Skip to main content
Log in

Thermospray Flame Furnace-AAS Determination of Copper after On-line Sorbent Preconcentration Using a System Optimized by Experimental Designs

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

The present paper describes the on-line coupling of a flow-injection system to a new technique, thermospray flame furnace-AAS (TS-FF-AAS), for the preconcentration and determination of copper in water samples. Copper was preconcentrated onto polyurethane foam (PUF) complexed with ammonium O,O-diethyldithiophosphate (DDTP), while elution was performed using 80% (v/v) ethanol. An experimental design for optimizing the copper preconcentration system was established using a full factorial (24) design without replicates for screening and a Doehlert design for optimization, studying four variables: sample pH, ammonium O,O-diethyldithiophosphate (DDTP) concentration, presence of a coil and the sampling flow rate. The results obtained from the full factorial and based on a Pareto chart indicate that only the pH and the DDTP concentration, as well as their interaction, exert influence on the system within a 95% confidence level. The proposed method provided a preconcentration factor of 65 fold, thus notably improving the detectability of TS-FF-AAS. The detection limit was 0.22 µg/dm3 and the precision, expressed as the relative standard deviation (RSD) for eight independent determinations, was 2.7 and 1.1 for copper solutions containing 5 and 30 µg/dm3, respectively. The procedure was successfully applied for copper determination in water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Pereira and M. A. Z. Arruda, Microchim. Acta, 2003, 141, 115.

    Article  CAS  Google Scholar 

  2. Y. P. De Pefia, W. López, M. Burguera, J. L. Burguera López-Carrasquero, and M. Carrilho, Anal. Chim. Acta, 2001, 438, 259.

    Article  Google Scholar 

  3. C. R. T. Tarley, W. N. L. dos Santos, C. M. dos Santos, M. A. Z. Arruda, and S. L. C. Ferreira, Anal. Lett., 2004, 37, 1437.

    Article  CAS  Google Scholar 

  4. A. Ramesh, K. R. Mohan, K. Sehaiah, and N. D. Jegakumar, Anal. Lett., 2001, 34, 219.

    Article  CAS  Google Scholar 

  5. S. L. C. Ferreira, H. C. dos Santos, and R. C. Campos, Talanta, 2003, 61, 789.

    Article  CAS  Google Scholar 

  6. J. M. Bosque Sendra, M. Nechar, and M. F. Molina, Microchim. Acta, 2000, 134, 43.

    Article  Google Scholar 

  7. T. Lundstedt, E. Seifert, L. Abramo, B. Thelin, A. Nystrom, J. Pettersen, and R. Bergman, Chemom. Intell. Lab. Syst., 1998, 42, 3.

    Article  CAS  Google Scholar 

  8. I. Arambarri, R. Garcia, and E. Millán, Analyst, 2000, 125, 2084.

    Article  CAS  Google Scholar 

  9. M. Soylak, I. Narin, M. A. Bezerra, and S. L. C. Ferreira, Talanta, 2005, 65, 4, 895.

    Article  CAS  Google Scholar 

  10. S. L. C. Ferreira, A. S. Queiroz, M. S. Fernandes, and H. C. dos Santos, Spectrochim. Acta, Part B, 2002, 57, 1939.

    Article  Google Scholar 

  11. S. L. C. Ferreira, W. N. L. dos Santos, M. A. Bezerra, V. A. Lemos, and J. M. Bosque Sendra, Anal. Bioanal. Chem., 2003, 375, 443.

    Article  CAS  Google Scholar 

  12. N. Baccan, C. E. S. Miranda, and B. F. Reis, Quím. Nova, 1996, 19, 623.

    Google Scholar 

  13. A. Gáspár and H. Berndt, Spectrochim. Acta, Part B, 2000, 55, 587.

    Article  Google Scholar 

  14. E. R. Pereira-Filho, H. Berndt, and M. A. Z. Arruda, J. Anal. At. Spectrom., 2002, 17, 1308.

    Article  CAS  Google Scholar 

  15. M. G. Pereira, H. Berndt, and M. A. Z. Arruda, Spectrochim. Acta, Part B, 2004, 59, 515.

    Article  Google Scholar 

  16. C. C. Nascentes, M. A. Z. Arruda, A. R. A. Nogueira, and J. A. Nóbrega, Talanta, 2004, 64, 912.

    Article  CAS  Google Scholar 

  17. J. Davies and H. Berndt, Anal. Chim. Acta, 2003, 479, 215.

    Article  CAS  Google Scholar 

  18. C. R. T. Tarley and M. A. Z. Arruda, Anal. Sci., 2004, 20, 961.

    Article  CAS  Google Scholar 

  19. V. A. Lemos, R. E. Santelli, M. S. Carvalho, and S. L. C. Ferreira, Spectrochim. Acta, Part B, 2000, 55, 1497.

    Article  Google Scholar 

  20. R. Ma and F. Adams, Spectrochim. Acta, Part B, 1996, 51, 1917.

    Article  Google Scholar 

  21. G. L. Long and J. D. Winefordner, Anal. Chem., 1983, 55, 712.

    Article  Google Scholar 

  22. R. E. Santelli, M. Gallego, and M. Valcárcel, Talanta, 1994, 41, 817.

    Article  CAS  Google Scholar 

  23. A. Ali, Y. Ye, and G. Xu, Fresenius J. Anal. Chem., 1999, 365, 642.

    Article  CAS  Google Scholar 

  24. S. M. Sella, A. K. Ávila, and R. C. Campos, Anal. Lett., 1999, 32, 2091.

    Article  CAS  Google Scholar 

  25. S. Dadfarnia, A. M. Salmanzadeh, and A. M. Haji, J. Anal. At. Spectrom., 2002, 17, 1434.

    Article  CAS  Google Scholar 

  26. A. Ali, H. Shen, X. Gu, G. M. Xu, Y. X. Ye, and X. F. Yin, Lab. Robotics Automat., 2000, 12, 97.

    Article  CAS  Google Scholar 

  27. M. A. Marshall and H. A. Mottola, Anal. Chem., 1985, 57, 729.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to César Ricardo Teixeira Tarley.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tarley, C.R.T., da Figueiredo, E.C. & Matos, G.D. Thermospray Flame Furnace-AAS Determination of Copper after On-line Sorbent Preconcentration Using a System Optimized by Experimental Designs. ANAL. SCI. 21, 1337–1342 (2005). https://doi.org/10.2116/analsci.21.1337

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.21.1337

Navigation