Skip to main content
Log in

Anion Coordination Characteristics of Ion-pair Complexes in Highly Concentrated Aqueous Lithium Bis(trifluoromethane- sulfonyl)amide Electrolytes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

We report on the structures of Li-ion complexes in salt-concentrated aqueous electrolytes based on lithium bis(trifluoromethanesulfonyl)amide (LiTFSA), particularly focusing on the anion coordination behavior of the ion-pair complexes in the high concentration region cLi> 3.0 mol dm-3. Quantitative data analysis of the Raman spectra revealed the following. (1) Li ions do not coordinate with TFSA anions at lower cLi (<3.0 mol dm-3) to exist as ion pair-free ions. (2) In the concentrated region (cli= 3.0 - 4.0 mol dm-3), the TFSA anions coordinate as monodentate ligands (mono- TFSA) with Li ions to form ion-pair complexes and coexist with free TFSA in the bulk. (3) Further increasing the cLi(4.0 -5.2 mol dm-3) results in both monodentate and bidentate coordination (bi-TFSA) modes of TFSA anions to Li ions, yielding complicated ion-pair complexes in the first coordination sphere. The Walden plots, based on ionic conductivity and viscosity data, implied that the ion-conducting mechanism in the highly salt-concentrated region was considerably different from that in the dilute region (i.e., vehicle mechanism).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Tarascon and M. Armand, Nature, 2001, 414, 359.

    Article  CAS  PubMed  Google Scholar 

  2. M. Armand and J. M. Tarascon, Nature, 2008, 451, 652.

    Article  CAS  PubMed  Google Scholar 

  3. K. Xu, Chem. Rev., 2014, 114, 11503.

    Article  CAS  PubMed  Google Scholar 

  4. R. Fong, U. V. Sacken, and J. R. Dahn, J. Electrochem. Soc., 1990, 137, 2009.

    Article  CAS  Google Scholar 

  5. D. Aurbach, A. Zaban, Y. Ein-Eli, and I. Weissman, J. Power Sources, 1997, 68, 91.

    Article  CAS  Google Scholar 

  6. K. Xu, Chem. Rev., 2004, 104, 4303.

    Article  CAS  PubMed  Google Scholar 

  7. Y. Yamada, K. Furukawa, K. Sodeyama, K. Kikuchi, M. Yaegashi, Y. Tateyama, and A. Yamada, J. Am. Chem. Soc., 2014, 136, 5039.

    Article  CAS  PubMed  Google Scholar 

  8. Y. Yamada, M. Yaegashi, T. Abe, and A. Yamada, Chem. Commun., 2013, 49, 11194.

    Article  CAS  Google Scholar 

  9. Y. Yamada and A. Yamada, Chem. Lett., 2017, 46, 1065.

    Article  CAS  Google Scholar 

  10. Y. Yamada, Electrochemistry, 2017, 85, 559.

    Article  CAS  Google Scholar 

  11. Y. Yamada and A. Yamada, J. Electrochem. Soc., 2015, 162, A2406.

    Article  CAS  Google Scholar 

  12. K. Sodeyama, Y. Yamada, K. Aikawa, A. Yamada, and Y. Tateyama, J. Phys. Chem. C, 2014, 118, 14091.

    Article  CAS  Google Scholar 

  13. D. M. Seo, O. Borodin, D. Balogh, M. O’Connell, Q. Ly, S.-D. Han, S. Passerini, and W. A. Henderson, J. Electrochem. Soc., 2013, 160, A1061.

    Article  CAS  Google Scholar 

  14. O. Borodin, L. Suo, M. Gobet, X. Ren, F. Wang, A. Faraone, J. Peng, M. Olguin, M. Schroeder, M. S. Ding, E. Gobrogge, A. von Wald Cresce, S. Munoz, J. A. Dura, S. Greenbaum, C. Wang, and K. Xu, ACS Nano, 2017, 11, 10462.

