Skip to main content
Log in

Strategy of Dimercaptothiol as Self-assembled Monolayers Enhance the Sensitivity of SPR Immunosensor for Detection of Salbutamol

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The formation of self-assembled monolayers (SAMs) is a normal method for the immobilization of biorecognition elements immobilized on SPR sensors. With this method, mercaptopropionic acid (MPA) with carboxylic and thiol group is the most commonly used. Dimercaptosuccinic acid (DMSA) having two carboxylics and two thiol groups is a classical antidote for heavy metal ions. In this paper, DMSA was first used to form SAMs to connect the antigen on the chip of a surface plasmon resonance (SPR) immunosensor for detection of salbutamol (SAL), and the results were compared with a traditional (MPA)-SPR sensor. Dihydrolipoic acid(DHLA)-SPR showed that the recognition efficiency of antigen and antibody of DMSA-SPR immunosensor was 170.1% at room temperature with the linear range of 5–150 ng/mL. The recovery rate of this sensor applied to SAL detection in pork reached 94.9–108.0% and the limit of quantification (LOQ) was 5 ng/mL. The results were in good correlation with the analysis results of ultra-high phase liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) analysis. This novel DMSA-SPR immunosensor provides insight into a new idea and method for improving the sensitivity of SPR immunosensors and can be widely used in the detection of other small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. V. Stebunov, O. A. Aftenieva, A. V. Arsenin, and V. S. Volkov, ACS Appi. Mater. Interfaces, 2015, 7, 21727.

    Article  CAS  Google Scholar 

  2. Y. Mei, C. Zhong, L. Li, and J. Nong, Anal. Bioanal. Chem., 2019, 411, 4577.

    Article  CAS  PubMed  Google Scholar 

  3. W. Wang, X. Zhou, S. Wu, and S. Li, Sens. Actuators, A, 2019, 286, 59.

    Article  CAS  Google Scholar 

  4. S. Miyake, Y. Hirakawa, and T. Yamasaki, Anal. Sci., 2020, 36, 335.

    Article  CAS  PubMed  Google Scholar 

  5. Y. Cao, B. Griffith, P. Bhomkar, and D. S. Wishart, Analyst, 2017, 143, 289.

    Article  PubMed  Google Scholar 

  6. L. Wu, J. Guo, Q. Wang, and S. Lu, Sens. Actuators, B, 2017, 249, 542.

    Article  CAS  Google Scholar 

  7. X. Liu, R. Huang, R. Su, and W. Qi, ACS Appi. Mater. Interfaces, 2014, 6, 13034.

    Article  CAS  Google Scholar 

  8. M. Singh, M. Holzinger, M. Tabrizian, and S. Winters, J. Am. Chem. Soc., 2015, 137, 2800.

    Article  CAS  PubMed  Google Scholar 

  9. M. Toma, and K. Tawa, ACS Appi. Mater. Interfaces, 2016, 8, 22032.

    Article  CAS  Google Scholar 

  10. S. Peeters, T. Stakenborg, G. Reekmans, and W. Laureyn, Biosens. Bioelectron., 2008, 24, 72.

    Article  CAS  PubMed  Google Scholar 

  11. W. C. Tsai and P. J. R. Pai, Microchim. Acta, 2009, 166, 115.

    Article  CAS  Google Scholar 

  12. A. J. Guiomar, J. T. Guthrie, and S. D. Evans, Langmuir, 1999, 75, 1198.

    Article  Google Scholar 

  13. K. V. Gobi, K. Matsumoto, K. Toko, and H. Ikezaki, Anal. Bioanal. Chem., 2007, 387, 2727.

    Article  CAS  PubMed  Google Scholar 

  14. O. V. Shynkarenko and S. A. Kravchenko, Theor. Exp. Chem., 2015, 57, 273.

    Article  Google Scholar 

  15. K. Isozaki, T. Shimoaka, S. Oshiro, and A. Yamaguchi, ACS Omega, 2018, 3, 7483.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. L. Zou, Y Li, S. Cao, and B. Ye, Electroanalysis, 2014, 26, 1051.

    Article  CAS  Google Scholar 

  17. K. C. Chang, Y. T. Chang, and C. E. Tsai, J. Food Drug Anal., 2018, 26, 725.

    Article  CAS  PubMed  Google Scholar 

  18. A. C. Servais, P. Chiap, P. Hubert, and J. Crommen, Electrophoresis, 2004, 25, 1632.

    Article  CAS  PubMed  Google Scholar 

  19. E. Ekiert, C. Garcia-Ruiz, M. A. Garcia, and M. L. Marina, Electrophoresis, 2003, 24, 2680.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by the Agricultural Science and Technology Innovation Project of Shandong Academy of Agricultural Sciences (CXGC2018E05). We would like to thank Zhaozhen Cao and Fang Tian from the Analytical Center for Structural Constituent and Physical Property of Core Facilities Sharing Platform, Shandong University, for expert technical assistance and helpful discussions with the experiment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mengmeng Yan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Wang, C., Li, H. et al. Strategy of Dimercaptothiol as Self-assembled Monolayers Enhance the Sensitivity of SPR Immunosensor for Detection of Salbutamol. ANAL. SCI. 37, 1289–1294 (2021). https://doi.org/10.2116/analsci.21P011

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P011

Keywords

Navigation