Skip to main content
Log in

Selective Thiol Detection in Authentic Biological Samples with the Use of Screen-printed Electrodes

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

A selective voltammetric determination of homocysteine and glutathione was applied to cell tissue culture media and human plasma via a single two-step method. The two-step method relies on the 1,4-Michael addition reaction between electro-oxidized catechol and the target thiol. Furthermore, the procedure relies on the differing reaction kinetics of the ortho-quinone with various thiol species giving different responses as a function of the scan rate. At faster scan rates homocysteine is only detected, while at slower scan rates the adduct signal reflects both homocysteine and glutathione. As a result, the quantification of both homocysteine and glutathione can be determined with a combination of both sets of data. The previous proof-of-concept (P. T. Lee, D. Lowinsohn, and R. G. Compton, Sensors, 2014, 14, 10395), is applied to the quantification of thiols in both tissue culture media and human plasma alone. Analytical parameters were determined for both homocysteine and glutathione in the respective media and the linear range. The sensitivities in tissue culture media are ca. 3 nA μM−1 and ca. 1 nA μM–1 and the limits of detections are ca. 2 μM and ca. 1 μM for homocysteine and glutathione, respectively. In human plasma, the sensitivities were determined to be 94 and 39 nA μM−1, and the limit of detections are ca. 0.8 μM and ca. 0.8 μM for homocysteine and glutathione, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Fiskerstrand, H. Refsum, G. Kvalheim, P.M. Ueland, Clin. Chem., 1993, 39, 263.

