot, M. G. Bergeron, R. M. Tanguay, D. Boudreau, and M. Leclerc, J. Am. Chem. Soc., 2005, 127, 12673.

    Article  CAS  PubMed  Google Scholar 

  15. T. Ihara, Y. Chikaura, S. Tanaka, and A. Jyo, Chem. Commun., 2002, 2152.

    Google Scholar 

  16. T. Ihara, S. Tanaka, Y. Chikaura, and A. Jyo, Nucleic Acids Res., 2004, 32, e105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. P. L. Paris, J. M. Langenhan, and E. T. Kool, Nucleic Acids Res., 1998, 26, 3789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. K. V. Balakin, V. A. Korshun, I. I. Mikhalev, G. V. Maleev, A. D. Malakhov, I. A. Prokhorenko, and Y. A. Berlin, Biosens. Bioelectron., 1998, 13, 771.

    Article  CAS  PubMed  Google Scholar 

  19. A. Mahara, R. Iwase, T. Sakamoto, K. Yamana, T. Yamaoka, and A. Murakami, Angew. Chem., Int. Ed., 2002, 41, 3648.

    Article  CAS  Google Scholar 

  20. H. Kashida, H. Asanuma, and M. Komiyama, Chem. Commun., 2006, 2768.

    Google Scholar 

  21. K. Fujimoto, H. Shimizu, and M. Inouye, J. Org. Chem., 2004, 69, 3271.

    Article  CAS  PubMed  Google Scholar 

  22. K. J. Oh, K. J. Cash, and K. W. Plaxco, J. Am. Chem. Soc., 2006, 128, 14018.

    Article  CAS  PubMed  Google Scholar 

  23. T. Ihara, Y. Takeda, and A. Jyo, J. Am. Chem. Soc., 2001, 123, 1772.

    Article  CAS  PubMed  Google Scholar 

  24. T. Ihara, T. Ikegami, T. Fujii, Y. Kitamura, S. Sueda, M. Takagi, and A. Jyo, J. Inorg. Biochem., 2006, 100, 1744.

    Article  CAS  PubMed  Google Scholar 

  25. I. Horsey, Y. Krishnan-Ghosh, and S. Balasubramanian, Chem. Commun., 2002, 1950.

    Google Scholar 

  26. M. Göritz and R. Krämer, J. Am. Chem. Soc., 2005, 127, 18016.

    Article  PubMed  CAS  Google Scholar 

  27. G. Bianké and R. Häner, ChemBioChem, 2004, 5, 1063.

    Article  PubMed  CAS  Google Scholar 

  28. J. L. Czlapinski and T. L. Sheppard, J. Am. Chem. Soc., 2001, 123, 8618.

    Article  CAS  PubMed  Google Scholar 

  29. G. H. Clever and T. Carell, Angew. Chem., Int. Ed., 2007, 46, 250.

    Article  CAS  Google Scholar 

  30. K. Tanaka, A. Tengeiji, K. Kato, N. Toyama, and M. Shionoya, Science, 2003, 299, 1212.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, M. Kubo, Y. Tanaka, Y. Kondo, R. Sawa, T. Fujimoto, T. Machinami, and A. Ono, J. Am. Chem. Soc., 2006, 128, 2172.

    Article  CAS  PubMed  Google Scholar 

  32. C. Switzer and D. Shin, Chem. Commun., 2005, 1342.

    Google Scholar 

  33. R. M. Franzini, R. M. Watson, G. K. Patra, R. M. Breece, D. L. Tierney, M. P. Hendrich, and C. Achim, Inorg. Chem., 2006, 45, 9798.

    Article  CAS  PubMed  Google Scholar 

  34. L. Zhang and E. Meggers, J. Am. Chem. Soc., 2005, 127, 74.

    Article  CAS  PubMed  Google Scholar 

  35. J. Brunner and R. Krämer, J. Am. Chem. Soc., 2004, 126, 13626.

    Article  CAS  PubMed  Google Scholar 

  36. Y. Kitamura, T. Ihara, Y. Tsujimura, M. Tazaki, and A. Jyo, Chem. Lett., 2005, 34, 1606.

    Article  CAS  Google Scholar 

  37. Y. Kitamura, T. Ihara, Y. Tsujimura, Y. Osawa, M. Tazaki, and A. Jyo, Anal. Biochem., 2006, 359, 259.

    Article  CAS  PubMed  Google Scholar 

  38. J. Luo, D. E. Bergstrom, and F. Barany, Nucleic Acids Res., 1996, 24, 3071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. I. G. Gut, Hum. Mutat., 2001, 17, 475.

    Article  CAS  PubMed  Google Scholar 

  40. A. R. Tobler, S. Short, M. R. Anderson, T. M. Paner, J. C. Briggs, S. M. Lambert, P. P. Wu, Y. Wang, A. Y. Spoonde, R. T. Koehler, N. Peyret, C. Chen, A. J. Broomer, D. A. Ridzon, H. Zhou, B. S. Hoo, K. C. Hayashibara, L. N. Leong, C. N. Ma, B. B. Rosenblum, J. P. Day, J. S. Ziegle, F. M. De La Vega, M. D. Rhodes, K. M. Hennessy, and H. M. Wenz, J. Biomol. Tech., 2005, 16, 396.

