Skip to main content
Log in

Vortex-assisted Dispersive Solid-phase Extraction Using Schiff-base Ligand Anchored Nanomagnetic Iron Oxide for Preconcentration of Phthalate Esters and Determination by Gas Chromatography and Flame Ionization Detector

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Phthalate esters are synthetic chemicals that are widely used in plastic industries as plasticizer. They are harmful to humans and could be carcinogenic. In this research, a new nanosorbent was prepared via a Schiff-base reaction between p-dimethylaminobenzaldehyde and Fe3O4@SiO2-NH2 nanoparticles. A characterization of the sorbent was performed by Fourier-transform infrared spectroscopy, transmission electron microscopy, scanning electron microscopy, and energydispersive spectroscopy. A modified nanosorbent has a core shell structure, and shows a great tendency towards the sorption of phthalate esters. Hence, it was utilized for the dispersive solid-phase extraction of six phthalate esters and determination by gas chromatography-flame ionization detection. Several variables, such as the pH, sorbent amount, salt effects, extraction and desorption time, extraction solvent type and volume, were investigated to establish the optimal conditions. Calibration graphs were linear in the range of 1.0–150.0 μg L−1 for dimethyl phthalate, bis-(2-ethylhexyl) phthalate, di-n-octyl phthalate and 0.1–200.0 μg L−1 for diethyl phthalate, di-n-butyl phthalate and butyl benzyl phthalate, respectively. The obtained limits of detections (S/N = 3) were in the range of 0.02–0.31 μg L−1. Application of the method for the enrichment and determination of phthalate esters in mineral water, natural low fat yogurt and sodium chloride infusion (0.9%, w/v) was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.-J. He, J.-F. Lu, J. Wang, S.-Q. Wei, and K. J. Hageman, Sci. Total Environ., 2020, 698, 134264.

    Article  CAS  PubMed  Google Scholar 

  2. C. Lou, D. Guo, K. Zhang, C. Wu, P. Zhang, and Y. Zhu, Anal. Chim. Acta, 2018, 1007, 71.

    Article  CAS  PubMed  Google Scholar 

  3. J. Yang, Y. Li, Y. Wang, J. Ruan, J. Zhang, and C. Sun, TrAC—Trends Anal. Chem., 2015, 72, 10.

    Article  CAS  Google Scholar 

  4. H. H. Zeng, X. Q. Li, W. L. Hao, L. Z. Zhang, T. Wei, X. F. Zhao, Y. Y. Liu, and J. H. Li, J. Hazard. Mater, 2017, 324, 250.

    Article  CAS  PubMed  Google Scholar 

  5. Q. Zhou, Z. Zheng, J. Xiao, H. Fan, and X. Yan, Anal. Bioanal. Chem., 2016, 408, 5211.

    Article  CAS  PubMed  Google Scholar 

  6. S. Zhou, N. Song, X. Lv, and Q. Jia, J. Chromatogr. A, 2018, 1565, 19.

    Article  CAS  PubMed  Google Scholar 

  7. Z. Cheng, H. H. Li, H. Sheng Wang, X. M. Zhu, S. Sthiannopkao, K. W. Kim, M. S. M. Yasin, J. H. Hashim, and M. H. Wong, Environ. Res., 2016, 150, 423.

    Article  CAS  PubMed  Google Scholar 

  8. P. B. Tchounwou, C. G. Yedjou, A. K. Patlolla, and D. J. Sutton, Mol. Clin. Environ. Toxicol., 2012, 101, 133.

    Article  Google Scholar 

  9. W. Kanchanamayoon, P. Prapatpong, S. Chumwangwapee, and S. Chaithongrat, African J. BiotechnoL, 2012, 11, 16263.

    Article  CAS  Google Scholar 

  10. RS2, “Potable Water Specification”, 2nd ed., 2012, Rwanda Bureau of Standard, Kigali.

    Google Scholar 

  11. H. Yan, X. Cheng, and K. Yan, Analyst, 2012, 137, 4860.

    Article  CAS  PubMed  Google Scholar 

  12. J. Qiao, M. Wang, H. Yan, and G. Yang, J. Agric. Food Chem., 2014, 62, 2782.

    Article  CAS  PubMed  Google Scholar 

  13. M. Moazzen, A. Mousavi Khaneghah, N. Shariatifar, M. Ahmadloo, I. Eş, A. N. Baghani, S. Yousefinejad, M. Alimohammadi, A. Azari, S. Dobaradaran, N. Rastkari, S. Nazmara, M. Delikhoon, and G. R. Jahed Khaniki, Arab. J. Chem., 2019, 72, 476.

    Article  Google Scholar 

  14. X. Wu, H. Hong, X. Liu, W. Guan, L. Meng, Y. Ye, and Y. Ma, Sci. Total Environ., 2013, 444, 224.

    Article  CAS  PubMed  Google Scholar 

  15. Y. Jiao, S. Fu, L. Ding, Q. Gong, S. Zhu, L. Wang, and H. Li, Anal. Methods, 2012, 4, 2729.

    Article  CAS  Google Scholar 

  16. S. Xue, Y. Wang, D. Wu, J. Shen, Y. Wei, and C. Wang, J. Sep. Sci., 2019, 42, 3512.

    Article  CAS  PubMed  Google Scholar 

  17. S. Lirio, C. W. Fu, J. Y. Lin, M. J. Hsu, and H. Y. Huang, Anal. Chini. Acta, 2016, 927, 55.

    Google Scholar 

  18. A. Santana-Mayor, B. Socas-Rodríguez, M. del M. Afonso, J. A. Palenzuela-López, and M. A. Rodríguez-Delgado, J. Chromatogr. A, 2018, 1565, 36.

