Skip to main content
Log in

Strategies of Immobilizing Cells in Whole-cell Microbial Biosensor Devices Targeted for Analytical Field Applications

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

This review summarizes the development of whole-cell biosensors with a special focus on device development and cell immobilization. Integration of biosensor functions in a device will pave the way for field applications in remote areas and resource-limited settings. Firstly, an introduction to the field of whole-cell biosensors is provided, followed by examples of genetic engineering of cells in order to fulfill sensor functions. A framework of requirements to enable future field applications of biosensors is elaborated. A special focus is on different cell immobilization techniques ranging from polymers, to microfluidic devices, immobilization on paper and combinations of these methods. Looking at globally successfully implemented point of care devices such as a home pregnancy test or a blood glucose meter, we conclude the review with thoughts on long-term stability, portability, ease of use and user safety design guidelines for whole-cell biosensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Belkin, Curr. Opin. Microbiol., 2003, 6, 206.

    Article  CAS  PubMed  Google Scholar 

  2. M. B. Gu, R. J. Mitchell, and B. C. Kim, Whole-Cell-Based Biosens. Environ. Biomonitoring Appl., 2004, 269.

    Google Scholar 

  3. E. Eltzov, A. Yehuda, and R. S. Marks, Sens. Actuators, B, 2015, 221, 1044.

    Article  CAS  Google Scholar 

  4. Z. Cui, X. Luan, H. Jiang, Q. Li, G. Xu, C. Sun, L. Zheng, Y. Song, P. A. Davison, and W. E. Huang, Chemosphere, 2018, 200, 322.

    Article  CAS  PubMed  Google Scholar 

  5. C. I. L. Justino, T. A. Rocha-Santos, and A. C. Duarte, TrAC—Trends Anal. Chem., 2010, 29, 1172.

    Article  CAS  Google Scholar 

  6. T. Xu, D. M. Close, G. S. Sayler, and S. Ripp, Ecol. Indic., 2013, 28, 125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. J. Mehta, S. K. Bhardwaj, N. Bhardwaj, A. K. Paul, P. Kumar, K. H. Kim, and A. Deep, Biotechnol. Adv., 2016, 34, 47.

    Article  CAS  PubMed  Google Scholar 

  8. L. Su, W. Jia, C. Hou, and Y. Lei, Biosens. Bioelectron., 2011, 26, 1788.

    Article  CAS  PubMed  Google Scholar 

  9. J. Radeck, K. Kraft, J. Bartels, T. Cikovic, F. Dürr, J. Emenegger, S. Kelterborn, C. Sauer, G. Fritz, S. Gebhard, and T. Mascher, J. Biol. Eng., 2013, 7, 29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. P. F. Popp, M. Dotzler, J. Radeck, J. Bartels, and T. Mascher, Sci. Rep., 2017, 7.

    Google Scholar 

  11. A. Ahmed, J. V. Rushworth, N. A. Hirst, and P. A. Millner, Clin. Microbiol. Rev., 2014, 27, 631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Y. Song, B. Jiang, S. Tian, H. Tang, Z. Liu, C. Li, J. Jia, W. E. Huang, X. Zhang, and G. Li, Environ. Pollut., 2014, 195, 178.

    Article  CAS  PubMed  Google Scholar 

  13. D. E. Nivens, T. E. McKnight, S. A. Moser, S. J. Osbourn, M. L. Simpson, and G. S. Sayler, J. Appl. Microbiol., 2004, 96, 33.

    Article  CAS  PubMed  Google Scholar 

  14. A. J. Baeumner, Anal. Bioanal. Chem., 2003, 377, 434.

    Article  CAS  PubMed  Google Scholar 

  15. K. H. Guo, P. H. Chen, C. Lin, C. F. Chen, I. R. Lee, and Y. C. Yeh, ACS Sensors, 2018, 3, 744.

    Article  CAS  PubMed  Google Scholar 

  16. D. M. Watstein and M. P. Styczynski, ACS Synth. Biol., 2018, 7, 267.

    Article  CAS  PubMed  Google Scholar 

  17. K. Siegfried, C. Endes, A. F. M. K. Bhuiyan, A. Kuppardt, J. Mattusch, J. R. Van Der Meer, A. Chatzinotas, and H. Harms, Environ. Sci. Technol., 2012, 46, 3281.

    Article  CAS  PubMed  Google Scholar 

  18. A. S. Khalil and J. J. Collins, Nat. Rev. Genet., 2010, 11, 367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. E. Andrianantoandro, S. Basu, D. K. Karig, and R. Weiss, Mol. Syst. Biol., 2006.