    Article  CAS  PubMed  Google Scholar 

  2. P.M. Ueland, H. Refrum, S.P. Stabler, M.R. Malinow, A. Andersson, R.H. Allen, Clin. Chem., 1993, 39, 1764.

    Article  CAS  PubMed  Google Scholar 

  3. D.J. VanderJagt, P.J. Garry, H.N. Bhaganvan, Am. J. Clin. Nutr., 1987, 46, 290.

    Article  CAS  PubMed  Google Scholar 

  4. Y.V. Tcherkas and A.D. Denisenko, J. Chromatogr. A, 2001, 973, 309.

    Article  Google Scholar 

  5. W.A. Kleinman and J.P. Richie, Biochem. Pharm., 2000, 60, 19.

    Article  PubMed  Google Scholar 

  6. C.J. Boushey, S.A.A. Beresfore, G.S. Omenn, A.G. Motulsky, JAMA, J. Am. Med. Assoc., 1995, 274, 1049.

    Article  CAS  Google Scholar 

  7. M. Filella, N. Belzile, Y.-W. Chen, Crit. Rev. Environ. Sci. Technol., 2013, 43, 2071.

    Article  Google Scholar 

  8. F. Michelet, R. Gueguen, P. Leroy, M. Wellman, A. Nicolas, G. Siest, Clin. Chem., 1995, 47, 1509.

    Article  Google Scholar 

  9. N.S. Lawrence, J. Davies, R.G. Compton, Talanta, 2001, 53, 1089.

    Article  CAS  PubMed  Google Scholar 

  10. H.A. Krebs, Annu. Rev. Biochem., 1950, 79, 409.

    Article  Google Scholar 

  11. J. Kruid, R. Fogel, J. Limson, Electrochim. Acta, 2014, 728, 41.

    Article  Google Scholar 

  12. E.H. Seymour, S.J. Wilkins, N.S. Lawrence, R.G. Compton, Anal. Lett., 2002, 35, 1387.

    Article  CAS  Google Scholar 

  13. A. Meister and M.E. Anderson, Ann. Rev. Biochem., 1983, 52, 711.

    Article  PubMed  Google Scholar 

  14. P.C. White, N.S. Lawrence, J. Davis, R.G. Compton, Electroanalysis, 2002, 74, 89.

    Article  Google Scholar 

  15. H. Refsum, F. Wesenberg, P.M. Ueland, Cancer Res., 1991, 57, 828.

    Google Scholar 

  16. J.C. Harfield, C. Batchelor-McAuley, R.G. Compton, Analyst, 2012, 737, 2285.

    Article  Google Scholar 

  17. A. Pastore, R. Massoud, C. Motti, A.L. Russo, G. Fucci, C. Cortese, G. Federici, Clin. Chem., 1998, 44, 825.

    Article  CAS  PubMed  Google Scholar 

  18. O. Nekrassova, N.S. Larence, R.G. Compton, Talanta, 2003, 60, 1085.

    Article  CAS  PubMed  Google Scholar 

  19. W. Wang, J.O. Escobedo, C.M. Lawrence, R.M. Strongin, J. Am. Chem. Soc., 2003, 726, 3400.

    Google Scholar 

  20. J.L. D'Erarno, A.E. Finkelstein, F.O. Boccazzi, O. Fridman, J. Chromatogr. B, 1998, 720, 205.

    Article  Google Scholar 

  21. P. Houze, S. Gamra, I. Madelaine, B. Bousquet, B. Gourmel, J. Clin. Lab. Anal., 2001, 75, 144.

    Article  Google Scholar 

  22. S. Melnyk, M. Pogribna, I. Pogribny, R.J. Hine, S.J. James, J. Nutr. Biochem., 1999, 10, 490.

    Article  CAS  PubMed  Google Scholar 

  23. R. Saetre and D.L. Rabenstein, Anal. Biochem., 1978, 90, 684.

    Article  PubMed  Google Scholar 

  24. N.S. Lawrence, E.L. Beckett, J. Davis, R.G. Compton, Anal. Biochem., 2002, 303, 1.

    Article  CAS  PubMed  Google Scholar 

  25. S.A. Wring and J.P. Hart, Analyst, 1992, 117, 1215.

    Article  Google Scholar 

  26. J. Wang and M. Musameh, Analyst, 2004, 129, 1.

    Article  Google Scholar 

  27. N. Thiyagarajan, J. Chang, K. Senthilkumar, J. Zen, Electrochem. Commun., 2014, 38, 86.

    Article  CAS  Google Scholar 

  28. P.T. Lee, D. Lowinsohn, R.G. Compton, Sensors, 2014, 14, 10395.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. DropSens.

  30. J. Wang, Electroanalysis, 2005, 17, 7.

    Article  CAS  Google Scholar 

  31. R.W. Murray, A.G. Ewing, R.A. Durst, Anal. Chem., 1987, 59, 379A.

    CAS  PubMed  Google Scholar 

  32. R.C. Carvalho, A. Mandil, K.P. Prathish, A. Amine, C.M.A. Brett, Electroanalysis, 2013, 25, 903.

    Article  CAS  Google Scholar 

  33. H.D. Goldberg, R.B. Brown, D.P. Liu, M.E. Meyerhoff, Sens. Actuators, B, 1994, 21, 171.

    Article  CAS  Google Scholar 

  34. P.T. Lee, D. Lowinsohn, R.G. Compton, Analyst, 2014, 139, 3755.

    Article  CAS  PubMed  Google Scholar 

  35. P.C. White, N.S. Lawrence, J. Davis, R.G. Compton, Anal. Chim. Acta, 2001, 447, 1.

    Article  CAS  Google Scholar 

  36. O. Nekrassova, P.C. White, S. Threlfell, G. Hignett, A.J. Wain, N.S. Lawrence, J. Davis, R.G. Compton, Analyst, 2002, 127, 797.

    Article  CAS  PubMed  Google Scholar 

  37. D.P. Jones, J.L. Carlson, J.V.C. Mody, J. Cai, M.J. Lynn, J.P. Sternberg, Free Radical Biol. Med., 2000, 28, 625.

    Article  CAS  Google Scholar 

  38. M.A. Mansoor, A.M. Svardal, P.M. Ueland, Anal. Biochem., 1992, 200, 218.

    Article  CAS  PubMed  Google Scholar 

  39. H. Refsum, P.D. Ueland, P. Nygârd, S.E. Vollset, Annu. Rev. Med., 1998, 49, 31.

    Article  CAS  PubMed  Google Scholar 

  40. D.A. Skoog, D.M. West, F.J. Holler, S.R. Crouch, "Fundamental of Analytical Chemistry", 8th ed., 2003, Brooks/Cole-Thomson Learning, USA.

