Skip to main content
Log in

A Comparison of the Oligosaccharide Structures of Antithrombin Derived from Plasma and Recombinant Using POTELLIGENT® Technology

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Human antithrombin (AT) has two isoforms of which the predominant α-form is glycosylated on all four possible glycosylation sites and the lower abundant β-isoform lacks the oligosaccharide on Asn135. The main oligosaccharide structure of human AT consists of biantennary complex-type oligosaccharides lacking a core fucose. Generally, Chinese hamster ovary (CHO) cells produce recombinant human AT (rhAT) with core-fucosylated oligosaccharides. However, rhAT lacking core-fucose oligosaccharides can be produced by POTELLIGENT® technology, which uses FUT8 knockout CHO cells in production. The rhAT has more variable glycan structures, such as tetra-antennary complex type, highmannose type, and mannose 6-phosphate species as minor components compared to plasma-derived human AT (phAT). In addition, the site-specific glycan profile was different between two ATs. We evaluated the effect of these properties on efficacy and safety based on a comparison of rhAT made by that technology with phAT in terms of their respective oligosaccharide structures, site-specific oligosaccharide profiles, and the ratio of α- and β-forms. Although some structural differences were found between the rhAT and phAT, we concluded that these differences have no significant effect on the efficacy and safety of rhAT.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. Travis and G. S. Salvesen, Annu. Rev. Biochem., 1983, 52, 655.

    Article  CAS  PubMed  Google Scholar 

  2. D. Menache, Semin. Hematol., 1991, 28, 1.

    CAS  PubMed  Google Scholar 

  3. D. Menache, B. J. Grossman, and C. M. Jackson, Transfusion, 1992, 32, 580.

    Article  CAS  PubMed  Google Scholar 

  4. B. Lahiri, A. Bagdasarian, B. Mitchell, R. C. Talamo, and R. W. Colman, Arch. Biochem. Biophys., 1976, 175, 737.

    Article  CAS  PubMed  Google Scholar 

  5. R. D. Rosenberg, K. A. Bauer, and J. A. Marcum, J. Med., 1985, 16, 351.

    CAS  PubMed  Google Scholar 

  6. G. Murano, L. Williams, M. Miller-Andersson, D. L. Aronson, and C. King, Thromb. Res., 1980, 18, 259.

    Article  CAS  PubMed  Google Scholar 

  7. L. E. Franzén, S. Svensson, and O. Larm, J. Biol. Chem., 1980, 255, 5090.

    Article  PubMed  Google Scholar 

  8. U. M. Demelbauer, A. Plematl, L. Kremser, G. Allmaier, D. Josic, and A. Rizzi, Electrophoresis, 2004, 25, 2026.

    Article  CAS  PubMed  Google Scholar 

  9. B. Turk, I. Brieditis, S. C. Bock, S. T. Olson, and I. Björk, Biochemistry, 1997, 36, 6682.

    Article  CAS  PubMed  Google Scholar 

  10. S. O. Brennan, P. M. George, and R. E. Jordan, FEBS Lett., 1987, 219, 431.

    Article  CAS  PubMed  Google Scholar 

  11. E. Bause and G. Legler, Biochem. J., 1981, 195, 639.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. V. Picard, E. Ersdal-Badju, and S. C. Bock, Biochemistry, 1995, 34, 8433.

    Article  CAS  PubMed  Google Scholar 

  13. I. V. Turko, B. Fan, and P. G. Gettins, FEBS Lett., 1993, 335, 9.

    Article  CAS  PubMed  Google Scholar 

  14. C. B. Peterson and M. N. Blackburn, J. Biol. Chem., 1985, 260, 610.

    Article  CAS  PubMed  Google Scholar 

  15. S. O. Brennan, P. M. George, and R. E. Jordan, FEBS Lett., 1987, 219, 431.

    Article  CAS  PubMed  Google Scholar 

  16. S. Frebelius, S. Isaksson, and J. Swedenborg, Arterioscler. Thromb. Vasc. Biol., 1996, 16, 1292.

    Article  CAS  PubMed  Google Scholar 

  17. N. Yamane-Ohnuki, S. Kinoshita, M. Inoue-Urakubo, M. Kusunoki, S. Iida, R. Nakano, M. Wakitani, R. Niwa, M. Sakurada, K. Uchida, K. Shitara, and M. Satoh, Biotechnol. Bioeng., 2004, 87, 614.

    Article  CAS  PubMed  Google Scholar 

  18. A. Beck and J. M. Reichert, mAbs, 2012, 4, 419.

    Article  PubMed  PubMed Central  Google Scholar 

  19. B. Fan, B. C. Crews, I. V. Turko, J. Choay, G. Zettlmeissl, and P. Gettins, J. Biol. Chem., 1993, 268, 17588.

    Article  CAS  PubMed  Google Scholar 

  20. L. Garone, T. Edmunds, E. Hanson, R. Bernasconi, J. A. Huntington, J. L. Meagher, B. Fan, and P. G. Gettins, Biochemistry, 1996, 35, 8881.

    Article  CAS  PubMed  Google Scholar 

  21. S. Mochizuki, K. Miyano, M. Kondo, M. Hirose, A. Masaki, and H. Ohi, Protein Expr. Purif., 2005, 41, 323.

    Article  CAS  PubMed  Google Scholar 

  22. S. T. Olson, A. M. Frances-Chmura, R. Swanson, I. Björk, and G. Zettlmeissl, Arch. Biochem. Biophys., 1997, 341, 212.

