Skip to main content
Log in

Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A surface-enhanced Raman scattering (SERS) platform for the selective trace analysis of Hg2+ ions was reported, based on poly-thymine (T) aptamer/2-naphthalenethiol (2-NT)-modified gold nanoparticles (AuNPs), which was an oligonucleotide-functionalized nanosensor and SERS chip. 2-NT was used as a Raman reporter, and T aptamer could form a T-Hg2+-T structure with Hg2+ ions making an SERS nanosensor absorbed to the SERS chip. The optimum concentrations of DNA and 2-NT were obtained. An average of 960 DNA molecules attached to each AuNP were measured. The limit of detection (LOD) was 1.0 ppt (1.0 × 10 12 g/mL), which is far below the limit of 10.0 ppb for drinking water, stipulated by the World Health Organization. The sensor has the advantages of low detection cost, a simple sample pretreatment, a green solution and reducing false positives. Furthermore, the nanosensor was used for the determination of trace Hg2+ in the water of a lake; a reliable result was obtained accurately.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. C. Castilhos, S. Rodrigues-Filho, and A. P. Rodrigues, Sci. Total. Environ., 2006, 368, 320.

    Article  CAS  PubMed  Google Scholar 

  2. L. F. M. C. D. Aquino, J. S. Simoes, and S. B. Mano, J. Food Compos. Anal., 2017, 59, 141.

    Article  Google Scholar 

  3. E. Kamycheva, T. Goto, and C. A. Camargo, Environ. Sci. Pollut. Res., 2017, 24, 8385.

    Article  CAS  Google Scholar 

  4. P. B. Tchounwou, C. G. Yedjou, and A. K. Patlolla, EXS, 2012, 101, 33.

    Google Scholar 

  5. M. Harada, Birth Defects Res Part A, 1978, 88, 906.

    Google Scholar 

  6. A. Falluel-Morel, K. Sokolowski, and H. M. Sisti, J. Neurochem., 2010, 103, 1968.

    Article  Google Scholar 

  7. A. Officioso, K. Alzoubi, F. Lang, and C. Manna, Food Chem. Toxicol., 2016, 89, 47.

    Article  CAS  PubMed  Google Scholar 

  8. C. I. Lee and J. B. Choo, Bull. Korean Chem. Soc., 2011, 32, 2003.

    Article  CAS  Google Scholar 

  9. Y. Wang, H. Yang, M. Pschenitza, R. Niessner, Y. Li, and D. Knopp, Anal. Bioanal. Chem., 2012, 403, 2519.

    Article  CAS  PubMed  Google Scholar 

  10. P. Cava-Montesinos, E. Ródenas-Torralba, A. Morales-Rubio, M. L. Cervera, and M. D. L. Guardia, Anal. Chim. Acta, 2004, 506, 45.

    Article  Google Scholar 

  11. S. Prathiba, N. Rajesh, and L. Arrchana, Univ. Sci., 2003, 8, 55.

    Google Scholar 

  12. A. R. Türker, Acta Hydrochim. Hydrobiol., 2012, 40, 523.

    Google Scholar 

  13. J. Hao and X. Meng, Front. Chem. Sci. Eng., 2017, 11, 1.

    Article  Google Scholar 

  14. L. Zhao, W. Gu, C. Zhang, X. Shi, and Y. J. Xian, Colloid Interface Sci., 2016, 465, 279.

    Article  CAS  Google Scholar 

  15. F. Meng, X. Ma, N. Duan, S. Wu, Y. Xia, and Z. Wang, Talanta, 2017, 165, 412.

    Article  CAS  PubMed  Google Scholar 

  16. R. K. Lauridsen, L. M. Sommer, H. K. Johansen, T. Rindzevicius, S. Molin, and L. Jelsbak, Sci. Rep., 2017, 7, 45264.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. M. K. Nguyen, W. N. Su, C. H. Chen, J. Rick, and B. J. Hwang, Spectrochim. Acta, Part A, 2017, 175, 239.

