Skip to main content
Log in

DNA Detection on a Power-free Microchip with Laminar Flow-assisted Dendritic Amplification

  • Published:
Analytical Sciences Aims and scope Submit manuscript

Abstract

In this paper, we describe DNA detection experiments using our two original technologies, power-free microchip and laminar flow-assisted dendritic amplification (LFDA), which were previously applied to immunoassays. A microchip was fabricated by combining a poly(dimethylsiloxane) (PDMS) part having microchannel patterns and a glass plate modified with probe DNA. We carried out two kinds of experiments: the detection of 21-base biotinylated target DNA and the detection of single-nucleotide polymorphism (SNP) in 56-base unlabeled target DNA by sandwich hybridization with biotinylated probe DNA. For both of the experiments, the necessary solutions were injected into microchannels not by an external power source, but by air dissolution into the PDMS part. After a hybridization reaction, the LFDA was started by injecting FITC-labeled streptavidin and biotinylated anti-streptavidin antibody onto the reaction site. With a detection time of 20 min, the limit of detection (LOD) for the biotinylated target was 2.2 pM, and the LOD for the SNP was 10 – 30 pM, depending on the SNP type.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Chwastiak, J. B. Barr, and R. Didchenko, Carbon, 1979, 17, 49.

    Article  CAS  Google Scholar 

  2. W. M. Gaylord, Ind. Eng. Chem., 1959, 51, 1161.

    Article  CAS  Google Scholar 

  3. N. C. Gallego, D. D. Edie, B. Nysten, J. P. Issi, J. W. Treleaven, and G. V. Deshpande, Carbon, 2000, 38, 1003.

    Article  CAS  Google Scholar 

  4. D. J. Amarasekera, Reinf. Plast., 2005, 49, 38.

    Article  Google Scholar 

  5. W. E. Chambers, Mech. Eng., 1975, 97, 37.

    Google Scholar 

  6. O. Nakamura, T. Ohana, M. Tazawa, S. Yokota, W. Shinoda, O. Nakamura, and J. Itoh, Synthesiology, 2009, 2, 159.

    Article  Google Scholar 

  7. R. D. Adams, M. A. O. Fox, R. J. L. Flood, R. J. Friend, and R. L. Hewitt, J. Compos. Mater., 1969, 3, 594.

    Article  CAS  Google Scholar 

  8. J. Markarian, Plast. Addit. Compd., 2005, 7, 26.

    Article  Google Scholar 

  9. M. Funabashi, Compos. Part A-Appl., 1997, 28, 731.

    Article  Google Scholar 

  10. L. T. Weng, C. Poleunis, P. Bertrand, V. Carlier, M. Sclavons, P. Franquinet, and R. Legras, J. Adhes. Sci. Technol., 1995, 9, 859.

    Article  CAS  Google Scholar 

  11. E. N. Navera, K. Sode, E. Tamiya, and I. Karube, Biosens. Bioelectron., 1991, 6, 675.

    Article  CAS  PubMed  Google Scholar 

  12. J. Njagi, M. M. Chernov, J. C. Leiter, and S. Andreescu, Anal. Chem., 2010, 82, 989.

    Article  CAS  PubMed  Google Scholar 

  13. H. X. Ju, L. Dong, and H. Y. Chen, Talanta, 1996, 43, 1177.

    Article  CAS  PubMed  Google Scholar 

  14. R. J. Kuriger, M. K. Alam, D. P. Anderson, and R. L. Jacobsen, Compos. Part A-Appl., 2002, 33, 53.

    Article  Google Scholar 

  15. Y Abiru, M. Chino, and Y Nikawa, IEICE Technical Report, 1998, 98, 57.

    Google Scholar 

  16. R. L. McCreery, Chem. Rev., 2008, 108, 2646.

    Article  CAS  PubMed  Google Scholar 

  17. M. Ates and A. S. Sarac, Prog. Org. Coat., 2009, 66, 337.

    Article  CAS  Google Scholar 

  18. H. Wei and S. Omanovic, Chem. Biodiv., 2008, 5, 1622.

    Article  CAS  Google Scholar 

  19. N. de-los-Santos-Álvarez, P. de-los-Santos-Álvarez, M. J. Lobo-Castañón, A. J. Miranda-Ordieres, and P. Tunñó-Blanco, Anal. Chem., 2005, 77, 4286.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Hosokawa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hosokawa, K., Sato, T., Sato, Y. et al. DNA Detection on a Power-free Microchip with Laminar Flow-assisted Dendritic Amplification. ANAL. SCI. 26, 1053–1057 (2010). https://doi.org/10.2116/analsci.26.1053

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.2116/analsci.26.1053

Navigation