    Google Scholar 

  41. B. Sobrino, M. Brión, and A. Carracedo, Forensic Sci. Int., 2005, 154, 181.

    Article  CAS  PubMed  Google Scholar 

  42. H.-C. Yeh, Y.-P. Ho, I.-M. Shih, and T.-H. Wang, Nucleic Acids Res., 2006, 34, e35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. E. Kanaya and H. Yanagawa, Biochemistry, 1986, 25, 7423.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Xu and E. T. Kool, Nucleic Acids Res., 1999, 27, 875.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Y. Xu, N. B. Karalkar, and E. T. Kool, Nat. Biotechnol., 2001, 19, 148.

    Article  CAS  PubMed  Google Scholar 

  46. S. Sando, H. Abe, and E. T. Kool, J. Am. Chem. Soc., 2004, 126, 1087.

    Article  CAS  Google Scholar 

  47. H. Abe and E. T. Kool, J. Am. Chem. Soc., 2004, 126, 13981.

    Google Scholar 

  48. S. Ficht, A. Mattes, and O. Seitz, J. Am. Chem. Soc., 2004, 126, 9970.

    Article  CAS  PubMed  Google Scholar 

  49. C. Dose, S. Ficht, and O. Seitz, Angew. Chem., Int. Ed., 2006, 45, 5369.

    Article  CAS  Google Scholar 

  50. K. Fujimoto, S. Matsuda, N. Takahashi, and I. Saito, J. Am. Chem. Soc., 2000, 122, 5646.

    Article  CAS  Google Scholar 

  51. M. Ogino, Y. Yoshimura, A. Nakazawa, I. Saito, and K. Fujimoto, Org. Lett., 2005, 7, 2853.

    Article  CAS  PubMed  Google Scholar 

  52. T. Ihara, T. Fujii, M. Mukae, Y. Kitamura, and A. Jyo, J. Am. Chem. Soc., 2004, 126, 8880.

    Article  CAS  PubMed  Google Scholar 

  53. D. M. John and K. M. Weeks, Chem. Biol., 2000, 7, 405.

    Article  CAS  PubMed  Google Scholar 

  54. D. M. Kolpashchikov, J. Am. Chem. Soc., 2005, 127, 12442.

    Article  CAS  PubMed  Google Scholar 

  55. T. N. Grossmann and O. Seitz, J. Am. Chem. Soc., 2006, 128, 15596.

    Article  CAS  PubMed  Google Scholar 

  56. Z. Cheglakov, Y. Weizmann, M. K. Beissenhirtz, and I. Willner, Chem. Commun., 2006, 3205.

    Google Scholar 

  57. M. N. Stojanovic, P. de Prada, and D. W. Landry, ChemBioChem, 2001, 2, 411.

    Article  CAS  PubMed  Google Scholar 

  58. S. Sando, T. Sasaki, K. Kanatani, and Y. Aoyama, J. Am. Chem. Soc., 2003, 125, 15720.

    Article  CAS  PubMed  Google Scholar 

  59. S. Sando, A. Narita, K. Abe, and Y. Aoyama, J. Am. Chem. Soc., 2005, 127, 5300.

    Article  CAS  PubMed  Google Scholar 

  60. J. Liu and Y. Lu, J. Am. Chem. Soc., 2004, 126, 12298.

    Article  CAS  PubMed  Google Scholar 

  61. L. Wang, X. Liu, X. Hu, S. Song, and C. Fan, Chem. Commun., 2006, 3780.

    Google Scholar 

  62. H. Ueyama, M. Takagi, and S. Takenaka, J. Am. Chem. Soc., 2002, 124, 14286.

    Article  CAS  PubMed  Google Scholar 

  63. S. Nagatoishi, T. Nojima, B. Juskowiak, and S. Takenaka, Angew. Chem. Int. Ed., 2005, 44, 5067.

    Article  CAS  Google Scholar 

  64. J. S. Hartig, S. H. Najafi-Shoushtari, I. Grüne, A. Yan, A. D. Ellington, and M. Famulok, Nat. Biotechnol., 2002, 20, 717.

    Article  CAS  PubMed  Google Scholar 

  65. M. Levy, S. F. Cater, and A. D. Ellington, ChemBioChem., 2005, 6, 2163.

    Article  CAS  PubMed  Google Scholar 

  66. T. Ihara, Y. Mori, T. Imamura, M. Mukae, S. Tanaka, and A. Jyo, Anal. Chim. Acta, 2006, 578, 11.

    Article  CAS  PubMed  Google Scholar 

  67. J. Liu and Y. Lu, Angew. Chem., Int. Ed., 2006, 45, 90.

    Article  CAS  Google Scholar 

  68. B. Shlyahovsky, D. Li, Y. Weizmann, R. Nowarski, M. Kotler, and I. Willner, J. Am. Chem. Soc., 2007, 129, 3814.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshihiro Ihara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ihara, T., Mukae, M. Homogeneous DNA-detection Based on the Non-enzymatic Reactions Promoted by Target DNA. ANAL. SCI. 23, 625–629 (2007). https://doi.org/10.2116/analsci.23.625

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.625

Navigation