Skip to main content
Log in

Digestion Efficiency during Alkaline Persulfate Oxidation for Determination of Total Phosphorus Content of Biological Samples

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Quantifying total phosphorus contents of organisms can elucidate their physiological condition and the nutrient cycles of ecosystems. Simple, brief, and safe persulfate oxidation methods have been used for total P determination, but oxidizing solutions of different compositions and volumes have been used. Two certified reference materials were used to evaluate digestion efficiencies of different solutions for this study. Although the phosphorus recoveries were low (<90%) without NaOH, phosphorus recoveries using the solution with 4% K2S2O8 and 0.15 M NaOH were complete. Results demonstrated that digestion efficiency depends on the K2S2O8 concentration and on the pH condition. Moreover, the phosphorus recoveries were achieved at >4 mL/mg solution/material ratios for both standard materials. Therefore, the author recommends using >4 mL of the 4% K2S2O8 solution with 0.15 M NaOH for sample materials of <1 mg to quantify the total phosphorus of biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. M. Main, D. R. Dobberfuhl, and J. J. Elser, Limnol. Oceanogr., 1997, 42, 1474.

    Article  CAS  Google Scholar 

  2. R. W. Sterner and K. L. Schulz, Aquat. Ecol., 1998, 32, 261.

    Article  Google Scholar 

  3. J. J. Elser, D. R. Dobberfuhl, N. A. MacKay, and J. H. Schampel, BioScience, 1996, 46, 674.

    Article  Google Scholar 

  4. J. J. Elser, R. W. Sterner, E. Gorokhova, W. F. Fagan, T. A. Markow, J. B. Cotner, J. F. Harrison, S. E. Hobbie, G. M. Odell, and L. J. Weidel, Ecol. Lett., 2000, 3, 540.

    Article  Google Scholar 

  5. J. J. Elser, W. F. Fagan, R. F. Denno, D. R. Dobberfuhl, A. Folarin, A. Huberty, S. Interlandi, S. S. Kilham, E. McCauley, K. L. Schulz, E. H. Siemann, and R. W. Sterner, Nature, 2000, 408, 578.

    Article  CAS  PubMed  Google Scholar 

  6. T. H. Chrzanowski and M. Kyle, Aquat. Microb. Ecol., 1996, 10, 115.

    Article  Google Scholar 

  7. T. Vrede, D. R. Dobberfuhl, S. A. L. M. Kooijman, and J. J. Elser, Ecology, 2004, 85, 1217.

    Article  Google Scholar 

  8. C. M. Godwin, E. A. Whitaker, and J. B. Cotner, Ecology, 2017, 98, 820.

    Article  PubMed  Google Scholar 

  9. J. Urabe, Y. Shimizu, and T. Yamaguchi, Ecol. Lett., 2018, 21, 197.

    Article  PubMed  Google Scholar 

  10. M. R. Kendrick and J. P. Benstead, Freshw. Biol., 2013, 58, 1820.

    Article  CAS  Google Scholar 

  11. J. Urabe, Ecology, 1993, 74, 2337.

    Article  Google Scholar 

  12. R. W. Sterner and J. J. Elser, “Ecological Stoichiometry”, 2002, Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  13. C. A. Gibson, C. M. O’Reilly, A. L. Conine, W. Jobs, and S. Belli, Limnol. Oceanogr. Methods, 2015, 13, 202.

    Article  Google Scholar 

  14. B. M. C. Grutters, E. M. Gross, and E. S. Bakker, Hydrobiologia, 2016, 778, 209.

    Article  CAS  Google Scholar 

  15. G. Anderson, Water Res., 1976, 10, 329.

    Article  Google Scholar 

  16. K. I. Aspira, H. Agemian, and A. S. Y. Chau, Analyst, 1976, 101, 187.

    Article  Google Scholar 

  17. M. Mooshammer, W. Wanek, J. Schnecker, B. Wild, S. Leitner, F. Hofhansl, A. Blöchl, I. Hämmerle, A. H. Frank, L. Fuchslueger, K. M. Keiblinger, S. Zechmeister-Boltenstern, and A. Richter, Ecology, 2012, 93, 770.

    Article  PubMed  Google Scholar 

  18. R. A. Nadkarni, Anal. Chem., 1984, 56, 2233.

    Article  CAS  Google Scholar 

  19. D. K. Tanner, E. N. Leonard, and J. C. Brazner, Limnol. Oceanogr., 1999, 44, 708.

    Article  CAS  Google Scholar 

  20. W. Maher and L. Woo, Anal. Chim. Acta, 1998, 375, 5.

    Article  CAS  Google Scholar 

  21. C. Labry, A. Youenou, D. Delmas, and P. Michelon, Cont. Shelf Res., 2013, 60, 28.

    Article  Google Scholar 

  22. M. Suzumura, Limnol. Oceanogr. Methods, 2008, 6, 619.

    Article  CAS  Google Scholar 

  23. J. Zhou, Z. Chen, and S. Li, Commun. Soil Sci. Plant Anal., 2003, 34, 725.

    Article  CAS  Google Scholar 

  24. J. D. H. Strickland and T. R. Parsons, “A Practical Handbook of Sea-water Analysis”, 2nd ed, 1972, Fisheries Research Board of Canada, Bulletin 167.

    Google Scholar 

  25. E. J. Monaghan and K. C. Ruttenberg, Limnol. Oceanogr., 1999, 44, 1702.

    Article  CAS  Google Scholar 

  26. J. C. Valderrama, Mar. Chem., 1981, 10, 109.

    Article  CAS  Google Scholar 

  27. F. I. Ormaza-González and P. J. Statham, Water Res., 1996, 30, 2739.

    Article  Google Scholar 

  28. C. L. Langner and P. F. Hendrix, Water Res., 1982, 16, 1451.

    Article  CAS  Google Scholar 

  29. P. Raimbault, F. Diaz, W. Pouvesle, and B. Boudjellal, Mar. Ecol. Prog. Ser., 1999, 180, 289.

    Article  CAS  Google Scholar 

  30. J. Ebina, T. Tsutsui, and T. Shirai, Water Res., 1983, 71, 1721.

    Article  Google Scholar 

  31. P.D. Goulden and D. H. J. Anthony, Anal. Chem., 1978, 50, 953.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Dr. K. Koba provided very useful comments for this manuscript. The present study was conducted using Cooperative Research Facilities (Isotope Ratio Mass Spectrometer) of the Center for Ecological Research, Kyoto University. The author appreciates the valuable comments given by two anonymous reviewers and editorial handling by Dr. Y. Zhu, Associate Editor of this journal. This research was supported by a JSPS Research Fellowship for Young Scientists (20J00607) and Grant-in-Aid for Scientific Research (21K17879) to YO.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Onishi, Y. Digestion Efficiency during Alkaline Persulfate Oxidation for Determination of Total Phosphorus Content of Biological Samples. ANAL. SCI. 37, 1771–1774 (2021). https://doi.org/10.2116/analsci.21P116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P116

Keywords

Navigation