Skip to main content
Log in

A Rapid Spectrophotometric Method for the Determination of Trace Level Lead Using 1,5-Diphenylthiocarbazone in Aqueous Micellar Solutions

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A very simple, ultra-sensitive and fairly selective direct spectrophotmetric method is presented for the rapid determination of lead(II) at ultra-trace level using 1,5-diphenylthiocarbazone (dithizone) in micellar media. The presence of the micellar system avoids the previous steps of solvent extraction and reduces the cost and toxicity while enhancing the sensitivity, selectivity and the molar absorptivity. The molar absorptivities of the lead-dithizone complex formed in the presence of the cationic cetyltrimethylammonium bromide (CTAB) surfactants are almost ten times the value observed in the standard method, resulting in an increase in the sensitivity of the method. The reaction is instantaneous and the absorbance remains stable for over 24 h. The average molar absorption coefficient was found to be 3.99 x 105 L mol-1 cm-1 and Sandell’s sensitivity was 30 ng cm-2 of Pb. Linear calibration graphs were obtained for 0.06 - 60 mg L-1 of Pb(II); the stoichiometric composition of the chelate is 1:2 (Pb:dithizone). The interference from over 50 cations, anions and complexing agents has been studied at 1 mg L-1 of Pb(II). The method was successfully used in the determination of lead in several standard reference materials (alloys and steels), environmental water samples (potable and polluted), biological samples (human blood and urine), soil samples and solutions containing both lead(II) and lead(IV) and complex synthetic mixtures. The method has high precision and accuracy (σ= ±0.01 for 0.5 mg L-1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. D. Clayton and F. E. Clayton, “Pathy’s Industrial Hygiene and Toxicology”, 3rd ed., 1981, Wiley, New York, 1687.

    Google Scholar 

  2. R. A. Goyer and T. W. Clarkson, in “Casarett and Doull’s Toxicology: The Basic Science of Poisons,” C. D. Klaassen, 6th ed., 2001, Macmillan Publishing Company, 827.

  3. L. H. Hurney, in “Trace Element Analytical Chemistry in Medicine and Biology etc.”, ed. P. Pratter and P. Scharmel, 1984, Vol. 3, Walter de Gruyter, Berlin, 375.

  4. L. R. Beecks, Anal. Chem., 1986, 58, 975A.

    Article  Google Scholar 

  5. M. M. Key, A. F. Henschel, J. Butter, R. N. Ligo, and I. R. Tebershed, “Occupational Diseases: A Guide to their Recognition”, 1977, US Department of Health, Education and Welfare, U.S. Govt. Printing, Washington, D.C.

    Google Scholar 

  6. A. K. De, “Environmental Chemistry”, 3rd ed., 1996, New Age International (P) Limited, New Delhi, 263.

    Google Scholar 

  7. J. Fries and H. Getrost, “Organic Reagents for Trace Analysis”, 1977, E. Merck, Darmstadt, 243.

    Google Scholar 

  8. L. Hageman, L. Torma, and B. E. Ginther, J. Assoc. Off. Anal. Chem., 1975, 58, 990.

    CAS  Google Scholar 

  9. B. Kumar, H. B. Singh, M. Katyal, and R. L. Sharma, Mikrochim. Acta [Wien], 1991, 79.

    Google Scholar 

  10. EPA (U.S. Environmental Protection Agency), “Proposed Guidelines for Carcinogen Risk Assessment”, 1999, Office of Research and Development, NCEA-F-0644.

    Google Scholar 

  11. H. Tani, T. Kamidate, and H. Watanabe, Anal. Sci., 1998, 14, 875.

    Article  CAS  Google Scholar 

  12. M. E. D. Garcia and A. S. Medel, Talanta, 1986, 33, 255.

    Article  CAS  Google Scholar 

  13. H. Khan, M. J. Ahmed, and M. I. Bhanger, Anal. Sci., 2005, 21, 507.

    Article  CAS  Google Scholar 

  14. L. C. Willemsons, “Handbook of Lead Chemicals”, Project LC-116, International Lead-Zinc Research Organization, 1986, New York.

