Skip to main content
Log in

Solvent Strength and Selectivity on a Porous Graphitized Carbon Column Separated by a Spectral Mapping Technique Using Barbiturates as Solutes

  • Original Papers
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A spectral mapping technique (SPM) was employed for separating the strength and selectivity of the retention of 41 barbituric acid derivatives and 5 organic modifiers on a porous graphitized carbon column (PGC). The potency values calculated by SPM were considered to be indicators of the capacity of drugs to bind to the surface of PGC and the capacity of organic modifiers to remove the drugs from the surface. The dimensionality of the multidimensional selectivity maps was reduced to two by a nonlinear mapping technique. Calculations indicated that molecular lipophilicity plays a negligible role in the strength and selectivity of retention, proving that the retention mechanism of PGC deviates from those of traditional reversed-phase stationary phases. Sterical and electronic parameters exerted the highest influence on the retention, emphasizing the importance of the polar interaction and the sterical correspondence between the surface of PGC and the solute molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Kaliszan, Anal. Chem., 1999, 64, 619A.

    Article  Google Scholar 

  2. T. Cserháti and E. Forgács, in “Advances in Chromatography”, ed. P. R. Brown and E. Grushka, 1995, Vol. 36, Marcel Dekker Inc., New York, 1–63.

    Google Scholar 

  3. F. Ulberth, JAOAC Int., 1994, 77, 1326.

    Article  CAS  Google Scholar 

  4. S. Ounnar, M. Righezza, and J. R. Chrétien, J. Liq. Chrom. & Rel. Technol., 1998, 21, 2017.

    Article  CAS  Google Scholar 

  5. E. Forgács and T. Cserháti, Anal. Lett, 1999, 32, 1867.

    Article  Google Scholar 

  6. J. D. Weckwerth and P. W. Carr, Anal. Chem., 1998, 70, 4793.

    Article  CAS  Google Scholar 

  7. P. J. Lewi, Arzneim.-Forsch., 1976, 26, 1295.

    CAS  Google Scholar 

  8. P. J. Lewi, Chemom. Int. Lab. Syst., 1989, 5, 105.

    Article  CAS  Google Scholar 

  9. T. Hamoir, F. Cuesta Sánchez, B. Bourguignon, and D. L. Massart, J. Chromatogr. Sci, 1994, 32, 488.

    Article  CAS  Google Scholar 

  10. T. Cserháti, J. Chromatogr. Sci., 1991, 29, 210.

    Article  Google Scholar 

  11. T. Cserháti and E. Forgács, Chemom. Int. Lab. Syst., 1998, 40, 93.

    Article  Google Scholar 

  12. T. Cserháti, Anal. Chim. Acta, 1997, 348, 197.

    Article  Google Scholar 

  13. P. Rodrigues, H. Morais, T. Mota, S. Olivera, T. Cserháti, and E. Forgács, Chemom. Int. Lab. Syst., 1999, 46, 93.

    Article  CAS  Google Scholar 

  14. J. W. Sammon, Jr., IEEE Trans. Comp., 1969, C18, 401.

    Article  Google Scholar 

  15. J. H. Knox, K. Unger, and H. Müller, J. Liq. Chromatogr., 1983, 6, 1.

    Article  CAS  Google Scholar 

  16. J. H. Knox, B. Kaur, and G. R. Millward, J. Chromatogr., 1986, 352, 3.

    Article  CAS  Google Scholar 

  17. J. H. Knox and P. Ross, in “Advances in Chromatography”, ed. P. R. Brown and E. Grushka, 1997, Vol. 37, Marcel Dekker Inc., New York, 73–119.

    CAS  Google Scholar 

  18. P. Ross and J. H. Knox, in “Advances in Chromatography”, ed. P. R. Brown and E. Grushka, 1997, Vol. 37, Marcel Dekker Inc., New York, 121–162.

    CAS  PubMed  Google Scholar 

  19. E. Forgács and T. Cserháti, J. Pharm. Biomed. Anal, 1992, 10, 861.

    Article  Google Scholar 

  20. E. Forgács and T. Cserháti, Anal. Sci., 1998, 14, 991.

    Article  Google Scholar 

  21. E. Forgács and T. Cserháti, Anal. Chim. Acta, 1997, 348, 481.

    Article  Google Scholar 

  22. E. Forgács and T. Cserháti, J. Pharm. Biomed. Anal, 1998, 18, 505.

    Article  Google Scholar 

  23. H. Mager, “Moderne Regressionsanalyse”, 1982, Salle, Sauerlander, Frankfurt am Main, 135.

    Google Scholar 

  24. T. Fujita, J. Iwasa, and C. Hansch, J. Am. Chem. Soc, 1964, 86, 5175.

    Article  CAS  Google Scholar 

  25. A. Leo, C. Hansch, and M. Ames, J. Pharm. Sci, 1975, 64, 559.

    Google Scholar 

  26. C. Hasch and A. Leo, “Substituent Constants for Correlation Analysis in Chemistry and Biology”, Wiley, New York, 1.

  27. L. Pauling and D. Pressman, J. Am. Chem. Soc., 1945, 67, 1003.

    Article  CAS  Google Scholar 

  28. R. W. Taft and I. C. Lewis, J. Am. Chem. Soc, 1958, 80, 2436.

    Article  CAS  Google Scholar 

  29. L. P. Hammett, Chem. Rev., 1935, 17, 125.

    Article  CAS  Google Scholar 

  30. R. W. Taft, J. Am. Chem. Soc, 1952, 74, 3120.

    Article  CAS  Google Scholar 

  31. A. Verloop and J. Tipker, Pestic Sci, 1976, 7, 379.

    Article  CAS  Google Scholar 

  32. A. Verloop, W. Hoogenstraaten, and J. Tipker, in “Drug Design”, ed. J. Ariens, Vol. 7, Academic Press, New York, 165–183.

  33. E. Forgács, T. Cserháti, and B. Bordás, Chromatographia, 1993, 36, 19.

    Article  Google Scholar 

  34. E. Forgács, T. Cserháti, and B. Bordás, Anal. Chim. Acta, 1993, 279, 115.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Forgács.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Forgács, E., Cserháti, T. Solvent Strength and Selectivity on a Porous Graphitized Carbon Column Separated by a Spectral Mapping Technique Using Barbiturates as Solutes. ANAL. SCI. 17, 307–312 (2001). https://doi.org/10.2116/analsci.17.307

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.17.307

Navigation