    Article  CAS  Google Scholar 

  18. B. Fazio, C. D’Andrea, A. Foti, E. Messina, A. Irrera, and M. G. Donato, Sci. Rep., 2016, 6, 26952.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. H. Zhou, D. Yang, N. P. Ivleva, N. E. Mircescu, R. Niessner, and C. Haisch, Anal. Chem., 2014, 86, 1525.

    Article  CAS  PubMed  Google Scholar 

  20. S. Kumar, P. Goel, and J. P. Singh, Sens. Actuators, B, 2016, 241, 577.

    Article  Google Scholar 

  21. L. Jensen, C. M. Aikens, and G. C. Schatz, Chem. Soc. Rev., 2008, 37, 1061.

    Article  CAS  PubMed  Google Scholar 

  22. L. Guerrini and D. Graham, ChemInform, 2012, 41, 7085.

    CAS  Google Scholar 

  23. M. D. Sonntag, J. M. Klingsporn, A. B. Zrimsek, B. Sharma, L. K. Ruvuna, and R. P. Van Duyne, Chem. Soc. Rev., 2014, 43, 1230.

    Article  CAS  PubMed  Google Scholar 

  24. J. Yoon, N. Choi, J. Ko, K. Kim, S. Lee, and J. Choo, Biosens. Bioelectron., 2013, 47, 62.

    Article  CAS  PubMed  Google Scholar 

  25. J. H. Kim, J. S. Kim, H. Choi, S. M. Lee, B. H. Jun, and K. N. Yu, Anal. Chem., 2006, 78, 6967.

    Article  CAS  PubMed  Google Scholar 

  26. P. K. Duy, P. T. H. Yen, S. Chun, V. T. T. Ha, and H. Chung, Sens. Actuators, B, 2016, 225, 377.

    Article  CAS  Google Scholar 

  27. J. Moon, S. Y. Yi, A. Hwang, G. Eom, J. Sim, and J. Jeong, RSC Adv., 2016, 6, 84415.

    Article  CAS  Google Scholar 

  28. K. Yang, Y. Hu, and N. Dong, Biosens. Bioelectron., 2016, 80, 373.

    Article  CAS  PubMed  Google Scholar 

  29. D. Xie, W. F. Zhu, H. Cheng, Z. Y. Yao, M. Li, and Y. L. Zhao, Phys. Chem. Chem. Phys., 2018, 20, 8881.

    Article  CAS  PubMed  Google Scholar 

  30. A. Kaminska, A. Kowalska, P. H. Albrycht, E. Witkowska, and J. Waluk, Anal. Methods, 2016, 8, 1463.

    Article  CAS  Google Scholar 

  31. R. A. Tripp, R. A. Dluhy, and Y. Zhao, Nano Today, 2008, 3, 31.

    Article  CAS  Google Scholar 

  32. S. L. Filbrun, A. B. Filbrun, F. L. Lovato, S. H. Oh, E. A. Driskell, and J. D. Driskell, Analyst, 2017, 142, 4456.

    Article  CAS  PubMed  Google Scholar 

  33. S. D. Jayasena, Clin. Chem., 1999, 45, 1628.

    Article  CAS  PubMed  Google Scholar 

  34. A. D. Ellington and J. W. Szostak, Nature, 1990, 346, 818.

    Article  CAS  PubMed  Google Scholar 

  35. D. Rong, H. Qu, L. Liang, Z. Jing, B. Zhang, D. Huang, S. Xu, C. Liang, and W. Xu, Anal. Chem., 2017, 89, 2844.

    Article  Google Scholar 

  36. Y. Miyake, H. Togashi, M. Tashiro, H. Yamaguchi, S. Oda, and M. Kudo, J. Am. Chem. Soc., 2006, 128, 2172.

    Article  CAS  PubMed  Google Scholar 

  37. X. Zhang, B. Ding, H. Wu, J. Wang, and H. Yang, Anal. Sci., 2017, 33, 165.

    Article  PubMed  Google Scholar 

  38. T. Chen, S. Tan, W. Li, and Y. Zhu, Anal. Sci., 2017, 33, 1333.

    Article  PubMed  Google Scholar 

  39. D. Han, S. Y. Lim, B. J. Kim, L. Piao, and T. D. Chung, Chem. Commun., 2010, 46, 5587.