    Google Scholar 

  15. M. J. Ahmed and M. Moniruzzaman, Ultra Scientist of Physical Sciences, 2001, 13, 25.

    CAS  Google Scholar 

  16. A. L. D. Comitre and B. V. F. Reis, Talanta, 2005, 65, 846.

    Article  CAS  Google Scholar 

  17. M. J. Ahmed and M.-Al Mamun, Talanta, 2001, 55, 43.

    Article  Google Scholar 

  18. S. L. C. Ferreira, M. G. M. Andrade, I. P. Lobo, and A. C. Costa, Anal. Lett., 1991, 24, 1675.

    Article  CAS  Google Scholar 

  19. J. M. Pan, Y. S. Chen, and H. T. Yan, “Chromagenic Reagent and Their Application in Spectrophotometric Analysis, Shanghai Science and Technology”, 1981, 411–413.

    Google Scholar 

  20. Z. J. Li, Z. Z. Zhu, Y. P. Chen, C. G. Xu, and J. M. Pan, Talanta, 1999, 48, 511.

    Article  CAS  Google Scholar 

  21. K. Kilian and K. Pyrzynska, Talanta, 2003, 60, 669.

    Article  CAS  Google Scholar 

  22. M. J. Ahmed and M.-Al Momun, Talanta, 2001, 55, 43.

    Article  Google Scholar 

  23. B. K. Pal and B. Chowdhury, Mikrochim. Acta [Wien], 1984, 121.

    Google Scholar 

  24. N. S. Murcia, E. G. Lundquist, R. O. Russo, and D. G. Peters, J. Chem. Educ., 1990, 67, 7.

    Article  Google Scholar 

  25. E. B. Sandell, “Colorimetric Determination of Traces of Metals”, 1965, Interscience, New York, 269.

    Google Scholar 

  26. C. B. Ojeda, A. G. de Torres, F. S. Rojas, and J. M. C. Pavon, Analyst, 1987, 112, 1499.

    Article  CAS  Google Scholar 

  27. I. Nukatsuka, A. Nashirmura, and K. Ohzeki, Anal. Chim. Acta, 1995, 304, 243.

    Article  CAS  Google Scholar 

  28. P. Job, Ann. Chim. [Paris], 1928, 9, 113.

    CAS  Google Scholar 

  29. J. A. Yoe and A. L. Jones, Ind. Eng. Chem. Anal. Ed., 1944, 16, 11.

    Google Scholar 

  30. J. Fries and H. Getrost, “Organic Reagents for Trace Analysis”, 1977, E. Merck, Dramstadt, 207.

    Google Scholar 

  31. H. D. Fiedler, J. L. Westrup, A. J. Souza, A. D. Pavei, C. U. Chagas, and F. Nome, Talanta, 2004, 64, 190.

    Article  CAS  Google Scholar 

  32. S. Mitra (ed.), “Sample Preparation Techniques in Analytical Chemistry”, 2003, Wiley-Interscience, New Jersey, 14.

    Google Scholar 

  33. E. A. Greenberg, S. L. Clesceri, and D. A. Eaton (ed.), “Standard Methods for the Examination of Water and Wastewater”, 18th ed., 1992, American Public Health Association, Washington, D.C., 3.

    Google Scholar 

  34. R. L. Boecks, Anal. Chem., 1986, 58(2), 275A.

    Google Scholar 

  35. M. L. Jackson, “Soil Chemical Analysis”, 1965, Prentice Hall, Englewood Cliffs, 326.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Jamaluddin Ahmed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khan, H., Ahmed, M.J. & Bhanger, M.I. A Rapid Spectrophotometric Method for the Determination of Trace Level Lead Using 1,5-Diphenylthiocarbazone in Aqueous Micellar Solutions. ANAL. SCI. 23, 193–199 (2007). https://doi.org/10.2116/analsci.23.193

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.23.193

Navigation