Skip to main content
Log in

Sensitive and High-Throughput Analyses of Purine Metabolites by Dynamic pH Junction Multiplexed Capillary Electrophoresis: A New Tool for Metabolomic Studies

  • Original Paper
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

On-line sample preconcentration by a dynamic pH junction in conjunction with multiplexed capillary electrophoresis (CE) and UV detection represents a sensitive and high-throughput format for future metabolomic research, such as purine analysis. The optimization of purine focusing can be rapidly assessed by systematically altering the sample matrix properties, such as the buffer co-ion, pH and ionic strength using a 96-capillary array format. This method permits focusing of large sample injection volumes, resulting in over a 50-fold improvement in the concentration sensitivity. The limit of detection (S/N = 3) for purine metabolites was less than 8.0 × 10–8 M under optimum conditions when using UV absorbance. Dynamic pH junction multiplexed CE demonstrated excellent linearity over a hundred-fold concentration range, as well as low inter-capillary precision in terms of normalized migration times and peak areas. The potential for clinically relevant high-throughput analyses of micromolar amounts of purine metabolites in urine was also demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. K. Nicholson, J. Connelly, J. C. Lindon, and E. Holmes, Nature Rev., 2002, 1, 153.

    CAS  Google Scholar 

  2. L. M. Raamsdonk, B. Teusink, D. Broadhurst, N. Zhang, A. Hayes, M. C. Walsh, J. A. Berden, K. M. Brindle, D. B. Kell, J. J. Rowland, H. V. Westerhoff, K. van Dam, and S. G. Oliver, Nature Biotech., 2001, 19, 45.

