Skip to main content
Log in

Water Interface the Simplest and Best Suited Model for Understanding Biomembranes?

  • Reviews
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

Many studies have been conducted by using the oil (O)|water (W) interface as a simple model for understanding ion transfer (IT) or electron transfer (ET) across biomembranes. In this review, we revisit the usability of the O|W interface as a biomembrane model. For understanding biomembrane IT, the O|W interface is the simplest and best suited model. For example, the standard Gibbs transfer energy of drug ions at the O|W interface is a useful measure for evaluating their membrane permeability in a conventional in vitro assay, called PAMPA. However, the O|W interface is not necessarily a good model for understanding biomembrane ET. This is because no net current can be observed with the O|W interface, owing to the ET-coupled proton transfer. In such a case, the self-assembled monolayer (SAM) formed on a metal electrode serves as a better model for understanding biomembrane ET.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J. M. Berg, J. L. Tymoczko, and L. Stryer, “Biochemistry”, 7th ed., 2012, Freeman, New York.

    Google Scholar 

  2. T. Iwata, H. Nagatani, and T. Osakai, Anal. Sci., 2017, 33, 813.

    Article  CAS  PubMed  Google Scholar 

  3. H. T. Tien, R. H. Barish, L.-Q. Gu, and A. L. Ottova, Anal. Sci., 1998, 14, 3.

    Article  CAS  Google Scholar 

  4. K. Hichiri, O. Shirai, Y. Kitazumi, and K. Kano, Electrochemistry, 2016, 84, 328.

    Article  CAS  Google Scholar 

  5. J. F. Rusling, Acc. Chem. Res., 1998, 31, 363.

    Article  CAS  Google Scholar 

  6. L. J. C. Jeuken, S. D. Connell, P. J. F. Henderson, R. B. Gennis, S. D. Evans, and R. J. Bushby, J. Am. Chem. Soc., 2006, 128, 1711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. M. D. Porter, T. B. Bright, D. L. Allara, and C. E. D. Chidsey, J. Am. Chem. Soc., 1987, 109, 3559.

    Article  CAS  Google Scholar 

  8. K. Takehara, H. Takemura, Y. Ide, and S. Okayama, J. Electroanal. Chem., 1991, 308, 345.

    Article  CAS  Google Scholar 

  9. K. Shiota, M. Ueki, and T. Osakai, J. Electroanal. Chem., 2015, 745, 22.

    Article  CAS  Google Scholar 

  10. T. Osakai, T. Yamamoto, and M. Ueki, Electrochemistry, 2019, 87, 59.

    Article  CAS  Google Scholar 

  11. M. Senda, T. Kakiuchi, and T. Osakai, Electrochim. Acta, 1991, 36, 253.

    Article  CAS  Google Scholar 

  12. H. H. Girault, “Modern Aspects of Electrochemistry”, No. 25, ed. J.O.M. Bockris, B. E. Conway, and R. E. White, 1993, Chap. 1, Plenum Press, New York.

  13. Z. Samec, Pure Appl. Chem., 2004, 76, 2147.

    Article  CAS  Google Scholar 

  14. Liquid Interfaces in Chemical, Biological, and Pharmaceutical Applications”, ed. A. G. Volkov, 2001, Marcel Dekker, New York.

    Google Scholar 

  15. C. Hansch, P. P. Maloney, T. Fujita, and R. M. Muir, Nature, 1962, 194, 178.

    Article  CAS  Google Scholar 

  16. C. Hansch and T. Fujita, J. Am. Chem. Soc., 1964, 86, 1616.

    Article  CAS  Google Scholar 

  17. T. Fujita, J. Iwasa, and C. Hansch, J. Am. Chem. Soc., 1964, 86, 5175.

    Article  CAS  Google Scholar 

  18. A. Leo, C. Hansch, and D. Elkins, Chem. Rev., 1971, 71, 525.

    Article  CAS  Google Scholar 

  19. K. Kontturi and L. Murtomäki, J. Pharm. Sci., 1992, 81, 970.

    Article  CAS  PubMed  Google Scholar 

  20. K. Arai, M. Ohsawa, F. Kusu, and K. Takamura, Bioelectrochem. Bioenerg., 1993, 31, 65.

    Article  CAS  Google Scholar 

  21. K. Arai, F. Kusu, N. Tsuchiya, S. Fukuyama, and K. Takamura, Denki Kagaku, 1994, 62, 840.

    Article  CAS  Google Scholar 

  22. F. Reymond, V. Chopineaux-Courtois, G. Steyaert, G. Bouchard, P. A. Carrupt, B. Testa, and H. H. Girault, J. Electroanal. Chem., 1999, 462, 235.