    Google Scholar 

  20. International Genetically Engineered Machine Competition, https://igem.org/Main_Page.

  21. Registry of Standard Biological Parts, http://parts.igem.org/Main_Page.

  22. M. E. Lee, W. C. DeLoache, B. Cervantes, and J. E. Dueber, ACS Synth. Biol., 2015, 4, 975.

    Article  CAS  PubMed  Google Scholar 

  23. H. V. Goodson, S. Halweg, A. A. Weaver, M. Joyce, and M. Lieberman, Anal. Bioanal. Chem., 2014, 407, 615.

    PubMed  PubMed Central  Google Scholar 

  24. L. Bousse, Sens. Actuators, B, 1996, 34, 270.

    Article  CAS  Google Scholar 

  25. J. R. van der Meer, D. Tropel, and M. Jaspers, Environ. Microbiol., 2004, 6, 1005.

    Article  CAS  Google Scholar 

  26. N. Verma and G. Kaur, Compr. Anal. Chem., 2016, 74, 33.

    Article  CAS  Google Scholar 

  27. Z. Cui, X. Luan, H. Jiang, Q. Li, G. Xu, C. Sun, L. Zheng, Y. Song, P. A. Davison, and W. E. Huang, Chemosphere, 2018, 200, 322.

    Article  CAS  PubMed  Google Scholar 

  28. H. J. Kim, H. Jeong, and S. J. Lee, “Synthetic Biology for Microbial Heavy Metal Biosensors”, 2018, Springer Berlin Heidelberg.

    Book  Google Scholar 

  29. L. A. C. Burnett, G. Lunn, and R. Coico, Curr. Protoc. Microbiol., 2009, 13, 1A.1.1.

  30. H. J. Shin, Appl. Microbiol. Biotechnol., 2011, 89, 867.

    Article  CAS  PubMed  Google Scholar 

  31. T. Charrier, P. Picart, P. Daniel, C. Chapeau, G. Thouand, and L. Bendria, Anal. Bioanal. Chem., 2010, 400, 1061.

    Article  CAS  Google Scholar 

  32. S. Ravikumar, I. Ganesh, I. K. Yoo, and S. H. Hong, Process Biochem., 2012, 47, 758.

    Article  CAS  Google Scholar 

  33. T. Axelrod, E. Eltzov, and R. S. Marks, Talanta, 2016, 149, 290.

    Article  CAS  PubMed  Google Scholar 

  34. A. De Las Heras and V. De Lorenzo, Anal. Bioanal. Chem., 2011, 400, 1093.

    Article  CAS  Google Scholar 

  35. A. Date, P. Pasini, and S. Daunert, Anal. Chem., 2007, 79, 9391.

    Article  CAS  PubMed  Google Scholar 

  36. T. Yoetz-Kopelman, Y. Dror, Y. Shacham-Diamand, and A. Freeman, Sens. Actuators, B, 2016, 232, 758.

    Article  CAS  Google Scholar 

  37. W. L. Shing, L. Y. Heng, and S. Surif, Sensors (Switzerland), 2013, 13, 6394.

    Article  CAS  Google Scholar 

  38. E. M. Ahmed, J. Adv. Res., 2015, 6, 105.

    Article  CAS  PubMed  Google Scholar 

  39. L. G. Tarantino, A. Roda, E. Michelini, M. M. Calabretta, and Cevenini, Sens. Actuators, B, 2015, 225, 249.

    Google Scholar 

  40. A. Roda, L. Cevenini, E. Michelini, and B. R. Branchini, Biosens. Bioelectron., 2011, 26, 3647.

    Article  CAS  PubMed  Google Scholar 

  41. C. A. Mora, A. F. Herzog, R. A. Raso, and W. J. Stark, Biomaterials, 2015, 61, 1.

    Article  CAS  PubMed  Google Scholar 

  42. A. Weissbrod, N. Sobel, I. Frumin, D. Amir, I. Kviatkovski, L. Secundo, Y. Oron, E. Livne, S. Shushan, and Y. Helman, J. Biotechnol., 2017, 267, 45.

    PubMed  Google Scholar 

  43. K. Y. Lee and D. J. Mooney, Prog. Polym. Sci., 2012, 37, 106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. P. Li, M. Müller, M. W. Chang, M. Frettlöh, and H. Schönherr, ACS Appl. Mater. Interfaces, 2017, 9, 22321.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. H. F. Tsai, Y. C. Tsai, S. Yagur-Kroll, N. Palevsky, S. Belkin, and J. Y. Cheng, Lab Chip, 2015, 15, 1472.

    Article  CAS  PubMed  Google Scholar 

  46. W. C. Kao, S. Belkin, and J. Y. Cheng, Anal. Bioanal. Chem., 2018, 410, 1257.

    Article  CAS  PubMed  Google Scholar 

  47. S. K. Sia and G. M. Whitesides, Electrophoresis, 2003, 24, 3563.

    Article  CAS  PubMed  Google Scholar 

  48. C. Yi, C. W. Li, S. Ji, and M. Yang, “Microfluidics Technology for Manipulation and Analysis of Biological Cells”, 2006, Elsevier.