    Article  CAS  PubMed  Google Scholar 

  19. J. González-Sálamo, M. A. González-Curbelo, J. Hernández-Borges, and M. A. Rodriguez-Delgado, Taianta, 2019, 795, 236.

    Article  Google Scholar 

  20. J. Jiang, D. Mu, M. Ding, S. Zhang, H. Zhang, and J. Hu, Chemosphere, 2018, 202, 17.

    Article  CAS  PubMed  Google Scholar 

  21. M. Miao, G. Zhao, L. Xu, J. Dong, and P. Cheng, J. Mass Spectrom., 2018, 53, 189.

    Article  CAS  PubMed  Google Scholar 

  22. I. Ueta, R. Takenaka, K. Fujimura, T. Yoshimura, S. Narukami, S. Mochizuki, T. Sasaki, and T. Maeda, Anal. Sci., 2018, 34, 1149.

    Article  CAS  PubMed  Google Scholar 

  23. H. Amanzadeh, Y. Yamini, M. Moradi, and Y. A. Asi, J. Chromatogr. A, 2016, 1465, 38.

    Article  CAS  PubMed  Google Scholar 

  24. A. Amiri, M. Chahkandi, and A. Targhoo, Anal. Chim. Acta, 2017, 950, 64.

    Article  CAS  PubMed  Google Scholar 

  25. H. Zhao, M. Huang, J. Wu, L. Wang, and H. He, J. Chromatogr. B, 2016, 1011, 33.

    Article  CAS  Google Scholar 

  26. C. F. Chen, C. W. Chen, T. M. Chen, Y. R. Ju, Y. K. Chang, and C. Di Dong, Int. Biodeterior. Biodegrad., 2017, 124, 233.

    Article  CAS  Google Scholar 

  27. I. Ueta, N. Sekiguchi, A. Suzuki, Y. Kobayashi, T. Kuwabara, and Y. Saito, Anal. Sci., 2020, 36, 277.

    Article  CAS  PubMed  Google Scholar 

  28. F. P. Zamborini, L. Bao, and R. Dasari, Anal. Chem., 2012, 84, 541.

    Article  CAS  PubMed  Google Scholar 

  29. H. Parham, B. Zargar, and R. Shiralipour, J. Hazard. Mater, 2012, 94, 205.

    Google Scholar 

  30. L. Whitty-léveillé, C. Aumaitre, J. Morin, N. Reynier, and D. Larivière, Sep. Purif. Technol., 2019, 228, 115709.

    Article  Google Scholar 

  31. O. Veleva, P. Petrova, M. Chochkova, O. Veleva, and M. Karadjov, J. Chem. TechnoL Metall., 2020, 55, 691.

    Google Scholar 

  32. G. R. Bardajee, Z. Hooshyar, and F. E. Shahidi, Int. J. Environ. Sci. Technol., 2015, 72, 1737.

    Article  Google Scholar 

  33. A. Amiri, H. R. Saadati-Moshtaghin, A. Abdar, and F. M. Zonoz, Int. J. Environ. Anal. Chem., 2018, 98, 1017.

    Article  CAS  Google Scholar 

  34. A. Mehdinia, S. Einollahi, and A. Jabbari, Microchim. Acta, 2016, 183, 2615.

    Article  CAS  Google Scholar 

  35. J. Zhao, Y. Niu, B. Ren, H. Chen, S. Zhang, J. Jin, and Y. Zhang, Chem. Eng. E, 2018, 347, 574.

    Article  CAS  Google Scholar 

  36. F. Alemi-Tameh, J. Safaei-Ghomi, M. Mahmoudi-Hashemi, and R. Teymuri, Res. Chem. Intermed., 2016, 42, 6391.

    Article  CAS  Google Scholar 

  37. E. Asiani, A. Abri, and M. Pazhang, Colloids Surf., B, 2018, 170, 553.

    Article  Google Scholar 

  38. D. Dupont, T. Croguennec, and S. Pochet, “Milk Proteins— Analytical Methods”, in “Reference Module in Food Science”, 2018, Elsevier, Academic Press, 9780081005965.

    Google Scholar 

  39. Y. Fan, H. Chen, H. Liu, F. Wang, S. Ma, A. Latipa, S. Wang, and C. Wang, Anal. Methods, 2017, 9, 370.

    Article  Google Scholar 

  40. R. K. Singh, T. Kim, K. D. Patel, J. C. Knowles, and H. Kim, J. Biomed. Mater. Res., Part A, 2012, 100A, 1734.

    Article  CAS  Google Scholar 

  41. V. A. Online, S. Hu, H. Guo, H. Zhu, M. Liu, and H. Sun, RSC Adv, 2015, 5, 11837.

    Article  Google Scholar 

  42. S. Mahpishanian and H. Sereshti, J. Chromatogr. A, 2016, 1443, 43.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Shahid Chamran University of Ahvaz, Research Council for the financial support of this work (Grant No. SCU.SC98.487). The authors would also like to thank Food and Drug Administration of Ahvaz Jundishapur University of Medical Sciences for its collaboration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahid Pourreza.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourreza, N., Zadeh-Dabbagh, R. Vortex-assisted Dispersive Solid-phase Extraction Using Schiff-base Ligand Anchored Nanomagnetic Iron Oxide for Preconcentration of Phthalate Esters and Determination by Gas Chromatography and Flame Ionization Detector. ANAL. SCI. 37, 1213–1220 (2021). https://doi.org/10.2116/analsci.20P363

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.20P363

Keywords

Navigation