Skip to main content
Log in

Fluorescent probe visualization for selective detection of cuprous ion

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Cuprous ion is an essential element for human life activities. However, excessive cuprous can cause dysfunction of the human body system. To help explain this evolving biology, we report a fluorescent probe for detecting unstable Cu(I). Cu(I) undergoes a metal complexation reaction with the sulfur element in the probe, resulting in a photoelectron transfer (PET) effect. The probe fluorescence is greatly suppressed, and rapid and selective visual detection of Cu(I) in the inorganic environment is realized. There is also a good linear relationship between the probe fluorescence intensity and the Cu(I) concentration (R2 = 0.992), which can realize the quantitative detection of Cu(I). When the probe concentration is 0.1 μM, the detection limit is 15 nM, and the detection limit of the visual method is as low as 0.1 μM. This work provides a valuable starting point for real-time monitoring of the Cu(I) concentration in a human anaerobic environment based on active probes.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. J. Chayen, Cell. Biochem. Fun. 13(2), 153 (1995)

    Article  CAS  Google Scholar 

  2. P.G. Ridge, Y. Zhang, V.N. Gladyshev, PLoS ONE 3, 1 (2008)

    Article  Google Scholar 

  3. E.L. Que, D.W. Domaille, C.J. Chang, Chem. Rev. 108(5), 1517 (2008)

    Article  CAS  Google Scholar 

  4. A.K. Boal, A.C. Rosenzweig, Chem. Rev. 109(10), 4760 (2009)

    Article  CAS  Google Scholar 

  5. L. Band, I. Bertini, S. Ciofi-Baffoni, T. Kozyreva, K. Zovo, P. Palumaa, Nature 465, 645 (2010)

    Article  Google Scholar 

  6. C.J. Chang, Nat. Chem. Biol. 11(10), 744 (2015)

    Article  CAS  Google Scholar 

  7. S.C. Dodani, D.W. Domaille, C.I. Nam, E.W. Miller, L.A. Finney, S. Vogt, C.J. Chang, Proc. Natl. Acad. Sci. USA. 108(15), 5980 (2011)

    Article  CAS  Google Scholar 

  8. R.H. Crabtree, J. Inorg. Nucl. Chem. 40, 1453 (1978)

    Article  CAS  Google Scholar 

  9. X. Duan, E. Block, Z. Li, T. Connelly, J. Zhang, Z. Huang, X. Su, Y. Pan, L. Wu, Q. Chi, Proc. Natl. Acad. Sci. USA. 109(9), 3492 (2012)

    Article  CAS  Google Scholar 

  10. L. Krishnamoorthy, J.A. Cotruvo, J. Chan, H. Kaluarachchi, C.J. Chang, Nat. Chem. Biol. 12(8), 586 (2016)

    Article  CAS  Google Scholar 

  11. T. Finkel, M. Serrano, M.A. Blasco, Nature 448(7155), 767 (2007)

    Article  CAS  Google Scholar 

  12. K.J. Barnham, A.I. Bush, Chem. Soc. Rev. 43(19), 6727 (2014)

    Article  CAS  Google Scholar 

  13. S.G. Kaler, Nat. Rev. Neurol. 7(1), 15 (2011)

    Article  CAS  Google Scholar 

  14. J.L. Burkhead, L.W. Gray, S. Lutsenko, Biometals 24(3), 455 (2011)

    Article  CAS  Google Scholar 

  15. U. Merle, M. Schaefer, P. Ferenci, W. Stremmel, Gut 56(1), 115 (2007)

    Article  CAS  Google Scholar 

  16. A.C. Joseph, T.A. Allegra, M.R. Karla, J.C. Christopher, Chem. Soc. Rev. 44(13), 4400 (2015)

    Article  Google Scholar 

  17. K.P. Carter, A.M. Young, A.E. Palmer, Chem. Rev. 114, 4564 (2014)

    Article  CAS  Google Scholar 

  18. A.T. Aron, K.M. Ramos-Torres, J.A. Cotruvo, C.J. Chang, Acc. Chem. Res. 48(8), 2434 (2015)

    Article  CAS  Google Scholar 

  19. C.J. Fahrni, Curr. Opin. Chem. Biol. 17(4), 656 (2013)

    Article  CAS  Google Scholar 

  20. M.C. Heffern, H.M. Park, H.Y. Au-Yeung, D. Van, C.M. Ackerman, A. Stahl, C.J. Chang, Proc. Natl. Acad. Sci. USA. 113(50), 14219 (2016)

    Article  CAS  Google Scholar 

  21. E.L. Que, C.J. Chang, Chem. Soc. Rev. 39(1), 51 (2009)

    Article  Google Scholar 

  22. E.L. Que, C.J. Chang, J. Am. Chem. Soc. 128(50), 15942 (2006)

    Article  CAS  Google Scholar 

  23. E.L. Que, E. Gianolio, S.L. Baker, A.P. Wong, S. Aime, C.J. Chang, J. Am. Chem. Soc. 131(24), 8527 (2009)

    Article  CAS  Google Scholar 

  24. S. Park, H.J. Kim, J. Hypertens. 9(33), 4473 (2012)

    Google Scholar 

  25. I. Tsujikawa, E. Kanda, The 573rd report of the Research Institute for Iron, Steel and Other Metals, P420 (Tohoku University, Japan, 1950)

    Google Scholar 

  26. W. Zeng, X. Yang, X. Chen, Y. Yan, Eur. Polym. J. 61, 309 (2014)

    Article  CAS  Google Scholar 

  27. Y. Fu, C. Liu, S. Pu, Sens. Actuators B 239, 295 (2017)

    Article  CAS  Google Scholar 

  28. F. Ma, M. Sun, K. Zhang, Y. Zhang, H. Zhu, L. Wu, D. Huang, S. Wang, RSC Adv. 4(104), 59961 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The work was financially supported by the National Key Research and Development Program of China (2017YFA02070000), the National Natural Science Foundation of China (21775042).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suhua Wang.

Additional information

Advanced Publication Released Online by J-STAGE September 10, 2021.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1318 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, R., Yu, L., Su, P. et al. Fluorescent probe visualization for selective detection of cuprous ion. ANAL. SCI. 38, 145–150 (2022). https://doi.org/10.2116/analsci.21P218

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21P218

Keywords

Navigation