    Article  CAS  PubMed  Google Scholar 

  15. O. Borodin, X. Ren, J. Vatamanu, A. von Wald Cresce, J. Knap, and K. Xu, Acc. Chem. Res., 2017, 50, 2886.

    Article  CAS  PubMed  Google Scholar 

  16. D. W. McOwen, D. M. Seo, O. Borodin, J. Vatamanu, P. D. Boyle, and W. A. Henderson, Energy Environ. Sci., 2014, 7, 416.

    Article  CAS  Google Scholar 

  17. B. Ravikumar, M. Mynam, and B. Rai, J. Phys. Chem. C, 2018, 122, 8173.

    Article  CAS  Google Scholar 

  18. K. Fujii, H. Wakamatsu, Y. Todorov, N. Yoshimoto, and M. Morita, J. Phys. Chem. C, 2016, 120, 17196.

    Article  CAS  Google Scholar 

  19. J. Alvarado, M. A. Schroeder, M. Zhang, O. Borodin, E. Gobrogge, M. Olguin, M. S. Ding, M. Gobet, S. Greenbaum, Y. S. Meng, and K. Xu, Mater. Today, 2018, 21, 341.

    Article  CAS  Google Scholar 

  20. K. Yoshida, M. Nakamura, Y. Kazue, N. Tachikawa, S. Tsuzuki, S. Seki, K. Dokko, and M. Watanabe, J. Am. Chem. Soc., 2011, 133, 13121.

    Article  CAS  PubMed  Google Scholar 

  21. J. Wang, Y. Yamada, K. Sodeyama, E. Watanabe, K. Takada, Y. Tateyama, and A. Yamada, Nature Energy, 2017, 3, 22.

    Article  Google Scholar 

  22. J. Wang, Y. Yamada, K. Sodeyama, C. H. Chiang, Y. Tateyama, and A. Yamada, Nat. Commun., 2016, 7, 12032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. L. Suo, O. Borodin, W. Sun, X. Fan, C. Yang, F. Wang, T. Gao, Z. Ma, M. Schroeder, A. von Cresce, S. M. Russell, M. Armand, A. Angell, K. Xu, and C. Wang, Angew. Chem., Int. Ed. Engl., 2016, 55, 7136.

    Article  CAS  PubMed  Google Scholar 

  24. C. Yang, J. Chen, T. Qing, X. Fan, W. Sun, A. von Cresce, M. S. Ding, O. Borodin, J. Vatamanu, M. A. Schroeder, N. Eidson, C. Wang, and K. Xu, Joule, 2017, 1, 122.

    Article  CAS  Google Scholar 

  25. L. Suo, D. Oh, Y. Lin, Z. Zhuo, O. Borodin, T. Gao, F. Wang, A. Kushima, Z. Wang, H. C. Kim, Y. Qi, W. Yang, F. Pan, J. Li, K. Xu, and C. Wang, J. Am. Chem. Soc., 2017, 139, 18670.

    Article  CAS  PubMed  Google Scholar 

  26. L. Suo, O. Borodin, T. Gao, M. Olguin, J. Ho, X. Fan, C. Luo, C. Wang, and K. Xu, Science, 2015, 350, 938.

    Article  CAS  PubMed  Google Scholar 

  27. Y. Marcus, “The Properties of Solvents”, 1998, John Wiley & Sons Ltd., New York.

    Google Scholar 

  28. K. Fujii, M. Matsugami, K. Ueno, K. Ohara, M. Sogawa, T. Utsunomiya, and M. Morita, J. Phys. Chem. C, 2017, 121, 22720.

    Article  CAS  Google Scholar 

  29. Y. Umebayashi, T. Mitsugi, S. Fukuda, T. Fujimori, K. Fujii, R. Kanzaki, M. Takeuchi, and S. Ishiguro, J. Phys. Chem. B, 2007, 111, 13028.

    Article  CAS  PubMed  Google Scholar 

  30. A. Shirai, K. Fujii, Y. Umebayashi, S. Ishiguro, and Y. Ikeda, Anal. Sci., 2008, 24, 1291.

    Article  CAS  PubMed  Google Scholar 

  31. Y. Umebayashi, S. Mori, K. Fujii, S. Tsuzuki, S. Seki, K. Hayamizu, and S.-i. Ishiguro, J. Phys. Chem. B, 2010, 114, 6513.