    Article  CAS  PubMed  Google Scholar 

  23. S. Endo and R. Shimazaki, J. Intensive Care, 2018, 6, 75.

    Article  PubMed  PubMed Central  Google Scholar 

  24. T. Watanabe, N. Inoue, T. Kutsukake, S. Matsuki, and M. Takeuchi, Biol. Pharm. Bull., 2000, 23, 269.

    Article  CAS  PubMed  Google Scholar 

  25. A. Hasilik, U. Klein, A. Waheed, G. Strecker, and K. von Figura, Proc. Natl. Acad. Sci. U. S. A., 1980, 77, 7074.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. A. Varki, W. Sherman, and S. Kornfeld, Arch. Biochem. Biophys., 1983, 222, 145.

    Article  CAS  PubMed  Google Scholar 

  27. M. Kobayashi, H. Hoshino, J. Masumoto, M. Fukushima, K. Suzawa, S. Kageyama, M. Suzuki, H. Ohtani, M. Fukuda, and J. Nakayama, Inflamm. Bowel. Dis., 2009, 15, 697.

    Article  PubMed  Google Scholar 

  28. H. Kawashima, B. Petryniak, N. Hiraoka, J. Mitoma, V. Huckaby, J. Nakayama, K. Uchimura, K. Kadomatsu, T. Muramatsu, J. B. Lowe, and M. Fukuda, Nat. Immunol., 2005, 6, 1096.

    Article  CAS  PubMed  Google Scholar 

  29. L. E. Franzén, S. Svensson, and O. Larm, J. Biol. Chem., 1980, 255, 5090.

    Article  PubMed  Google Scholar 

  30. M. Takeuchi, S. Takasaki, H. Miyazaki, T. Kato, S. Hoshi, N. Kochibe, and A. Kobata, J. Biol. Chem., 1988, 263, 3657.

    Article  CAS  PubMed  Google Scholar 

  31. C. Y. Chung, B. Yin, Q. Qang, K. Y. Chuang, J. H. Chu, and M. J. Betenbaugh, Biochem. Biophys. Res. Commun., 2015, 463, 211.

    Article  CAS  PubMed  Google Scholar 

  32. S. K. Singh, J. Pharm. Sci., 2011, 100, 354.

    Article  CAS  PubMed  Google Scholar 

  33. T. Kizhner, Y. Azulay, M. Hainrichson, Y. Tekoah, G. Arvatz, A. Shulman, I. Ruderfer, D. Aviezer, and Y. Shaaltiel, Mol. Genet. Metab., 2015, 114, 259.

    Article  CAS  PubMed  Google Scholar 

  34. F. Clerc, K. R. Reiding, B. C. Jansen, G. S. Kammeijer, A. Bondt, and M. Wuhrer, Glycoconj. J., 2016, 33, 309.

    Article  CAS  PubMed  Google Scholar 

  35. F. N. Lamari, A. D. Theocharis, A. P. Asimakopoulou, C. J. Malavaki, and N. K. Karamanos, Biomed. Chromatogr., 2006, 20, 539.

    Article  CAS  PubMed  Google Scholar 

  36. H. Kawashima and M. Fukuda, Ann. N. Y. Acad. Sci., 2012, 1253, 112.

    Article  CAS  PubMed  Google Scholar 

  37. U. M. Demelbauer, A. Plematl, D. Josic, G. Allmaier, and A. Rizzi, J. Chromatogr. A, 2005, 1080, 15.

    Article  CAS  PubMed  Google Scholar 

  38. U. M. Demelbauer, M. Zehl, A. Plematl, G. Allmaier, and A. Rizzi, Rapid Commun. Mass Spectrom., 2004, 18, 1575.

    Article  CAS  PubMed  Google Scholar 

  39. A. Plematl, U. M. Demelbauer, D. Josic, and A. Rizzi, Proteomics, 2005, 5, 4025.

    Article  CAS  PubMed  Google Scholar 

  40. A. J. McCoy, X. Y. Pei, R. Skinner, J. P. Abrahams, and R. W. Carrell, J. Mol. Biol., 2003, 326, 823.

    Article  CAS  PubMed  Google Scholar 

  41. J. C. Egrie and J. K. Browne, Br. J. Cancer, 2001, 84, 3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. S. J. Lee, S. Evers, D. Roeder, A. F. Parlow, J. Risteli, L. Risteli, Y. C. Lee, T. Feizi, H. Langen, and M. C. Nussenzweig, Science, 2002, 295, 1898.

    Article  CAS  PubMed  Google Scholar 

  43. Y. Kanda, T. Yamada, K. Mori, A. Okazaki, M. Inoue, K. Kitajima-Miyama, R. Kuni-Kamochi, R. Nakano, K. Yano, S. Kakita, K. Shitara, and M. Satoh, Glycobiology, 2007, 17, 104.

    Article  CAS  PubMed  Google Scholar 

  44. Y. Mi, A. Lin, D. Fiete, L. Steirer, and J. U. Baenziger, J. Biol. Chem., 2014, 289, 12157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. T. Yamada, Y. Kanda, M. Takayama, A. Hashimoto, T. Sugihara, A. Satoh-Kubota, E. Suzuki-Takanami, K. Yano, S. Iida, and M. Satoh, Glycobiology, 2016, 26, 482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. H. Larsson, P. Akerud, K. Nordling, E. Raub-Segall, L. Claesson-Welsh, and I. Björk, J. Biol. Chem., 2001, 276, 11996.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Yagi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yagi, Y., Okazaki, A., Endo, M. et al. A Comparison of the Oligosaccharide Structures of Antithrombin Derived from Plasma and Recombinant Using POTELLIGENT® Technology. ANAL. SCI. 35, 1333–1340 (2019). https://doi.org/10.2116/analsci.19P181

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19P181

Keywords

Navigation