    Article  CAS  Google Scholar 

  3. W. Weckwerth and O. Fiehn, Current Opinion Biotech., 2002, 13, 156.

    Article  CAS  Google Scholar 

  4. D. Delneri, F. L. Brancia, and S. G. Oliver, Current Opinion Biotech., 2001, 12, 87.

    Article  CAS  Google Scholar 

  5. S. Terabe, M. J. Markuszewski, N. Inoue, K. Otsuka, and T. Nishioka, Pure Appl. Chem., 2001, 73, 1563.

    Article  CAS  Google Scholar 

  6. P. Britz-McKibbin, K. Otsuka, and S. Terabe, Anal. Chem., 2002, 74, 3736.

    Article  CAS  PubMed  Google Scholar 

  7. T. Soga, Y. Ueno, H. Naraoka, Y. Ohashi, M. Tomita, and T. Nishioka, Anal. Chem., 2002, 74, 2233.

    Article  CAS  PubMed  Google Scholar 

  8. E. Zubritsky, Anal. Chem., 2002, 74, 22A.

    Article  CAS  Google Scholar 

  9. N. J. Dovichi and J. Z. Zhang, Methods Mol. Biol., 2001, 167, 225.

    CAS  PubMed  Google Scholar 

  10. X. Gong and E. S. Yeung, J. Chromatogr. B, 2000, 741, 15.

    Article  CAS  Google Scholar 

  11. X. Gong and E. S. Yeung, Anal. Chem., 1999, 71, 4989.

    Article  CAS  PubMed  Google Scholar 

  12. D. S. Burgi and R. L. Chien, Anal. Biochem., 1992, 202, 306.

    Article  CAS  PubMed  Google Scholar 

  13. R. Chien and D. S. Burgi, J. Chromatogr., 1991, 559, 141.

    Article  CAS  Google Scholar 

  14. C. X. Zhang and W. Thormann, Anal. Chem., 1996, 68, 2523.

    Article  CAS  PubMed  Google Scholar 

  15. J. P. Quirino and S. Terabe, Anal. Chem., 1998, 70, 149.

    Article  CAS  PubMed  Google Scholar 

  16. Z. K. Shihabi, J. Cap. Electrophoresis, 1995, 6, 267.

    Google Scholar 

  17. J. L. Beckers, J. Chromatogr., 1993, 641, 363.

    Article  CAS  Google Scholar 

  18. L. Krivankova, A. Vrana, P. Gebauer, and P. Bocek, J. Chromatogr. A, 1997, 772, 283.

    Article  CAS  Google Scholar 

  19. P. Gebauer, W. Thormann, and P. Bocek, J. Chromatogr., 1992, 608, 47.

    Article  CAS  Google Scholar 

  20. P. Gebauer, W. Thormann, and P. Bocek, Electrophoresis, 1995, 16, 2039.

    Article  CAS  PubMed  Google Scholar 

  21. J. P. Quirino and S. Terabe, Science, 1998, 282, 465.

    Article  CAS  PubMed  Google Scholar 

  22. J. P. Quirino and S. Terabe, Anal. Chem., 1999, 71, 1638.

    Article  CAS  Google Scholar 

  23. J. Palmer, N. J. Munro, and J. P. Landers, Anal. Chem., 1999, 71, 1679.

    Article  CAS  PubMed  Google Scholar 

  24. J. B. Kim, J. P. Quirino, K. Otsuka, and S. Terabe, J. Chromatogr. A, 2001, 916, 123.

    Article  CAS  PubMed  Google Scholar 

  25. P. Britz-McKibbin and D. D. Y. Chen, Anal. Chem., 2000, 72, 1729.

    Article  CAS  PubMed  Google Scholar 

  26. P. Britz-McKibbin and D. D. Y. Chen, Anal. Chem., 2000, 72, 1242.

    Article  CAS  PubMed  Google Scholar 

  27. P. Britz-McKibbin, A. R. Kranack, A. Paprica, and D. D. Y. Chen, Analyst, 1998, 123, 1461.

    Article  CAS  PubMed  Google Scholar 

  28. P. Britz-McKibbin and D. D. Y. Chen, Chromatographia, 2003, 57, 87.

    Article  CAS  Google Scholar 

  29. P. Britz-McKibbin, M. J. Markuszewski, T. Iyanagi, K. Matsuda, T. Nishioka, and S. Terabe, Anal. Biochem., 2003, 57, 87.

    CAS  Google Scholar 

  30. I. N. Papadoyannis, V. F. Samanidou, and K. A. Georga, J. Liq. Chrom. Rel. Technol., 1996, 19, 2559.

    Article  CAS  Google Scholar 

  31. T. Adam, D. Friedecky, L. D. Fairbanks, J. Sevcik, and P. Bartak, Clin. Chem., 1999, 45, 2086.

    Article  CAS  PubMed  Google Scholar 

  32. Z. K. Shihabi, M. E. Hindsdale, and A. J. Bleyer, J. Chromatogr. B, 1995, 669, 163.

    Article  CAS  Google Scholar 

  33. G. Xu and H. Liebich, Am. Clin. Lab., 2001, 22.

    Google Scholar 

  34. A. J. Sasco, F. Rey, C. Reynaud, J. Y. Bobin, M. Clavel, and A. Niveleau, Cancer Lett., 1996, 108, 157.

    Article  CAS  PubMed  Google Scholar 

  35. S. Terabe, K. Otsuka, and T. Ando, Anal. Chem., 1989, 61, 251.

    Article  CAS  Google Scholar 

  36. T. Wessel, C. Lanvers, S. Frends, and G. Hempel, J. Chromatogr. A, 2000, 894, 154.

    Article  Google Scholar 

  37. X. Gong, H. M. Pang, and E. S. Yeung, Anal. Chem., 1999, 71, 2642.

    Article  CAS  Google Scholar 

  38. R. Chien and D. S. Burgi, Anal. Chem., 1992, 64, 1046.

    Article  CAS  Google Scholar 

  39. D. S. Burgi, Anal. Chem., 1993, 65, 3726.

    Article  CAS  Google Scholar 

  40. N. E. Baryla and C. A. Lucy, Electrophoresis, 2001, 22, 52.

    Article  CAS  PubMed  Google Scholar 

  41. G. McGrath and W. F. Smyth, J. Chromatogr. B, 1996, 681, 125.

    Article  CAS  Google Scholar 

  42. Handbook of Biochemistry: Selected Data for Molecular Biology”, 1970, CRC Press, Cleveland.

  43. T. Adam, J. Sevcik, Z. Svagera, L. D. Fairbanks, and P. Bartak, Electrophoresis, 1999, 20, 564.

    Article  CAS  PubMed  Google Scholar 

  44. Z. K. Shihabi, Electrophoresis, 2002, 23, 1612.

    Article  CAS  PubMed  Google Scholar 

  45. D. Friedecky, T. Adam, and P. Bartak, Electrophoresis, 2002, 23, 565.

    Article  CAS  PubMed  Google Scholar 

  46. H. J. Issaq, K. C. Chan, G. M. Janini, and G. M. Muschick, J. Liq. Chrom. Rel. Technol., 2000, 23, 145.

    Article  CAS  Google Scholar 

  47. S. Oguri, Y. Yoneya, M. Mizunuma, Y. Fujiki, K. Otsuka, and S. Terabe, Anal. Chem., 2002, 74, 3463.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philip Britz-Mckibbin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Britz-Mckibbin, P., Nishioka, T. & Terabe, S. Sensitive and High-Throughput Analyses of Purine Metabolites by Dynamic pH Junction Multiplexed Capillary Electrophoresis: A New Tool for Metabolomic Studies. ANAL. SCI. 19, 99–104 (2003). https://doi.org/10.2116/analsci.19.99

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.19.99

Navigation