    Google Scholar 

  41. National Health Service (NHS).

  42. P.J. Taylor, D.P. Cooper, R.D. Gordon, M. Stowasser, Clin. Chem., 2009, 55, 1155.

    Article  CAS  PubMed  Google Scholar 

  43. J.A. Jacquez, J.W. Poppell, R. Jeltsch, J. Appl. Physiol., 1959, 14, 255.

    Article  CAS  PubMed  Google Scholar 

  44. W.H. Stein and S. Moore, J. Biol. Chem., 1954, 211, 915.

    Article  PubMed  Google Scholar 

  45. F.K. Trefz, D.J. Byrd, W. Kochen, J. Chromatogr. A, 1975, 107, 181.

    Article  CAS  Google Scholar 

  46. J.H.M. Van den berg, C.R. Mol, R.S. Deelder, J.H.H. Thijssen, Clin. Chim. Acta, 1977, 78, 165.

    Article  PubMed  Google Scholar 

  47. D. Weatherby and S. Ferguson, "Blood Chemistry and CBC Analysis", 1st ed., 2002, Bear Mountain, USA.

    Google Scholar 

  48. R. Achari, M. Mayersohn, K.A. Conrad, J. Chromatogr. Sci., 1983, 21, 278.

    Article  CAS  PubMed  Google Scholar 

  49. S.M. Deneke and B.L. Fanburg, Am. J. Physiol., 1989, 257, L163.

    PubMed  Google Scholar 

  50. A. Pastore, G. Federicia, E. Bertinib, F. Piemonteb, Clin. Chim. Acta, 2003, 333, 19.

    Article  CAS  PubMed  Google Scholar 

  51. M. Reid and F. Jahoor, Curr. Opin. Clin. Nutr., 2001, 4, 65.

    Article  Google Scholar 

  52. H. Sies, Free Radical Biol. Med., 1999, 27, 916.

    Article  CAS  Google Scholar 

  53. D.E. Cole, D.C. Lehotay, J. Evrovski, Clin. Chem., 1998, 44, 188.

    Article  CAS  PubMed  Google Scholar 

  54. B.N. Ames, R. Cathcart, E. Schwiers, P. Hochstein, Proc. Natl. Acad. Sci. U.S.A., 1981, 78, 6858.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. S. Tan, R. Radi, F. Gaudier, R.A. Evans, A. Rivera, K.A. Kirk, D.A. Parks, Pediatr. Res., 1993, 34, 303.

    Article  CAS  PubMed  Google Scholar 

  56. M. Kanai, A. Raz, D.S. Goodman, J. Clin. Invest., 1968, 47, 2025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. F.R. Smith and D.S. Goodman, J. Clin. Invest., 1971, 50, 2426.

    Article  PubMed  Google Scholar 

  58. D. Brubacher, U. Mosher, P. Jordan, Int. J. Vitam. Nutr. Res., 2000, 70, 225.

    Article  Google Scholar 

  59. M. Levine, S.J. Padayatty, M.G. Espey, Adv. Nutr., 2011, 2, 78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. R.W. Gray, D.R. Wilz, A.E. Caldas, J. Lemann, Jr., J. Clin. Endocrinol. Metab., 1977, 45, 299.

    Article  CAS  PubMed  Google Scholar 

  61. P.W. Lambert, B.J. Syverson, C.D. Arnaud, T.C. Spelsberg, J. Steroid Biochem., 1977, 8, 929.

    Article  CAS  PubMed  Google Scholar 

  62. T.C.B. Stamp and J.M. Round, Nature, 1974, 247, 563.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patricia T. Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, P.T., Compton, R.G. Selective Thiol Detection in Authentic Biological Samples with the Use of Screen-printed Electrodes. ANAL. SCI. 31, 685–691 (2015). https://doi.org/10.2116/analsci.31.685

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.31.685

Keywords

Navigation