    Article  CAS  Google Scholar 

  23. G. Bouchard, P. A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Pharm. Res., 2001, 18, 702.

    Article  CAS  PubMed  Google Scholar 

  24. G. Bouchard, P. A. Carrupt, B. Testa, V. Gobry, and H. H. Girault, Chem. Eur. J., 2002, 8, 3478.

    Article  CAS  PubMed  Google Scholar 

  25. J. Ding and T. Osakai, Electroanalysis, 2001, 13, 384.

    Article  CAS  Google Scholar 

  26. J. Ding, H. Hotta, and T. Osakai, J. Electroanal. Chem., 2001, 505, 133.

    Article  CAS  Google Scholar 

  27. V. Gobry, S. Ulmeanu, F. Reymond, G. Bouchard, P. A. Carrupt, B. Testa, and H. H. Girault, J. Am. Chem. Soc., 2001, 123, 10684.

    Article  CAS  PubMed  Google Scholar 

  28. S. M. Ulmeanu, H. Jensen, G. Bouchard, P. A. Carrupt, and H. H. Girault, Pharm. Res., 2003, 20, 1317.

    Article  CAS  PubMed  Google Scholar 

  29. A. Mälkiä, L. Murtomäki, A. Urtti, and K. Kontturi, Eur. J. Pharm. Sci., 2004, 23, 13.

    Article  PubMed  Google Scholar 

  30. M. Nakamura and T. Osakai, J. Electroanal. Chem., 2016, 779, 55.

    Article  CAS  Google Scholar 

  31. Y. Fujii, E. Yoshida, and T. Osakai, Bull. Chem. Soc. Jpn., 2018, 91, 1618.

    Article  CAS  Google Scholar 

  32. K. Maeda, S. Nagami, Y. Yoshida, H. Ohde, and S. Kihara, J. Electroanal. Chem., 2001, 496, 124.

    Article  CAS  Google Scholar 

  33. Y. Tatsuno, T. Kozuru, Y. Yoshida, and K. Maeda, Anal. Sci., 2012, 28, 1145.

    Article  CAS  PubMed  Google Scholar 

  34. T. Kozuru, Y. Tatsuno, Y. Yamaguchi, Y. Choda, Y. Yoshida, and K. Maeda, Rev. Polarogr., 2016, 62, 101.

    Article  Google Scholar 

  35. Y. Kushida, O. Shirai, Y. Takano, Y. Kitazumi, and K. Kano, Anal. Sci., 2015, 31, 677.

    Article  CAS  PubMed  Google Scholar 

  36. O. Shirai and K. Kano, Rev. Polarogr., 2015, 61, 93.

    Article  Google Scholar 

  37. O. Shirai, Anal. Sci., 2018, 34, 753.

    Article  PubMed  Google Scholar 

  38. M. Suzuki, S. Umetani, M. Matsui, and S. Kihara, J. Electroanal. Chem., 1997, 420, 119.

    Article  CAS  Google Scholar 

  39. T. Osakai, N. Akagi, H. Hotta, J. Ding, and S. Sawada, J. Electroanal. Chem., 2000, 490, 85.

    Article  CAS  Google Scholar 

  40. T. Osakai, H. Jensen, H. Nagatani, D. J. Fermín, and H. H. Girault, J. Electroanal. Chem., 2001, 510, 43.

    Article  CAS  Google Scholar 

  41. M. Suzuki, M. Matsui, and S. Kihara, J. Electroanal. Chem., 1997, 438, 147.

    Article  CAS  Google Scholar 

  42. H. Ohde, K. Maeda, Y. Yoshida, and S. Kihara, Electrochim. Acta, 1998, 44, 23.

    Article  CAS  Google Scholar 

  43. Y. Imai, T. Sugihara, and T. Osakai, J. Phys. Chem. B, 2012, 116, 585.

    Article  CAS  PubMed  Google Scholar 

  44. D. G. Georganopoulou, D. J. Caruana, J. Strutwolf, and D. E. Williams, Faraday Discuss., 2000, 116, 109.

    Article  CAS  Google Scholar 

  45. T. Sugihara, H. Hotta, and T. Osakai, Phys. Chem. Chem. Phys., 2004, 6, 3563.

    Article  CAS  Google Scholar 

  46. Y. Sasaki, T. Sugihara, and T. Osakai, Anal. Biochem., 2011, 417, 129.

    Article  CAS  PubMed  Google Scholar 

  47. H. Hotta, S. Ichikawa, T. Sugihara, and T. Osakai, J. Phys. Chem. B, 2003, 107, 9717.

    Article  CAS  Google Scholar 

