Skip to main content
Log in

Detection of Organic Molecules Dissolved in Water Using a γ-Al2O3 Chemiluminescence-Based Sensor

  • Notes
  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A new method is proposed for recognizing organic molecules dissolved in water using a chemiluminescence-based sensor made with a γ-Al2O3 catalyst. When a mixture of air and organic molecules, e.g. ethanol and acetone vaporized from a solution, flows around the sensor, chemiluminescence (CL) is emitted during its catalytic oxidation. The CL spectra consist of subbands peaking at the same wavelengths independent of the type of vapors. The peak wavelengths of these subbands are the same as those for CL with a CaCO3 catalyst. The relative CL intensity of each band, however, depends on the type of the vapor and the temperature of the sensor. This implies that CL originates in the same kinds of luminous species produced during the course of catalytic oxidation. By keeping a sample gas around the sensor in a state of laminar flow and by keeping the catalytic oxidation on the sensor under the diffusion-controlled condition, the CL intensity becomes stable and reproducible. The CL intensity is proportional to the concentration of these organic vapors in the gas phase within the concentration range of from 1 - 500 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. H. Regener, J. Geophys. Res., 65, 3975 (1960).

    Article  Google Scholar 

  2. V. H. Regener, J. Geophys. Res., 69, 3795 (1964).

    Article  CAS  Google Scholar 

  3. J. A. Hodgeson, K. J. Krost, A. E. O’Keeffe and R. K. Stevens, Anal. Chem., 42, 1795 (1970).

    Article  CAS  Google Scholar 

  4. D. Bersis and E. Vassiliou, Analyst[London], 91, 499 (1966).

    Article  CAS  Google Scholar 

  5. M. Breysse, B. Claudel, L. Faure, M. Guenin and R. J. J. Williams, J. Catal., 45, 137 (1976).

    Article  CAS  Google Scholar 

  6. B. Claudel, M. Breysse, L. Faure and M. Guenin, Rev. Chem. Intern., 2, 75 (1978).

    Article  CAS  Google Scholar 

  7. M. Nakagawa, N. Fujiwara, Y. Matsuura, T. Tomiyama, I. Yamamoto, K. Utsunomiya, T. Wada, N. Yamashita and Y. Yamashita, Bunseki Kagaku, 39, 797 (1990).

    Article  CAS  Google Scholar 

  8. K. Utsunomiya, M. Nakagawa, T. Tomiyama, I. Yamamoto, Y. Matsuura, S. Chikamori, T. Wada, N. Yamashita and Y. Yamashita, Sensors Actuators B, 11, 441 (1993).

    Article  CAS  Google Scholar 

  9. K. Utsunomiya, M. Nakagawa, T. Tomiyama, I. Yamamoto, Y. Matsuura, S. Chikamori, T. Wada, N. Yamashita and Y. Yamashita, Sensors Actuators B, 13-14, 627 (1993).

    Article  Google Scholar 

  10. K. Utsunomiya, M. Nakagawa, N. Sanari, M. Kohata, T. Tomiyama, I. Yamamoto, T. Wada, N. Yamashita and Y. Yamashita, Sensors Actuators B, 24-25, 790 (1995).

    Article  Google Scholar 

  11. M. Nakagawa, Sensors Actuators B, 29, 94 (1995).

    Article  CAS  Google Scholar 

  12. S. Van Heusden and L. P. J. Hoogeveen, Fresenius’ Z. Anal. Chem., 282, 307 (1976).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nakagawa, M., Yamamoto, I. & Yamashita, N. Detection of Organic Molecules Dissolved in Water Using a γ-Al2O3 Chemiluminescence-Based Sensor. ANAL. SCI. 14, 209–214 (1998). https://doi.org/10.2116/analsci.14.209

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.14.209

Keywords

Navigation