    Book  Google Scholar 

  49. M. S. Kim, J. H. Yeon, and J. K. Park, Biomed. Microdevices, 2007, 9, 25.

    Article  CAS  PubMed  Google Scholar 

  50. C. Schirmer, J. Posseckardt, A. Kick, K. Rebatschek, W. Fichtner, K. Ostermann, A. Schuller, G. Rödel, and M. Mertig, J. Biotechnol., 2018, 284, 75.

    Article  CAS  PubMed  Google Scholar 

  51. A. Date, P. Pasini, and S. Daunert, Anal. Bioanal. Chem., 2010, 398, 349.

    Article  CAS  PubMed  Google Scholar 

  52. J. Stocker, D. Balluch, M. Gsell, H. Harms, J. Feliciano, S. Daunert, K. A. Malik, and J. R. Van der Meer, Environ. Sci. Technol., 2003, 37, 4743.

    Article  CAS  PubMed  Google Scholar 

  53. B. Joy, M. Benvenuti, H. Reiser, T. Barstis, K. Raddell, M. Lieberman, L. Koenig, D. Ghosh, M. Hunckler, and A. A. Weaver, Anal. Chem., 2013, 85, 6453.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. J. R. Fantino, F. Barras, and F. Denizot, J. Mol. Microbiol. Biotechnol., 2009, 17, 90.

    CAS  PubMed  Google Scholar 

  55. D. Futra, L. Y. Heng, A. Ahmad, S. Surif, and T. L. Ling, Sensors (Switzerland), 2015, 15, 12668.

    Article  CAS  Google Scholar 

  56. S. Prévéral, D. Garcia, C. Brutesco, D. Pignol, C. Escoffier, E. C. T. Descamps, and N. Ginet, Environ. Sci. Pollut. Res., 2016, 24, 25.

    Article  CAS  Google Scholar 

  57. S. H. Choi and M. B. Gu, Biosens. Bioelectron., 2002, 17, 433.

    Article  CAS  PubMed  Google Scholar 

  58. A. Date, P. Pasini, and S. Daunert, Anal. Bioanal. Chem., 2010, 398, 349.

    Article  CAS  PubMed  Google Scholar 

  59. J. Poushter, Pew Res. Cent., 2016, 22, 1.

    Google Scholar 

  60. H. Kalabova, M. Pospisilova, R. Siroka, and G. Kuncova, Meas. Sci. Technol., 2018, 29.

    Google Scholar 

  61. E. Eltzov, R. S. Marks, S. Voost, B. A. Wullings, and M. B. Heringa, Sens. Actuators, B, 2009, 142, 11.

    Article  CAS  Google Scholar 

  62. G. Gao, J. Qian, D. Fang, Y. Yu, and J. Zhi, Anal. Chim. Acta, 2016, 924, 21.

    Article  CAS  PubMed  Google Scholar 

  63. A. M. Horsburgh, N. Strachan, L. A. Glover, G. I. Paton, R. Henkler, K. Killham, N. L. Turner, and D. P. Mardlin, Biosens. Bioelectron., 2002, 17, 495.

    Article  CAS  PubMed  Google Scholar 

  64. O. N. Ponamoreva, O. A. Kamanina, V. A. Alferov, A. V. Machulin, T. V. Rogova, V. A. Arlyapov, S. V. Alferov, N. E. Suzina, and E. P. Ivanova, Biosens. Bioelectron., 2015, 67, 321.

    Article  CAS  PubMed  Google Scholar 

  65. T. Rijavec, J. Zrimec, F. Oven, M. K. Viršek, M. Somrak, Z. Podlesek, C. Gostincˇar, A. Leedjärv, M. Virta, J. S. Tratnik, M. Horvat, and A. Lapanje, Geomicrobiol. J., 2017, 34, 596.

    Article  CAS  Google Scholar 

  66. H. Wei, S. Ze-Ling, C. Le-Le, Z. Wen-hui, and D. Chuan- Chao, Int. J. Environ. Sci. Technol., 2014, 11, 685.

    Article  CAS  Google Scholar 

  67. G. Gao, D. Fang, Y. Yu, L. Wu, Y. Wang, and J. Zhi, Talanta, 2017, 167, 208.

    Article  CAS  PubMed  Google Scholar 

  68. E. Michelini, M. M. Calabretta, L. Cevenini, A. Lopreside, T. Southworth, D. M. Fontaine, P. Simoni, B. R. Branchini, and A. Roda, Biosens. Bioelectron., 2019, 123, 269.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Dr. Gediminas Mikutis for the helpful discussions and input concerning the structure of the manuscript. Financial support from ETH Zürich and the Gebert Rüf Stiftung (GRS-056/16) is kindly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wendelin J. Stark.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lobsiger, N., Stark, W.J. Strategies of Immobilizing Cells in Whole-cell Microbial Biosensor Devices Targeted for Analytical Field Applications. ANAL. SCI. 35, 839–847 (2019). https://doi.org/10.2116/analsci.19R004

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19R004

Keywords

Navigation