  48. A. R. Hilgers, R. A. Conradi, and P. S. Burton, Pharm. Res., 1990, 7, 902.

    Article  CAS  PubMed  Google Scholar 

  49. P. Artursson, J. Pharm. Sci., 1990, 79, 476.

    Article  CAS  PubMed  Google Scholar 

  50. M. J. Cho, D. P. Thompson, C. T. Cramer, T. J. Vidmar, and J. F. Scieszka, Pharm. Res., 1989, 6, 71.

    Article  CAS  PubMed  Google Scholar 

  51. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove, J. Pharm. Sci., 1999, 88, 28.

    Article  CAS  PubMed  Google Scholar 

  52. M. Kansy, F. Senner, and K. Gubernator, J. Med. Chem., 1998, 41, 1007.

    Article  CAS  PubMed  Google Scholar 

  53. E. H. Kerns, J. Pharm. Sci., 2001, 90, 1838.

    Article  CAS  PubMed  Google Scholar 

  54. K. Sugano, H. Hamada, M. Machida, and H. Ushio, J. Biomol. Screen., 2001, 6, 189.

    Article  CAS  PubMed  Google Scholar 

  55. M. Fujikawa, R. Ano, K. Nakao, R. Shimizu, and M. Akamatsu, Bioorg. Med. Chem., 2005, 13, 4721.

    Article  CAS  PubMed  Google Scholar 

  56. M. Fujikawa, R. Ano, K. Nakao, R. Shimizu, and M. Akamatsu, Bioorg. Med. Chem., 2007, 15, 3756.

    Article  CAS  PubMed  Google Scholar 

  57. A. Avdeef, S. Bendels, L. Di, B. Faller, M. Kansy, K. Sugano, and Y. Yamauchi, J. Pharm. Sci., 2007, 96, 2893.

    Article  CAS  PubMed  Google Scholar 

  58. M. Nakamura and T. Osakai, Eur. J. Pharm. Sci., 2016, 91, 154.

    Article  CAS  PubMed  Google Scholar 

  59. T. Osakai, Y. Naito, K. Eda, and M. Yamamoto, J. Phys. Chem. B, 2015, 119, 13167.

    Article  CAS  PubMed  Google Scholar 

  60. A. Yamada, E. Yoshida, K. Eda, and T. Osakai, Anal. Sci., 2018, 34, 919.

    Article  CAS  PubMed  Google Scholar 

  61. Y. Naito, W. Murakami, K. Eda, M. Yamamoto, and T. Osakai, J. Phys. Chem. B, 2015, 119, 6010.

    Article  CAS  PubMed  Google Scholar 

  62. O. Shirai, Y. Yoshida, and S. Kihara, Anal. Bioanal. Chem., 2006, 386, 494.

    Article  CAS  PubMed  Google Scholar 

  63. Z. Samec, V. Marecek, and J. Weber, J. Electroanal. Chem., 1979, 103, 11.

    Article  CAS  Google Scholar 

  64. H. Hotta, S. Ichikawa, T. Sugihara, and T. Osakai, J. Phys. Chem. B, 2003, 107, 9717.

    Article  CAS  Google Scholar 

  65. T. Osakai, S. Ichikawa, H. Hotta, and H. Nagatani, Anal. Sci., 2004, 20, 1567.

    Article  CAS  PubMed  Google Scholar 

  66. It was assumed that UQ and Cyt c coexist in a reaction layer on the base gold electrode and that UQ undergoes a two-step one-electron transfer at the electrode. See Fig. 4 in Ref. 10.

  67. G. J. Gordillo and D. J. Shiffrin, J. Chem. Soc., Faraday Trans., 1994, 90, 1913.

    Article  CAS  Google Scholar 

  68. T. Yamamoto, “Directional Electron Transfer from Ubiquinone-10 to Cytochrome c at the Self-Assembled Monolayer Modified Electrode” (Master’s thesis; in Japanese), 2018, Kobe University, Nada, Kobe, Japan.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshiyuki Osakai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osakai, T. Water Interface the Simplest and Best Suited Model for Understanding Biomembranes?. ANAL. SCI. 35, 361–366 (2019). https://doi.org/10.2116/analsci.18R005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18R005

Keywords

Navigation