    Article  CAS  PubMed  Google Scholar 

  32. J.-C. Lassègues, J. Grondin, C. Aupetit, and P. Johansson, J. Phys. Chem. A, 2008, 113, 305.

    Article  Google Scholar 

  33. J.-C. Lassègues, J. Grondin, and D. Talaga, Phys. Chem. Chem. Phys., 2006, 8, 5629.

    Article  PubMed  Google Scholar 

  34. K. Fujii, H. Hamano, H. Doi, X. Song, S. Tsuzuki, K. Hayamizu, S. Seki, Y. Kameda, K. Dokko, M. Watanabe, and Y. Umebayashi, J. Phys. Chem. C, 2013, 117, 19314.

    Article  CAS  Google Scholar 

  35. K. Fujii, T. Kumai, T. Takamuku, Y. Umebayashi, and S. Ishiguro, J. Phys. Chem. A, 2006, 110, 1798.

    Article  CAS  PubMed  Google Scholar 

  36. M. Sogawa, H. Kawanoue, Y. M. Todorov, D. Hirayama, H. Mimura, N. Yoshimoto, M. Morita, and K. Fujii, Phys. Chem. Chem. Phys., 2018, 20, 6480.

    Article  CAS  PubMed  Google Scholar 

  37. M. J. Frisch {etet al.}, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford, CT, 2009, 19, 227.

    Google Scholar 

  38. K. Fujii, T. Fujimori, T. Takamuku, R. Kanzaki, Y. Umebayashi, and S. Ishiguro, J. Phys. Chem. B, 2006, 110, 8179.

    Article  CAS  PubMed  Google Scholar 

  39. K. Fujii, Y. Soejima, Y. Kyoshoin, S. Fukuda, R. Kanzaki, Y. Umebayashi, T. Yamaguchi, S. Ishiguro, and T. Takamuku, J. Phys. Chem. B, 2008, 112, 4329.

    Article  CAS  PubMed  Google Scholar 

  40. G. A. Giffin, A. Moretti, S. Jeong, and S. Passerini, J. Phys. Chem. C, 2014, 118, 9966.

    Article  CAS  Google Scholar 

  41. D. M. Carey and G. M. Korenowski, J. Chem. Phys., 1998, 108, 2669.

    Article  CAS  Google Scholar 

  42. H. J. Bakker and J. L. Skinner, Chem. Rev., 2010, 110, 1498.

    Article  CAS  PubMed  Google Scholar 

  43. W. Xu, E. I. Cooper, and C. A. Angell, J. Phys. Chem. B, 2003, 107, 6170.

    Article  CAS  Google Scholar 

  44. T. Kimura, K. Fujii, Y. Sato, M. Morita, and N. Yoshimoto, J. Phys. Chem. C, 2015, 119, 18911.

    Article  CAS  Google Scholar 

  45. M. Sogawa, Y. M. Todorov, D. Hirayama, H. Mimura, N. Yoshimoto, M. Morita, and K. Fujii, J. Phys. Chem. C, 2017, 121, 19112.

    Article  CAS  Google Scholar 

  46. M. Forsyth, H. Yoon, F. Chen, H. Zhu, D. R. MacFarlane, M. Armand, and P. C. Howlett, J. Phys. Chem. C, 2016, 120, 4276.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Japan Society for the Promotion of Science (JSPS), KAKENHI (No. 15K17877 for K. F.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenta Fujii.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tsurumura, T., Hashimoto, Y., Morita, M. et al. Anion Coordination Characteristics of Ion-pair Complexes in Highly Concentrated Aqueous Lithium Bis(trifluoromethane- sulfonyl)amide Electrolytes. ANAL. SCI. 35, 289–294 (2019). https://doi.org/10.2116/analsci.18P407

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.18P407

Keywords

Navigation