    Article  CAS  Google Scholar 

  40. C. I. Lee and J. B. Choo, Bul. Korean Chem. Soc., 2011, 32, 2003.

    Article  CAS  Google Scholar 

  41. K. Yang, Y. Hu, N. Dong, G. Zhu, T. Zhu, and N. Jiang, Biosens. Bioelectron., 2017, 94, 286.

    Article  CAS  PubMed  Google Scholar 

  42. E. Temur, A. Zengin, İ. H. Boyaci, F. C. Dudak, H. Torul, and U. Tamer, Anal. Chem., 2012, 84, 10600.

    Article  CAS  PubMed  Google Scholar 

  43. M. Ramezani, N. M. Danesh, P. Lavaee, K. Abnous, and S. M. Taghdisi, Sens. Actuators, B, 2016, 222, 1.

    Article  CAS  Google Scholar 

  44. P. Negri, A. Kage, A. Nitsche, D. Naumann, and R. A. Dluhy, Chem. Commun., 2011, 47, 8635.

    Article  CAS  Google Scholar 

  45. X. Sun, S. Yang, M. Guo, S. Ma, M. Zheng, and J. He, Anal. Sci., 2017, 33, 761.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Kong, J. Shen, and A. Fan, Anal. Sci., 2017, 33, 925.

    Article  CAS  PubMed  Google Scholar 

  47. P. Jarujamrus, R. Meelapsom, S. Pencharee, A. Obma, M. Amatatongchai, N. Ditcharoen, S. Chairam, and S. Tamuang, Anal. Sci., 2018, 34, 75.

    Article  CAS  PubMed  Google Scholar 

  48. G. Zeng, Y. Zhu, Y. Zhang, C. Zhang, L. Tang, P. Guo, L. Zhang, Y. Yuan, M. Cheng, and C. Yang, Environ. Sci.— Nano, 2016, 3, 1504.

    Article  CAS  Google Scholar 

  49. Y. Zhu, G. Zeng, Y. Zhang, L. Tang, J. Chen, M. Cheng, L. Zhang, L. He, Y. Guo, X. He, M. Lai, and Y. He, Analyst, 2014, 139, 5014.

    Article  CAS  PubMed  Google Scholar 

  50. B. Liu and J. Liu, J. Am. Chem. Soc., 2017, 139, 9471.

    Article  CAS  PubMed  Google Scholar 

  51. K. Nakanishi, H. Muguruma, and I. Karube, Anal. Chem., 1996, 68, 1695.

    Article  CAS  PubMed  Google Scholar 

  52. M. Liu, Z. Wang, S. Zong, H. Chen, D. Zhu, L. Wu, G. Hu, and Y. Cui, ACS Appl. Mater. Inter., 2014, 6, 7371.

    Article  CAS  Google Scholar 

  53. N. Dong, Y. Hu, K. Yang, and J. Liu, Sens. Actuators, B, 2016, 228, 85.

    Article  CAS  Google Scholar 

  54. S. J. Hurst, A. K. R. Lytton-Jean, and C. A. Mirkin, Anal. Chem., 2006, 78, 8313.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by Tianjin Science and Technology Support Key Project (No. 16YFZCSY00850), National Natural Science Foundation of China (No. 61376082), National Science and Technology Support Project under Grant (No. 2015BAJ01B01) and Science and Technology Support Project of Science and Technology Office in Xinjiang (No. 2015120024002113).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiang Zou.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Q., Li, X., Xue, T. et al. Sensitive and Selective Detection of Mercury Ions in Aqueous Media Using an Oligonucleotide-functionalized Nanosensor and SERS Chip. ANAL. SCI. 35, 493–498 (2019). https://doi.org/10.2116/analsci.18P381

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P381

Keywords

Navigation